FÍSICA ESTADÍSTICA

Licenciatura en Física Médica

Curso 2024

Prof. Marisa A. Bab

AD Juan M. Tenti

Clase 3

CÓMO RECONOCER SI UNA ECUACIÓN ES UNA RELACIÓN FUNDAMENTAL (S O U) ¿En cuál representación está escrita?

¿Es una función continua y diferenciable?

¿Es homogénea de grado 1?

¿La entropía es monótona creciente con U?

¿La entropía tiende a cero cuando la temperatura tiende a cero?

Ejemplo:

¿Cuál de las siguientes relaciones es una relación fundamental?

a)
$$U = \frac{3}{2}NRT$$

b)
$$U = \frac{U_0 S^2}{V} e^{\frac{S}{NR}}$$

a) ¿En cuál representación está escrita?

U es función de N y T, no S, V y N. No es una relación fundamental.

b) Tenemos U(S,V,N), representación energética.

¿Es una función continua y diferenciable?

Si, para V>0.

¿Es homogénea de grado 1?

$$U(\lambda S, \lambda V, \lambda N) = \frac{U_0(\lambda S)^2}{\lambda V} e^{\frac{\lambda S}{\lambda NR}} = \lambda \frac{U_0(S)^2}{V} e^{\frac{S}{NR}} = \lambda U(S, V, N), \text{ Si}$$

¿La entropía es monótona creciente con U?

Tenemos que probar que
$$\frac{\partial S}{\partial U}\Big|_{VN} > 0$$
, dado que $\frac{\partial S}{\partial U}\Big|_{VN} = \frac{1}{\frac{\partial U}{\partial S}\Big|_{VN}} > 0$

$$\frac{\partial U}{\partial S}\Big|_{VN} = \frac{2U_0S}{V}e^{\frac{S}{NR}} + \frac{2U_0S^2}{VNR}e^{\frac{S}{NR}} > 0$$
, implica T>0

$$T = \frac{2U_0 S}{V} e^{\frac{S}{NR}} + \frac{2U_0 S^2}{VNR} e^{\frac{S}{NR}} donde \ si \ T \to 0 \ \Rightarrow S \to 0$$

Es una ecuación fundamental

RELACIÓN DE LOS PARÁMETROS INTENSIVOS CON LAS DERIVADAS PARCIALES EN LA REPRESENTACIÓN ENERGÉTICA

Ecuación fundamental: *U (S, V,N)*

$$dU = \frac{\partial U}{\partial S} \bigg|_{V,N_i} dS + \frac{\partial U}{\partial V} \bigg|_{S,N_i} dV + \frac{\partial U}{\partial N_i} \bigg|_{S,V} dN_i \qquad si \qquad dU = TdS - pdV + \mu_i dN_i$$

$$\frac{\partial U}{\partial S} \bigg|_{V,N_i} = T \qquad \frac{\partial U}{\partial V} \bigg|_{S,N_i} = -p \quad y \quad \frac{\partial U}{\partial N_i} \bigg|_{S,V} = \mu_i \text{ es el potencial químico de la componente i.}$$

 $T(S,V,N_i)$, $P(S,V,N_i)$, $\mu_i(S,V,N_i)$ son relaciones entre parámetros intensivos y extensivos, son ecuaciones de estado. Cada una posee información incompleta del sistema que representa y por lo tanto el conocimiento completo es posible si se conocen todas.

Dado que U es homogénea de grado 1, las ecuaciones de estado son homogéneas de grado cero, en acuerdo con que dan variables intensivas.

Para un sistema compuesto por λ subsistemas idénticos:

$$T(\lambda S, \lambda V, \lambda N) = \lambda^{0} T(S, V, N) = T(S, V, N)$$
$$p(\lambda S, \lambda V, \lambda N) = \lambda^{0} p(S, V, N) = p(S, V, N)$$
$$\mu_{i}(\lambda S, \lambda V, \lambda N) = \lambda^{0} \mu_{i}(S, V, N) = \mu_{i}(S, V, N)$$

RELACIÓN DE LOS PARÁMETROS INTENSIVOS CON LAS DERIVADAS PARCIALES EN LA REPRESENTACIÓN ENTROPICA

• En la representación entrópica:

El diferencial se escribe:

$$dS = \frac{1}{T}dU + \frac{P}{T}dV - \frac{\mu_i}{T}dN_i$$

Y las ecuaciones de estado:

$$\left. \frac{\partial S}{\partial U} \right|_{V,N_i} = \frac{1}{T}; \quad \left. \frac{\partial S}{\partial V} \right|_{U,N_i} = \frac{P}{T}; \quad \left. \frac{\partial S}{\partial N_i} \right|_{U,V} = -\frac{\mu_i}{T}$$

- SyT; VyP; μ_i yN_i son variables conjugadas.
- ¡Cuidado no mezclar representaciones!

Ecuación de Euler:

Sabemos obtener las ecuaciones de estado a partir de la ecuación fundamental, ¿cómo obtenemos la ecuación fundamental conociendo las ecuaciones de estado?

