Producción de Radionucleidos

ENR 2024

Inicio de "Era Nuclear"

RADIUM v. GREY HAIR

Who'd dream she was 50? 50 and not a grey hai to be seen. Wonderful Yet an absolute fact. Let 'CARADIUM' do to be seen. Wonderful!
Yet an absolute fact.
Let 'CARADIUM' do
for you what it has
done for thousand!
parts of the world.
'CARADIUM' will
quickly restore, right
from the hair roots, the
natural colour, health wair,
making
you look 10 to 20 years younger.

'Caradium' is NOT A DYE

Regular application of Caratham's will review the Lands of the bair and cannot be returned and caratham's will review to the hard and came the nation of Caratham's will review to the same and came the nation of the same cannot be nationally as the same of the same cannot be returned to the same cannot be returned to the same cannot be same to the same cannot be cannot be cannot be considered to the same cannot be Grey Hair will never appear if CARADIUM IS USED ONCE WEEKLY AS A TONIC

CARADIUM' (REGD.), 38, Great Smith Street, Westminster, LONDON Burkbrown

How to PROSPECT, For ATOMIC MINERALS

World-wide race for radioactive minerals is on! New deposits in U. S. being found is on: New deposits in U.S. being found constantly Thrilling opportunity. Tells how to find URANIUM, THORIUM, CARNO-TITE, PITCHBLENDE, etc. All needed in Atomic Research, Full instructions by mail only 25c. Tells . . .

How to Operate GEIGER COUNTER

Be among first to use famous Geiger Counter. Seeks out Radioactive Minerals. Own your own or rent for vacation. New Uranium deposits may be found in any state. Send 25c for instructions now. Supply limited.

OMAHA SCIENTIFIC SUPPLY Dept. PS-2

les produits de beaut

RADIUM

EMANATION WATER

"Here's Health!"

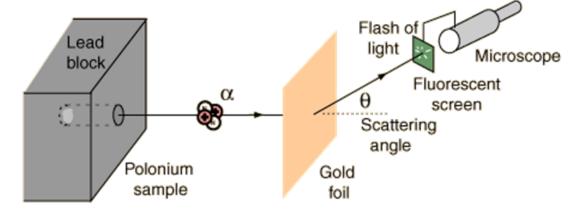
RADITHOR

RADIUM SPRAY COMPANY, INC. Radium Spray cleans everything but a "guil

conscience." RADIUM SPRAY is a Liquid Clean and Polisher, a Dust Layer, Disinfectant, Deodoriz and a Sure Death to Flies, Mosquitoes, Roaches, B. Bugs, Fleas and Hog Lice. Will Polish and Cler Furniture, Buggies, Automobiles, Marble, Tile, Brass, Nickel, Carpets, Rugs, Matting, parts of Machinery, Typewriters, Cash Registers and many other things not mentioned.

Danlos fue pionero en el uso de la radioactividad en el tratamiento del lupus eritematoso de la piel, y en 1901 con el físico Eugène Bloch, fueron los primeros en aplicar <u>radio</u> sobre las lesiones cutáneas de la tuberculosis.

C. Davis escribiera en el American Journal of Clinical Medicine que *"la radioactividad previene las enfermedades, aumenta las emociones nobles, retrasa el envejecimiento y genera una espléndida y juvenil vida".*


The first report of the internal use of radionuclides for cancer therapy emerged in **1913**, when **Frederick Proescher** used intravenous injections of soluble *radium-223* salts for the treatment of patients with a variety of diseases, including uterine cancer and leukemia.

Desde que **George Hevessy** (1885-1966), considerado el padre de la medicina nuclear, en el año **1932** realizó investigaciones con el empleo de trazadores para marcar alimentos y valorar la trayectoria de estos dentro de los diferentes organismos, incluido el ser humano

Producción de Radionucleidos

- ➤ 1896, radiactividad natural (H.Becquerel) y posteriores contribuciones de Pierre Curie and Marie Slodowska Curie, E. Rutherford, and F. Soddy (1902) sobre otros muchos elementos radioactivos.
- > Todos los elementos naturales con número átomico Z > 83 (bismuto) son radioactivos.
- > Radioactividad artificial fue reportada por I. Curie and F. Joliot en 1934.

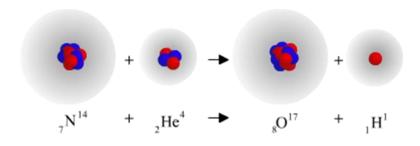
Al bombardear con partículas α, originadas en polonio, blancos de boro y aluminio observaron la emisión de positrones aún después de remover la fuente de partículas



Producción de radionucleidos Reacciones nucleares

El término reacción nuclear se aplica a una variedad de procesos que involucran colisiones entre núcleos.

En una reacción nuclear típica inciden núcleos (o partículas) a sobre núcleos blanco X.


Los núcleos **a** y **X** interactúan a través de las fuerzas nucleares (y electromagnéticas) y producen nuevos núcleos **b** e **Y**.

