# FENOMENOS DE TRANSPORTE

# FLUJO DE FLUIDOS EN EL CUERPO

# Sangre

Corazón y sistema circulatorio

# Aire

• Pulmones y sistema respiratorio

# **MOVIMIENTOS**

Flujo dirigido

Mediante los sistemas vasculares

Movimiento no dirigido

Difusión. Distancias ~100 μm

# CONCEPTOS

# Hidrostática

# Principio general de la hidrostática

Profundidad

# Principio de Arquímedes

Densidad relativa

### Tensión superficial

Capilaridad

### Ley de Laplace

• Diferencia de presión entre paredes (burbujas, tubos)

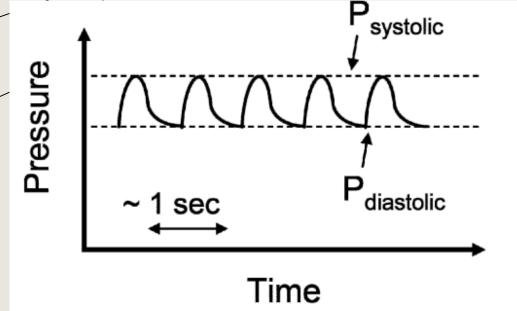
# Hidrodinámica

# Ecuación de Bernoulli

Fluidos ideales

# Viscosidad

Velocidad


# Ley de Pouseuille



FLUIDOS EN REPOSO

# PRESIÓN EN EL CUERPO

La presión en una columna de fluido



**Table 7.1.** Typical (gauge) pressures in the body (in mmHg). (Using data from [345])

| arterial blood pressure      |                                       |
|------------------------------|---------------------------------------|
| maximum (systolic)           | 100 – 140                             |
| minimum (diastolic)          | 60-90                                 |
| capillary blood pressure     |                                       |
| arterial end                 | 30                                    |
| venous end                   | 10                                    |
| venous blood pressure        |                                       |
| typical                      | 3–7                                   |
| great veins                  | <1                                    |
| middle ear pressure          |                                       |
| typical                      | <1                                    |
| eardrum rupture threshold    | 120                                   |
| eye pressure                 |                                       |
| humors                       | 20 (12-23)                            |
| glaucoma threshold range     | $\sim$ 21–30                          |
| cerebrospinal fluid pressure |                                       |
| in brain – lying down        | 5 - 12                                |
| gastrointestinal             | 10–12                                 |
| skeleton                     |                                       |
| long leg bones, standing     | $\sim 7,600 \ (10 \ \text{atm.})$     |
| urinary bladder pressure     |                                       |
| voiding pressure             | $15-30 (20-40  \text{cmH}_2\text{O})$ |
| momentary, up to             | $120 (150  \text{cmH}_2 \text{O})$    |
| intrathoracic                |                                       |
| between lung and chest wall  | -10                                   |

5



# TENSIÓN SUPERFICIAL

$$\gamma = F/L$$

**Table 7.2.** Surface tension  $(\gamma)$  for several liquids. (Using data from [351, 358, 363])

| liquid              | T (°C) | $\gamma (10^{-4}  \text{N/m})$ |
|---------------------|--------|--------------------------------|
| water               | 0      | 7.56                           |
|                     | 20     | 7.28                           |
|                     | 60     | 6.62                           |
|                     | 100    | 5.89                           |
| whole blood         | 20     | 5.5 – 6.1                      |
| blood plasma        | 20     | 5.0 – 5.6                      |
| lung surfactant     | 20     | 0.1                            |
| cerebrospinal fluid | 20     | 6.0 – 6.3                      |
| saliva              | 20     | 1.5 – 2.1                      |
| benzene             | 20     | 2.89                           |
| mercury             | 20     | 46.4                           |



FLUIDOS EN MOVIMIENTO

# CARACTERISTICAS DEL FLUIDO Y FLUJO

# Distintos regimenes

# (a) (b) (c)

# Características

• Fluido:

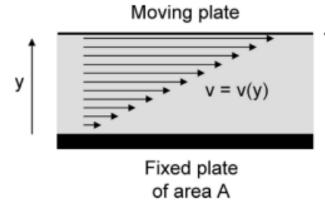
compresible/incompresible

viscoso/no-viscoso

rotacional/irrotacional

• Flujo: laminar, estacionario, línea de corriente o turbulento y no estacionario