Derivemos la ecuación $U(\lambda S, \lambda V, \lambda N_1, ..., \lambda N_n) = \lambda U(S, V, N_1, ..., N_n)$ respecto de λ .

$$\frac{\partial U}{\partial(\lambda S)} \frac{\partial(\lambda S)}{\partial(\lambda)} + \frac{\partial U}{\partial(\lambda V)} \frac{\partial(\lambda V)}{\partial(\lambda)} + \frac{\partial U}{\partial(\lambda N_1)} \frac{\partial(\lambda N_1)}{\partial(\lambda)} + \dots + \frac{\partial U}{\partial(\lambda N_n)} \frac{\partial(\lambda N_n)}{\partial(\lambda)} = U(S, V, N_1, \dots, N_n)$$

$$\frac{\partial U}{\partial(\lambda S)}S + \frac{\partial U}{\partial(\lambda V)}V + \frac{\partial U}{\partial(\lambda N_1)}N_1 + \dots + \frac{\partial U}{\partial(\lambda N_n)}N_n = U(S, V, N_1, \dots, N_n)$$

Esta relación se cumple para cualquier valor de λ y en particular para $\lambda = 1$,

$$\frac{\partial U}{\partial (S)}S + \frac{\partial U}{\partial (V)}V + \frac{\partial U}{\partial (N_1)}N_1 + \dots + \frac{\partial U}{\partial (N_n)}N_n = U(S, V, N_1, \dots, N_n)$$

Ecuación de Euler:

Llegamos a la ecuación de Euler en la representación energética

$$TS - PV + \mu_1 N_1 + \dots + \mu_n N_n = U$$

En la representación entrópica podemos respetir el procedimiento:

$$S = \frac{1}{T} U + \frac{P}{T} V - \frac{\mu_1}{T} N_1 + \dots - \frac{\mu_n}{T} N_n$$

Si conocemos las ecuaciones de estado sustituyendo en la ecuación de Euler obtenemos la ecuación Fundamental.

Relación de Gibbs-Duhem

Diferenciando la ecuación de Euler en la representación energética: $U = TS - PV + \mu_1 N_1 + \cdots + \mu_n N_n$

$$dU = TdS + SdT - pdV - Vdp + \sum_{i=1}^{n} \mu_i dN_i + N_i d\mu_i$$

Comparando con $dU = TdS - pdV + \sum_{i=1}^{n} \mu_i dN_i$ obtenemos:

$$SdT + -Vdp + \sum_{i=1}^{n} N_i d\mu_i = 0$$

- La ecuación de Gibbs-Duhem prueba que los parámetros intensivos se relacionan.
- En un sistema de n componentes n+1 parámetros intensivos son independientes, es decir, tenemos n+1 grados de libertad termodinámicos ¿Cuáles?

T, -p y n-1 potenciales químicos

Relación de Gibbs-Duhem

Para un sistema simple de un solo componente:

$$SdT - VdP + Nd\mu = 0$$
, depenjando:

$$d\mu = -\frac{S}{N} dT + \frac{V}{N} dP = -sdT + vdP$$

Con un procedimiento similar en la representación entrópica llegamos:

$$d\left(\frac{\mu}{T}\right) = ud\left(\frac{1}{T}\right) + vd\left(\frac{P}{T}\right)$$

La ecuación de Gibbs-Duhem permite obtener la totalidad de las ecuaciones de estado.

A partir de esto reemplazando en Euler obtener la ecuación fundamental.

Un poco de matemáticas

Las funciones de estado como U y S son diferenciales exactas.

¿Cómo sabemos si una expresión du(x,y) = M(x,y)dx + N(x,y)dy es una diferencial exacta?

$$M(x,y) = \frac{\partial u}{\partial x} y N(x,y) = \frac{\partial u}{\partial y}$$

Debemos probar que: $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ o bien $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$

¿Cómo obtenemos u(x, y)?

$$u(x,y) = \int M(x,y)dx$$

Pero el resultado de la integral es una función $u^*(x, y)$ más f(y), debo obtener la función f(y).

Derivo la expresión $u^*(x,y) + f(y)$ respecto a y, luego comparo con N(x,y):

$$\frac{\partial u(x,y)}{\partial y} = \frac{\partial u^*(x,y)}{\partial y} + f'^{(y)} = N(x,y)$$

Por integración obtengo f(y).

Ecuación fundamental de un gas ideal

Obtengamos la ecuación fundamental de un gas ideal monoatómico desde las ecuaciones de estado:

$$PV = NRT, \qquad U = \frac{3}{2}NRT$$

¿En qué representación trabajaremos? ¿de cuáles variables de estado dependerá el potencial químico?