Producción de Radionucleidos

- > Más de 2700 radionucleidos producidos artificialmente en ciclotrón, reactores, generador de neutrones y acelerador lineal
- > Radionucleidos usados en medicina nuclear son en su mayoría artificiales.
- > El tipo de radionucleido producido depende de la partícula incidente, su energía y el núcleo blanco
- > Estas facilidades son caras, limitadas y suministran radionucleidos a otros centros
- > Radionucleidos de vida media muy corta son disponibles solo en las instituciones que posean dichas facilidades.
- > Existen otro tipo de fuentes secundarias de radionucleidos, de vidas medias cortas, llamados generadores de radionucleidos.

Usualmente, tanto la partícula incidente \boldsymbol{a} como la saliente \boldsymbol{b} son nucleones o núcleos livianos (deuterones, α , etc.) mientras que \boldsymbol{X} e \boldsymbol{Y} son núcleos más pesados.

Sin embargo, también son habituales reacciones donde los proyectiles son más pesados

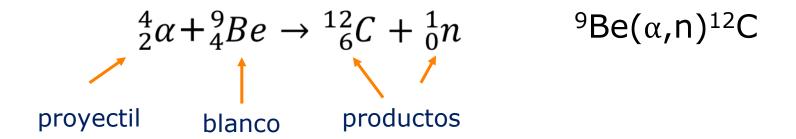
$$P + {}^{7}Li \rightarrow {}^{8}Be \rightarrow {}^{4}He + {}^{4}He$$

Reacciones nucleares: leyes de conservación

- ✓ Conservación de los nucleones, A
- √ Conservación de la carga, q
- √ Conservación de la energía (masa), E
- √ Conservación del momento lineal, p

$$a + X \rightarrow Y + b \pm Q$$

Energía de reacción


Si Q > 0 reacción exotérmica (exoérgica) \Longrightarrow se convierte en energía cinética de los productos. Ocurre para todos los valores de la energía cinética del proyectil.

Si Q < 0 reacción endotérmica (endoérgica) \Longrightarrow el proyectil debe tener una energía cinética mínima para producir la reacción.

Recordando E=mc²

$$Q = (M_X + M_a - M_Y - M_b)c^2$$

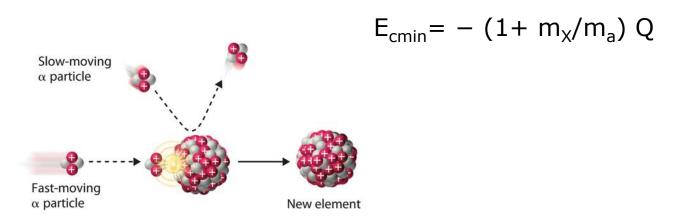
Reacciones nucleares

Conservación de los nucleones:

Conservación de la energía-masa

$$M_X c^2 + E_{cX} + M_a c^2 + E_{ca} = M_Y c^2 + E_{cY} + M_b c^2 + E_{cb}$$

$$Q = E_{cfinal} - E_{cinicial} = (E_{cY} + E_{cb}) - (E_{cX} + E_{ca})$$


$$Q = (M_X + M_a - M_Y - M_b)c^2$$

Energía umbral

De la conservación de momento lineal y la energía y siendo que Y y b salen con energía cinética cero en el sistema de referencia de laboratorio, la energía mínima del proyectil será:

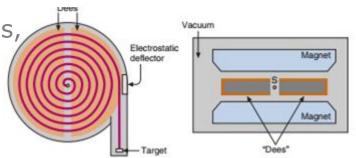
$$E_{cmin} = - Q (M_X + M_a + M_Y + M_b)/2M_A$$

En el límite no relativista, se puede aproximar como:

Si las partículas incidente y saliente son las mismas, X=Y, el proceso se denomina dispersión

Dispersión elástica, donde Y queda en el mismo estado cuántico que el que estaba X la energía cinética se conserva

- Interacción Coulombiana
- Interacción nuclear


$$x = y, X = Y, Q = 0$$

Dispersión inelástica donde Y queda en un estado distinto del que estaba X.

- partícula emitida igual o distinta al proyectil
- interacción con el blanco
- transferencia de energía directa

El Ciclotrón

✓ Partículas cargadas (protones, deuterones, partículas α, ³He) son aceleradas en órbitas circulares bajo vacío mediante un campo electromagnético

- ✓ Energías pocos keV a varios GeV, dependiendo del diseño y tipo de ciclotrón (α ~15MeV).
- ✓ La partícula cargada al moverse en una órbita circular bajo un campo magnético incrementa gradualmente su energía cinética a medida que aumenta el radio de su trayectoria

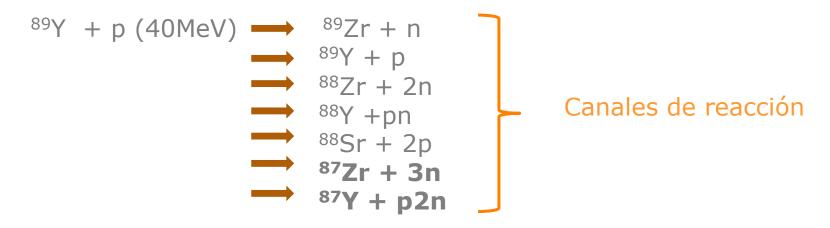
$$\vec{F} = e\vec{B} \times \vec{v}$$

✓ Esta relación entre energía cinética y el radio son conocidas para cada ciclotrón.