El número de Reynolds:


$$R = \frac{fuerza\ de\ inercia}{fuerza\ viscosa} = \frac{\rho ud}{\eta}$$

R<2000, laminar

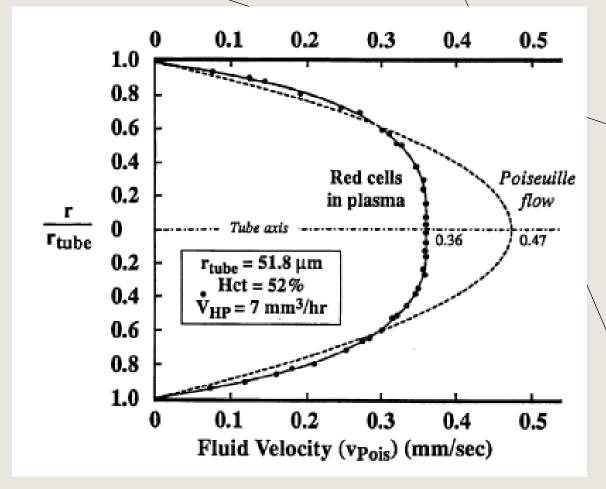
R>2000, turbulento







Esfuerzo de cillazadura


$$\tau = \eta \frac{\mathrm{d}v}{\mathrm{d}y},$$



| FLUID                                               | SHEAR STRESS                                                                           | PHYSICAL BEHAVIOR                    |  |  |
|-----------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------|--|--|
| Ideal                                               | τ = 0                                                                                  | Shear<br>Stress<br>Shear Rate        |  |  |
| Newtonian                                           | $\tau = \eta \frac{dv}{dy}$                                                            | Shear<br>Stress<br>Shear Rate        |  |  |
| Non-Newtonian                                       | $\tau = \eta \left(\frac{dv}{dy}\right)^n$                                             | Shear Stress Shear Rate              |  |  |
| Ideal Plastic                                       | $\tau = \tau_y + \eta \left(\frac{dv}{dy}\right)$                                      | Shear Stress Shear Rate              |  |  |
| Viscoelastic                                        | $\tau + \left(\frac{\mu}{\lambda}\right) \dot{\tau} = \eta \left(\frac{dv}{dy}\right)$ | Shear<br>Stress<br>Shear Rate        |  |  |
| $τ_y$ = yield stress $η$ = coefficient of viscosity |                                                                                        | λ = rigidity modulus<br>n = constant |  |  |


Fig. 7.12. Newtonian and non-Newtonian fluid flow. (From [357])

# PERFILES DE VELOCIDAD



**Table 7.3.** Coefficient of viscosity  $\eta$  of common materials, in Pa-s (1 poise = 0.1 Pa-s). (Using data from [351, 358, 363])

| material                              | T (°C)                        | $\eta$                       |
|---------------------------------------|-------------------------------|------------------------------|
| water                                 | 0                             | $1.78 \times 10^{-3}$        |
|                                       | 20                            | $1.00 \times 10^{-3}$        |
|                                       | 37                            | $0.69 \times 10^{-3}$        |
|                                       | 50                            | $0.55 \times 10^{-3}$        |
|                                       | 100                           | $0.28 \times 10^{-3}$        |
| blood plasma                          | 37                            | $1.5 \times 10^{-3}$         |
| whole blood <sup><math>a</math></sup> | 37                            | $\sim 4.0 \times 10^{-3}$    |
| low shear rate, $Hct = 45\%$          |                               | $\sim 100 \times 10^{-3}$    |
| low shear rate, $Hct = 90\%$          |                               | $\sim 1,000 \times 10^{-3}$  |
| high shear rate, $Hct = 45\%$         |                               | $\sim 10 \times 10^{-3}$     |
| low shear rate, $Hct = 90\%$          |                               | $\sim 100 \times 10^{-3}$    |
| cerebrospinal fluid                   | 20                            | $1.02 \times 10^{-3}$        |
| interstitial fluid                    | 37                            | $1.0 - 1.1 \times 10^{-3}$   |
| human tears                           | 37                            | $0.73 – 0.97 \times 10^{-3}$ |
| synovial fluid <sup>b</sup>           | 20                            | > 0.3                        |
| castor oil                            | 20                            | 1                            |
| motor oil, SAE 10                     | 20                            | 0.065                        |
| motor oil, SAE 50                     | 20                            | 0.54                         |
| machine oil, heavy                    | 37                            | 0.13                         |
| machine oil, light                    | 37                            | 0.035                        |
| ethylene glycol                       | 37                            | 0.011                        |
| mercury, liquid                       | 37                            | $1.465 \times 10^{-3}$       |
| methanol                              | 37                            | $0.47 \times 10^{-3}$        |
| ketchup                               | 20                            | 50                           |
| peanut butter                         | 20                            | 250                          |
| glass (anneal)                        | $720 – 920  \mathrm{K}$       | $2.5 \times 10^{12}$         |
| (blowing)                             | $\sim$ 1,300 K                | $\sim 1 \times 10^6$         |
| (furnace)                             | $1{,}500{-}1{,}700\mathrm{K}$ | $\sim 1 \times 10^2$         |
| air                                   | 20                            | $1.8 \times 10^{-5}$         |
|                                       | 100                           | $2.1 \times 10^{-5}$         |