Elijo la entrópica y reescribo las ecuaciones de estado: $\frac{P}{T} = \frac{R}{v} y$ $\frac{1}{T} = \frac{3R}{2u}$

$$d\left(\frac{P}{T}\right) = -\frac{R}{v^2}dv \qquad \qquad d\left(\frac{1}{T}\right) = -\frac{3R}{2u^2}du$$

Reemplazando en la ecuación de Gibb-Duhem: $d\left(\frac{\mu}{T}\right) = ud\left(\frac{1}{T}\right) + vd\left(\frac{P}{T}\right) \Rightarrow d\left(\frac{\mu}{T}\right) = -\frac{3R}{2u}du - \frac{R}{v}dv$

Dado que $\frac{\mu}{T}$ es una función de estado puedo obtenerla integrando respecto de u: $\frac{\mu}{T} = -\frac{3R}{2} \ln u + f(v)$

Derivando la expresión anterior y comparando: $\frac{\partial \left(\frac{\mu}{T}\right)}{\partial v}\Big|_{u} = f'(v) = -\frac{R}{v} \Longrightarrow f(v) = -Rln(v) + cte$

$$\frac{\mu}{T} = -\frac{3R}{2}\ln(u) - R\ln(v) + cte$$

$$\frac{P}{T} = \frac{R}{v}$$
 $\frac{1}{T} = \frac{3R}{2u}$ $\frac{\mu}{T} = -\frac{3R}{2}\ln(u) - R\ln(v) + cte$

Introduciendo en la ecuación de Euler y usando $u = \frac{U}{N}$ y $v = \frac{V}{N}$

$$S = \frac{3RN}{2U}U + \frac{RN}{V}V + \frac{3RN}{2}\ln\left(\frac{U}{N}\right) + RN\ln\left(\frac{V}{N}\right) + cte\ N$$

$$S = \frac{5RN}{2} + cteN + RN \ln \left(\frac{U}{N}\right)^{3/2} + RN \ln \left(\frac{V}{N}\right)$$

$$S = N \left(\frac{5R}{2} + cte + R \ln \left(\frac{U}{N} \right)^{\frac{3}{2}} + R \ln \left(\frac{V}{N} \right) \right)$$

$$S = N\left(c + R\ln\left(\frac{U}{N}\right)^{\frac{3}{2}} + R\ln\left(\frac{V}{N}\right)\right) = N\left(c + R\ln\left(\frac{U^{3/2}V}{N^{\frac{5}{2}}}\right)\right)$$

Existe otra forma más directa usando variables molares:

$$ds = \frac{1}{T}du + \frac{P}{T}dv$$

Usando las ecuaciones de estado: $\frac{1}{T} = \frac{3R}{2u}$ $y \frac{P}{T} = \frac{R}{v}$

$$ds = \frac{3R}{2u}du + \frac{R}{v}dv$$

Esta expresión sigue siendo un diferencial exacto y podemos trabajarla de igual manera que con el potencial químico para obtener el resultado anterior. Les dejo las cuentas en la práctica.

Observar, ¡solo necesitamos 2 ecuaciones de estado!

FUNCIONES RESPUESTA

- Son magnitudes que pueden medirse, estan tabuladas y caracterizan el comportamiento termodinámico de un material, es decir, dan información de cómo se modifican las variables de estado cuando otras variables de estado son modificadas en forma controlada.
- Las funciones respuesta involucran derivadas segundas de la ecuación fundamental en alguna de las representaciones, veamos la definición de algunas de ellas.

Calor específico a presión constante (capacidad calorífica molar a presión constante):

Cantidad de calor que es necesario agregar cuasiestáticamente por mol para un incremento unitario de temperatura, a presión constante.

$$c_p = \frac{1}{N} \frac{\partial Q}{\partial T} \bigg|_P = \frac{T}{N} \frac{\partial S}{\partial T} \bigg|_P$$

Calor específico a volumen constante (capacidad calorífica molar a volumen constante):

Cantidad de calor que es necesario agregar cuasiestáticamente por mol para un incremento unitario de temperatura, a volumen constante.

$$c_V = \frac{1}{N} \frac{\partial Q}{\partial T} \bigg|_V = \frac{T}{N} \frac{\partial S}{\partial T} \bigg|_V$$

también puedo escribir $c_V = \frac{1}{N} \frac{\partial U}{\partial T}\Big|_V$ si asocio la variación de entropía con la primera ley.

¿Qué representa un calor especifico alto?

Necesitaré grandes cantidades de calor para producir incrementos de temperatura.

Compresibilidad isotérmica

Disminución relativa de volumen por unidad de aumento de presión, a temperatura constante:

$$k_T = -\frac{1}{V} \frac{\partial V}{\partial P} \bigg|_{T}$$

¿Por qué el signo menos?

 $\left. \frac{\partial V}{\partial P} \right|_T < 0$ implica que si P aumenta V debe disminuir.

Compresibilidad Adiabática

Disminución relativa de volumen por unidad de aumento de presión, a entropía constante:

$$k_s = -\frac{1}{V} \frac{\partial V}{\partial P} \bigg|_{S}$$

¿Por qué el signo menos?

 $\left. \frac{\partial V}{\partial P} \right|_T < 0$ implica que si P aumenta debe disminuir V.

Coeficiente de dilatación

Incremento relativo de volumen por unidad de aumento de temperatura, a presión constante:

$$\alpha = \frac{1}{V} \frac{\partial V}{\partial T} \bigg|_{T}$$

¿Cómo interpreto $\alpha > 0$?

Al aumentar T a P constante debe aumentar V.

¿Puede ser $\alpha < 0$?

Ej. el agua cerca del punto de fusión.

FIN CLASE 3