$$\frac{mv^2}{r} = Bev$$

✓ Iones pesados como ¹6O,¹⁴N y ³²S han sido exitosamente acelerados

$$r = \frac{mv}{Be}$$


El Ciclotrón

- ✓ Cuando partículas aceleradas inciden sobre blancos de elementos estables pueden ocurrir reacciones nucleares.
- ✓ En esta reacción nuclear, la partícula incidente puede dejar parte de su energía en el núcleo o bien ser absorbida por el núcleo.
- ✓ Dependerá de la energía de la partícula incidente y la sección eficaz de la reacción.
- ✓ En ambos casos, se formará un núcleo en un estado excitado, el exceso de energía dará lugar a la emisión de nucleones, que es seguida por emisión de rayos gamma.
- ✓ Cada reacción nuclear para la producción de nucleidos tiene una energía umbral, Q, que es obsorbida o liberada:

$$Q = M(blanco) + m_p - M(producto) - m_p^*$$

Ejemplos de radionucleidos producidos en un Ciclotrón

> 89Y por irradiación con protones de 40-MeV

El Ciclotrón

- ✓ Radionucleidos producidos con números atómicos diferentes a isótopos del blanco, no contienen ningún isótopo estable (frio o portador). Se denomina libre de portador (carrier-free) o no carrier added (NCA),
- ✓ Los materiales blancos deben ser preferentemente puros o monoisotópicos o enriquecidos isotopicamente para evitar la producción de radionucleidos no deseados o extraños.
- ✓ Los ciclotrones tienen dos usos potenciales principales en el entorno de hospitales:
 - √ haces de neutrones y protones de alta energía para radioterapia
 - √ activación de materiales para trazadores o diagnóstico.
 - √ una máquina de hospital produce radioisotopos de vida media muy corta.

Ejemplos de radionucleidos producidos en un Ciclotrón

Galio-67

 66 Zn(d; n) 67 Ga, 68 Zn(p, 2n) 67 Ga, and 64 Zn(α ; p) 67 Ga.

Zinc natural u óxido enriquecido irradiado con 20-MeV protones, 8-MeV deuterones, o 23-MeV particulas α . Posteriores procesos químicos hasta obtener citrato de galio.

Puede haber impurezas de 66 Ga ($T_{1/2}$ 9 hr) comparado con 78 hr de 67 Ga.

Iodo-123

Buenas características de radiación: decaimiento por CE, $T_{1/2}$ = 13.2 hr y emisión de rayos gamma de 159 keV.

Métodos directos: 121 Sb(α ; 2n) 123 I, 123 Te(p; n) 123 I, 122 Te(d; n) 123 I, y 124 Te(p; 2n) 123 I. Posteriores procesos químicos. Contaminantes 124 I, 125 I

Métodos indirectos: 123 Xe se produce inicialmene y luego decae con $T_{1/2}$ = 2.1 hr a 123 I. Libre de otros radioisotopos del I.

¹²²Te(α; 3n)¹²³Xe, α de 42-46MeV, ¹²²Te(³He; 2n)¹²³Xe, ³He de 20-30MeV ¹²³Te(³He; 3n)¹²³Xe, ³He de 25MeV, ¹²⁷I(p; 5n)¹²³Xe, p de 60-70MeV.

Radionucleidos de vida media corta

✓ Interés para disponibilidad en Positron Emission Tomography (PET)

- ✓ Vidas medias muy cortas, ciclotrones médicos (CM) localizados en el laboratorio.
- ✓ Un CM es una versión pequeña de ciclotrón usado primariamente para la produccion de radionucleidos para aplicaciones médicas
- ✓ Provee partículas cargadas de baja energía y alta intensidad.
- ✓ Pueden acelerarse alternadamente deuterones y protones.

Ejemplos de radionucleidos de vida media corta

Carbón-11, $T_{1/2} = 20.4 \text{ min}$,

¹⁰B(d; n)¹¹C, ¹¹B(p; n)¹¹C, ¹⁴N(p; a)¹¹C

Nitrógeno-13, $T_{1/2} = 10$ min, se usa como NH_3

 $^{12}C(d; n)^{13}N, \, ^{16}O(p; \alpha)^{13}N, \, ^{13}C(p; n)^{13}N$

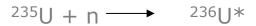
Ambos para imagen de miocardio por PET

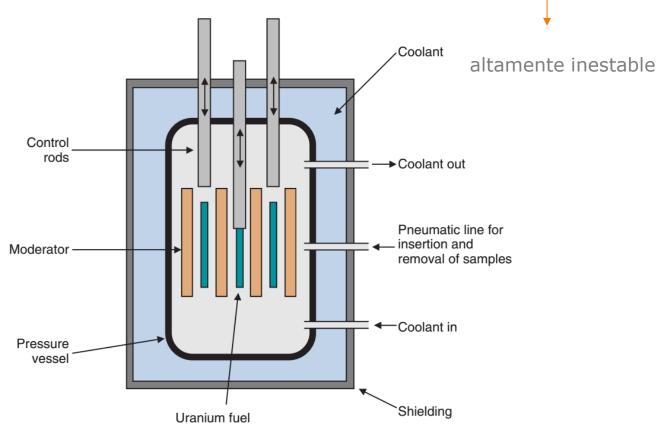
Oxígeno-15, $T_{1/2} = 2 \text{ min}$,

¹⁴N(d; n)¹⁵O, ¹⁵N(p; n)¹⁵O

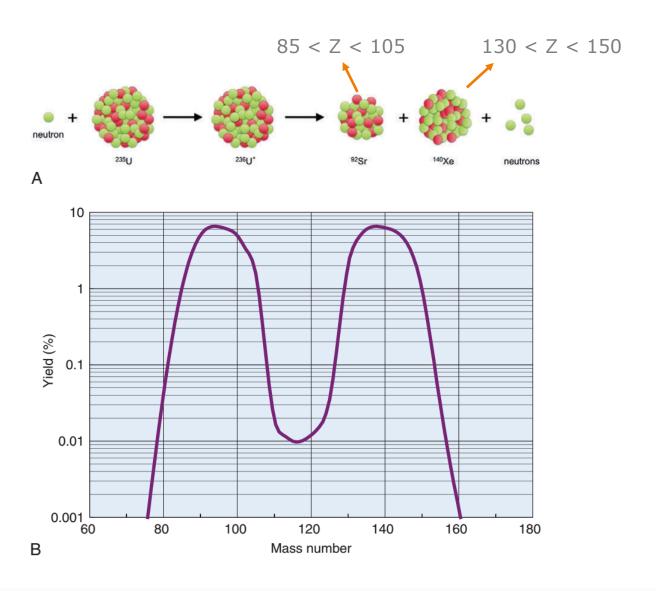
Nomenclador de hemoglobina, investigaciones clínicas de malfunciones pulmonares o cardiacas, estudios de perfusión de miocardio cerebral

Fluor-18, $T_{1/2} = 10 \text{ min},$ $^{18}O(p;n)^{18}F$

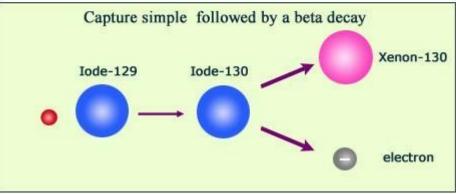

Nomenclar glucosa, (fluorodeoxyglucose (FDG)), estudios metabólicos cerebral y de miocardio, nomenclador de ligandos potenciales de tumores y para imágenes de huesos (U.S.Food and Drug Administration (FDA)).


Reactores nucleares

Radionucleidos producidos por reactores


- ✓ Una variedad de radionucleidos se producen en reactores que utilizan como combustible materiales de fisión como ²³⁵U enriquecido y ²³⁹Pu.
- ✓ Fisión espontánea con baja probabilidad.
- ✓ Fisión es la separación del núcleo pesado en dos fragmentos de aprox. igual masa junto con la emisión de 2 o 3 neutrones de energía de 1.5 MeV.
- ✓ En cada fisión se libera energía en forma de calor que puede utilizarse para generación de electricidad.
- ✓ Neutrones emitidos pueden causar posteriores fisiones e iniciar una reacción en cadena que debe ser controlada (moderadores).
- ✓ Neutrones térmicos (0.025 eV) interactúan con otros núcleos produciendo radionucleidos: fisión de elementos pesados , captura neutrónica o reacción del tipo (n; γ).

El núcleo del reactor contiene el combustible fissionable.



Productos de Fisión

Fisión

- √ Los elementos fisionables son ²³⁵U, ²³⁹Pu, ²³⁷Np, ²³³U, ²³²Th, y aquellos con números atómicos mayores a 90.
- ✓ Son separados por procedimientos químicos tales como precipitación, extracción por solventes, intercambio iónico, cromatografía, destilación.

✓ Radionucleidos clínicamente útiles: ¹³¹I, ⁹⁹Mo, ¹³³Xe, ¹³⁷Cs provienen de la fisión del ²³⁵U.

√ La energía liberada por fisión es del orden de 200MeV.

Captura neutrónica o reacciones (n, y)

- \checkmark El núcleo blanco captura un neutrón térmico y emite rayos γ para producir un isótopo del mismo elemento.
- ✓ No es portador libre y su actividad específica es baja.
- ✓ No es necesaria una separación química a menos que naturalmente contenga otros nucleidos.

```
<sup>131</sup>Te (que produce <sup>131</sup>I por β<sup>-</sup> con T_{1/2}=25 min), <sup>99</sup>Mo, <sup>197</sup>Hg, <sup>59</sup>Fe, <sup>51</sup>Cr,
```

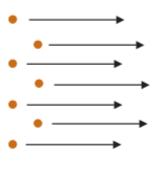
98
Mo(n; γ) 99 Mo, 196 Hg(n;γ) 197 Hg, 50 Cr(n;γ) 51 Cr.

✓ El análisis por activación neutrónica es una herramienta importante en la detección de traza de elementos en ciencias forenses, industria y ciencias biológicas.

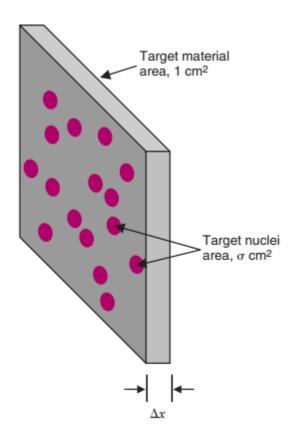
Sección transversal de activación

Sea n el número de átomos blancos por unidad de volumen, la variación de partículas del haz al atravesar el blanco:

$$\Delta \phi / \phi = n \sigma \Delta x$$


$$m \approx n \times \Delta x \times AW/(6.023 \times 10^{23})$$

La velocidad de activación por unidad de masa:


$$R \approx \Delta \phi / m$$

La velocidad de desintegración por unidad de masa:

$$A_{\rm s}$$
 (Bq/g) = R

Particle beam, flux density φ

Ecuación para la Producción de Radionucleidos

La actividad del radionucleido producido en un ciclotrón o reactor:

$$A = IN\sigma(1-e^{-\lambda t})$$
 factor de saturación

Donde:

A, la actividad (des/s) del radionucleido producido

I, intensidad o flujo de las partículas incidentes [n. de part/(cm² s)]

N, n. de átomos blanco

σ, sección eficaz transversal de formación del radionucleido (cm² o barn);

 λ , constante de decaimiento. 0.693/ $t_{1/2}(s^{-1})$

t, tiempo de irradiación

Si t> 5 o 6 vidas medias el rendimiento es máximo:

$$A = IN\sigma$$

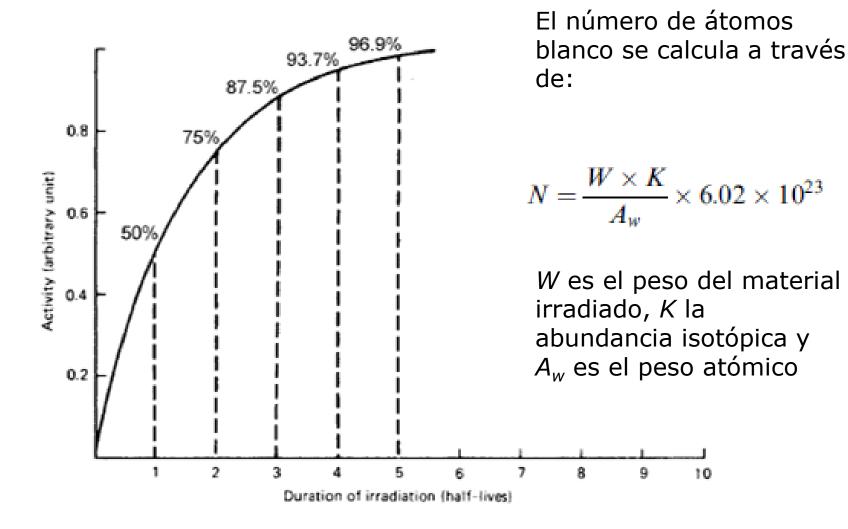


TABLE 5-1
NEUTRON-ACTIVATED RADIONUCLIDES OF IMPORTANCE IN BIOLOGY AND MEDICINE

Radionuclide	Decay Mode	Production Reaction	Natural Abundance of Target Isotope (%)*	$\sigma_{\rm e}({f b})^{\dagger}$
¹⁴ C	β-	$^{14}N(n,p)^{14}C$	99.6	1.81
²⁴ Na	(β-,γ)	$^{23}Na(n,\gamma)^{24}Na$	100	0.53
³² P	β-	$^{^{31}}P(n,\gamma)^{^{32}}P \\ ^{^{32}}S(n,p)^{^{32}}P$	100 95.0	0.19 0.1
³⁵ S	β-	$^{35}\mathrm{Cl}(n,p)^{35}\mathrm{S}$	75.8	0.4
$^{42}\mathrm{K}$	(β-,γ)	$^{41}{ m K}({ m n},\!\gamma)^{42}{ m K}$	6.7	1.2
⁵¹ Cr	(EC,γ)	$^{50}Cr(n,\gamma)^{51}Cr$	4.3	17
⁵⁹ Fe	(β-,γ)	$^{58}Fe(n,\!\gamma)^{59}Fe$	0.3	1.1
⁷⁵ Se	(EC,γ)	$^{74}\mathrm{Se}(\mathrm{n},\gamma)^{75}\mathrm{Se}$	0.9	30
^{125}I	(EC,γ)	$^{124}\mathrm{Xe}(n,\gamma)^{125}\mathrm{Xe} \xrightarrow{EC} ^{125}\mathrm{I}$	0.1	110
¹³¹ I	(β^-,γ)	$^{130}\mathrm{Te}(n,\gamma)^{131}\mathrm{Te} \xrightarrow{ \beta^- } ^{131}\mathrm{I}$	33.8	0.24

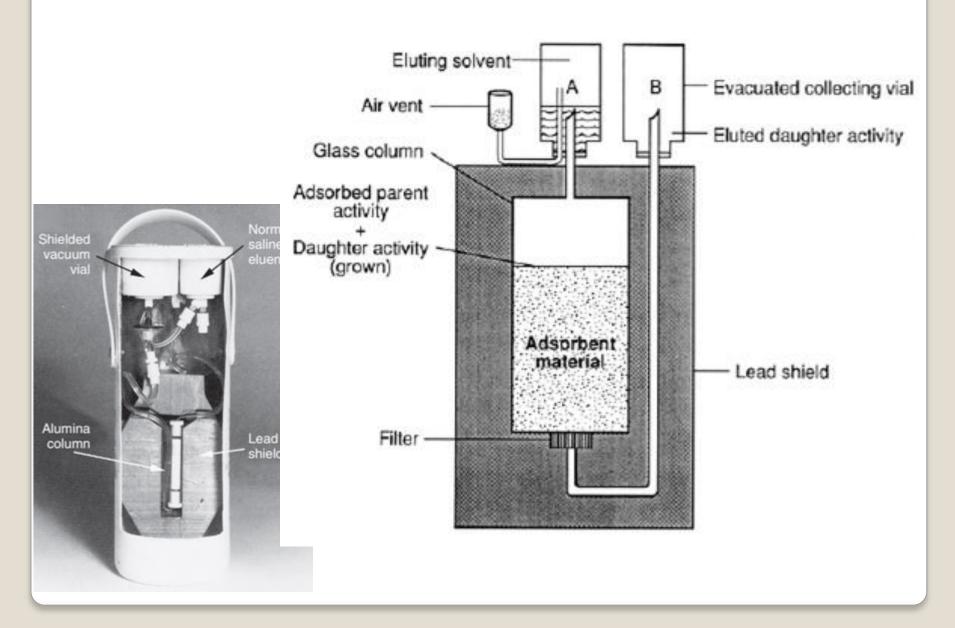
^{*}Values from Browne E, Firestone RB: Table of Radioactive Isotopes. New York, 1986, John Wiley.

EC, Electron capture.

[†]Thermal neutron capture cross-section, in barns (b) (see "Activation Cross-Sections"). Values from Wang Y: Handbook of Radioactive Nuclides, Cleveland, Chemical Rubber Company, 1969.²

Table 4.1. Characteristics of commonly used radionuclides.

Nuclide	Physical half-life	Mode of decay (%)	γ-ray energy ^a (MeV)	Abundance (%)	Common production metho	
3H	12.3 yr	$\beta^{-}(100)$	_	_	⁶ Li(n, α) ³ H	
il ₆ C	20.4 min	$\beta^{+}(100)$	0.511	200	$^{10}B(d,n)^{11}C$	
0.0		p ()	(annihilation)		$^{14}N(p,\alpha)^{11}C$	
13 N	10 min	$\beta^{+}(100)$	0.511	200	$^{12}C(d, n)^{13}N$	
1		, , , ,	(annihilation)		$^{16}O(p, \alpha)^{13}N$	
					$^{13}C(p,n)^{13}N$	
¹⁴ ₆ C	5730 yr	$\beta^{-}(100)$	_	_	$^{14}N(n,p)^{14}C$ $^{14}N(d,n)^{15}O$	
15O	2 min	$\beta^{+}(100)$	0.511	200	14N(d,n)15O	
0			(annihilation)		$^{15}N(p,n)^{15}O$	
18 F	110 min	$\beta^{+}(97)$	0.511	194	$^{18}O(p, n)^{18}F$	
		EC(3)	(annihilation)			
32 ₁₅ P	14.3 days	$\beta^{-}(100)$		_	$^{32}S(n,p)^{32}P$	
51 24 Cr	27.7 days	EC(100)	0.320	9	50 Cr(n, γ) 51 Cr	
⁵¹ Cr ⁵² Fe	8.3 hr	$\beta^{+}(56)$	0.165	100	$^{55}Mn(n,4n)^{52}Fe$	
		EC(44)	0.511	112	50 Cr(α , 2n) 52 Fe	
			(annihilation)			
57 27 Co	271 days	EC(100)	0.014	9	⁵⁶ Fe(d, n) ⁵⁷ Co	
			0.122	86		
			0.136	11		
58 27Co	71 days	$\beta^{+}(14.9)$	0.811	99.5	55 Mn(α , n) 58 Co	
		EC(85.1)				
⁵⁹ Fe	45 days	$\beta^{-}(100)$	1.099	56	⁵⁸ Fe(n, γ) ⁵⁹ Fe	
			1.292	43		
60 27Co	5.2 yr	$\beta^{-}(100)$	1.173	100	⁵⁹ Co(n, γ) ⁶⁰ Co	
			1.332	100		
$^{62}_{28}$ Zn	9.3 hr	$\beta^{+}(8)$	0.420	25	$^{63}Cu(p, 2n)^{62}Zn$	
		EC(92)	0.511	31		
			0.548	15		
			0.597	26		
62 29Cu	9.7 min	$\beta^{+}(97)$	0.511	194	62Ni(p,n)62Cu	
		EC(3)	(annihilation)		or 62 Zn $\stackrel{\beta^+,EC}{\longrightarrow}$ 62 Cu	
67Cu	2.6 days	$\beta^{-}(100)$	0.185	49	67Zn(n,p)67Cu	
4.7	-		0.92	23		
67 31 Ga	78.2 hr	EC(100)	0.093	40	68Zn(p,2n)67Ga	
			0.184	20	-	


Table 4.1 (continued)

Nuclide	Physical half-life	Mode of decay (%)	γ-ray energy ^a (MeV)	Abundance (%)	Common production method	
68 31 Ga	68 min	β ⁺ (89)	0.511	178	68Zn(p, n)68Ga	
-		EC(11)	(annihilation)			
$_{37}^{82}$ Rb	75 s	$\beta^{+}(95)$	0.511	190	82 Sr \xrightarrow{EC} 82 R b	
		EC(5)	(annihilation)		233 0239	
82.0	25.5.1	EC(100)	776	13	85m1 / 4 \82c	
⁸² Sr ⁸⁹ Sr	25.5 days	EC(100)	_	_	85Rb(p,4n)82Sr	
38 Sr	50.6 days	$\beta^{-}(100)$	_	_	88 Sr $(n, \gamma)^{89}$ Sr 235 XX $(n, \gamma)^{89}$ Sr	
90 38 Sr	28.5 yr	$\beta^{-}(100)$	_	_	$^{235}U(n, f)^{90}Sr$	
90 Y	2.7 days	$\beta^{-}(100)$	_	_	89 Y $(n, \gamma)^{90}$ Y	
99 42 Mo	66 hr	$\beta^{-}(100)$	0.181	6	$^{98}Mo(n, \gamma)^{99}Mo$	
			0.740	12	$^{235}U(n, f)^{99}Mo$	
			0.780	4		
99mTc	6.0 hr	IT(100)	0.140	90	$^{99}\text{Mo} \xrightarrow{\beta^-} ^{99\text{m}}\text{Tc}$	
111 ₄₉ In	2.8 days	EC(100)	0.171	90	111Cd(p, n)111In	
49		- ()	0.245	94	4//	
113m In	100 min	IT(100)	0.392	64	$^{112}Sn(n, \gamma)^{113}Sn$	
					¹¹³ Sn	
¹²³ I	13.2 hr	EC(100)	0.159	83	$^{117 \text{ days}}_{121} \text{Sb}(\alpha, 2 \text{ n})^{123} \text{I}$	
¹²⁴ I	4.2 days	$\beta^{+}(23)$	0.511	46	$^{124}\text{Te}(p,n)^{124}\text{I}$	
33		EC(77)	(annihilation)		4, ,	
125 53 I	60 days	EC(100)	0.035	7	124 Xe $(n, \gamma)^{125}$ Xe	
			x ray(0.027-0.032)	140	$^{125}\text{Xe} \xrightarrow{\text{EC}} ^{125}\text{I}$	
¹³¹ ₅₃ I	8.0 days	$\beta^{-}(100)$	0.284	6	$^{130}\text{Te}(n, \gamma)^{131}\text{Te}$	
33 -	0.0 0.0	p ()	0.364	81	²³⁵ U(n, f) ¹³¹ Te	
			0.637	7	$^{131}\text{Te} \xrightarrow{\beta^{-}} ^{131}\text{I}$	
					$^{25 \text{ min}}_{235}$ U(n, f) 131 I	
¹³³ Xe ⁵⁴ ¹³⁷ Cs ¹⁵³ Sm	5.3 days	$\beta^{-}(100)$	0.081	37	$^{235}U(n,f)^{133}Xe$	
137 Cs	30.0 yr	$\beta^{-}(100)$	0.662	85	$^{235}U(n,f)^{137}Cs$	
153 Sm	1.9 days	$\beta^{-}(100)$	70	5	152 Sm $(n, \gamma)^{153}$ Sm	
02		p (200)	103	28	(,//)	
¹⁸⁶ Re	3.8 days	$\beta^{-}(92)$	137	9	185 Re $(n, \gamma)^{186}$ Re	
		EC(8)				
²⁰¹ Tl	73 hr	EC(100)	0.167	9.4	$^{203}\text{Tl}(p,3n)^{201}\text{Pb}$	
			x ray(0.069-0.083)	93	$^{201}\text{Pb} \xrightarrow{\text{EC}} ^{201}\text{Tl}$	

Generadores de Radionucleidos Principios de un generador

- ✓ Proveen fuentes de radionucleidos de vida media corta clinicamente útiles.
- ✓ El radionucleido padre tiene una vida media mayor que la de la hija.
- ✓ Padre e hija son químicamente separables.
- ✓ Facilmente transportables a institutos sin ciclotrones o facilidades de reactor.
- ✓ Se produce equilibrio secular entre padre e hija.
- ✓ La actividad de la hija es eluida en estado de portador libre.

Generadores de Radionucleidos

El primer generador de radionucleido comercial:

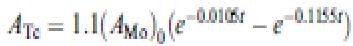
132
Te($t_{1/2}$ =78hs) \longrightarrow 132 I($t_{1/2}$ =2,5hs)

Desarrollado en 1960 en el Laboratorio Nacional de Brookhaven.

Son pocos los generadores útiles en medicina:

TABLE 5.1. Several generator systems useful in nuclear medicine.

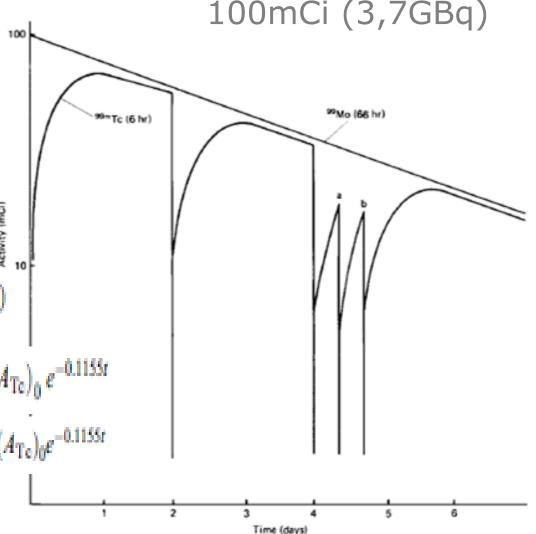
Parent	Parent t _{1/2}	Nuclear reaction	Daughter	Daughter t _{1/2}	Mode of daughter decay	Principal photon energy (keV) (% abundance)	Column	Eluant
⁹⁹ Mo	66 hr	Fission ⁹⁸ Mo(n, γ)	^{99т} Те	6 hr	Πa	140 (90)	Al ₂ O ₃	0.9% NaCl
113Sn	115 days	112Sn(n, γ)	11.3m In	99.5 min	IT	392 (64)	ZrO_2	0.05 N HCI
87Y	80 hr	88 Sr(p, 2n)	87mSr	2.8 hr	IT	388 (82)	Dowex 1 × 8	0.15 M NaHCO3
⁶⁸ Ge	271 days	69 Ga(p, 2n)	⁶⁸ Ga	68 min	β^+	511 (178)	Al ₂ O ₃ SnO ₂	0.005 M EDTA 1 N HCl
62Zn	9.3 hr	63Cu(p, 2n)	62Cu	9.7 min	β^+	511 (194)	Dowex 1 × 8	2 N HC1
¹³⁷ Cs	30 yr	Fission	^{137m} Ba	2.6 min	rr	662 (85)	Ammonium moly- bdophosphate	0.1 N HCI+ 0.1 N NH ₄ CI
81Rb	4.6 hr	79 Br(α , 2n)	81 mKr	13 sec	IT	190 (67)	BioRad AG 50	Water or air
^{82}Sr	25.5 days	85Rb(p, 4n)	82 Rb	75 sec	β^+	511 (190)	SnO_2	0.9% NaCl
191 Os	15.4 days	190 Os(n, y)	19 lm Ir	4.9 sec	IT	129 (26)	BioRad AG1	4% NaCl
¹⁹⁵ Hg	41.5 hr	¹⁹⁷ Au(p, 3n)	^{195m} A u	30.6 sec	IT	262 (68)	Silica gel coated with ZnS	Sodium thiosulfate solution


Data from Browne E, Firestone RB. Table of Radioactive Isotopes. 1st ed. New York: Wiley; 1986.

^{*}IT, isomeric transition.

⁹⁹Mo-^{99m}Tc

$$\lambda_{Mo} = 0.693/66 = 0.0105 \,hr^{-1}$$


$$\lambda_{\text{Te}} = 0.693/6 = 0.1155 \text{ hr}^{-1}$$

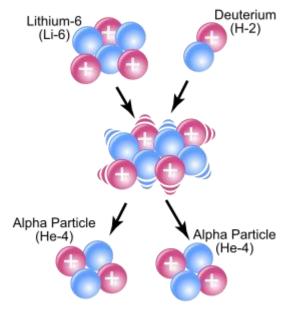
 $A_{\text{Tc}} = 1.1(A_{\text{Mo}})_0(e^{-0.0105t} - e^{-0.1155t}) + (A_{\text{Tc}})_0 e^{-0.1155t}$

$$A_{\text{Tc}} = 0.957 (A_{\text{Mo}})_0 (e^{-0.0108t} - e^{-0.1155t}) + (A_{\text{Tc}})_0 e^{-0.1155t}$$

https://www.iaea.org/resources/databases/atomic-masses-q-values-and-threshold-energies

https://www.nndc.bnl.gov/qcalc/

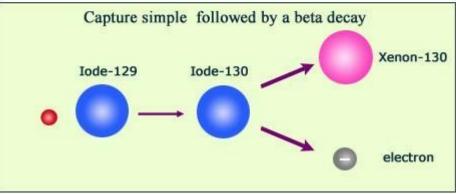
Actividad Específica


Es la actividad por unidad de masa del radionucleido:

Por ejemplo, 100mg de albumina de ¹³¹I que contiene 150mCi (5,55GBq) de ¹³¹I, tendra una actividad especifica:

$$A_{esp} = \frac{150mCi}{100mg} = 1,5mCi / mg$$

$$A_{esp} = \frac{5,55GBq}{100mg} = 55,5MBq / mg$$


Canales de reacción y Q de la reacción

Lithium-6 - Deuterium Reaction

$$Q = (M_X + M_a - M_Y - M_b)c^2$$