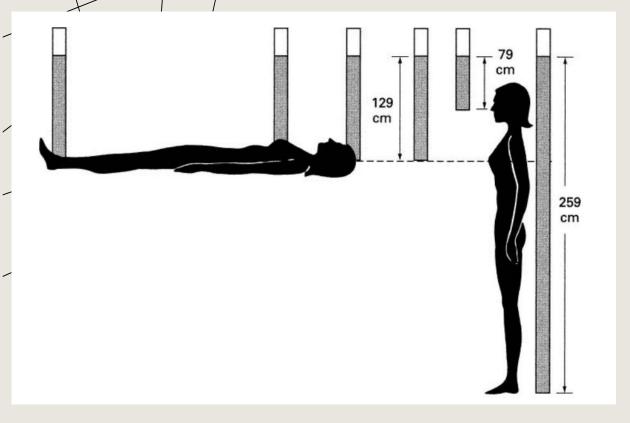


# SISTEMA CIRCULATORIO

### Región capilar de la parte superior del cuerpo (cabeza y brazos) Vena yugular Arteria carótida Vena cava Región capilar superior del pulmón Vena pulmonar Arteria pulmonar Aorta Aurícula izquierda Aurícula derecha Ventrículo izquierdo Vena cava inferior Ventrículo derecho Ganglio linfático Hígado Tracto Vena hepática digestivo Arterias mesentéricas Vena porta hepática Vasos linfáticos -Arteria renal Vena renal Arteria iliaca Vena iliaca Riñones Región capilar de la parte inferior del cuerpo (tronco y piernas)

# Circulación de la sangre

Sistema de tuberías: el corazón actúa como bomba y las venas, arterias y capilares como conductos por donde fluye la sangre.


La sangre *no* es un *fluido simple*; contiene células que dificultan el flujo, especialmente cuando los conductos se estrechan.

Las venas y arterias no son conductos rígidos, sino elásticos y modifican su forma en respuesta a las fuerzas aplicadas por el fluido.



Analizar el sistema circulatorio con bastante precisión utilizando los conceptos desarrollados para fluidos simples que fluyen por conductos rígidos.

# PRESIÓN DE LA SANGRE



Diferencia de presión según la posición del cuerpo.

El volume total de la sangre es en promedio 51 (edad, peso, género, altura).

Para una persona en reposo:

12% cavidades del corazón,

2% en la aorta

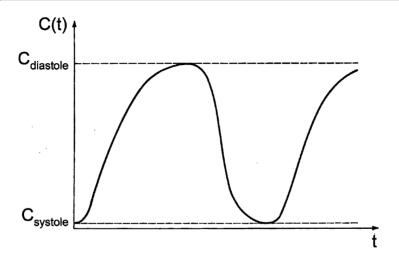
8% en las arterias,

1% en las arteriolas,

5% en los capilares,

50% en las venas sistemicas

18% en la circulación pulmonar


**Table 8.1.** Normal resting values of blood pressure, with system volumes

|                    | P  (mmHg) | V (L |
|--------------------|-----------|------|
| systemic arteries  | 100       | 1.0  |
| systemic veins     | 2         | 3.5  |
| pulmonary arteries | 15        | 0.1  |
| pulmonary veins    | 5         | 0.4  |

# MODELOS DEL CORAZÓN

# Estático

Ley de Laplace para una esfera



**Fig. 8.51.** Changes in ventricle compliance during the cardiac cycle, from a small value while it is contracting during systole to a large value when it is relaxing during diastole. (From [394])

# Dinámicos

$$V(t) = V_{\rm d} + C(t)P(t).$$

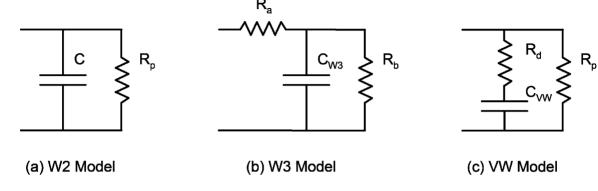
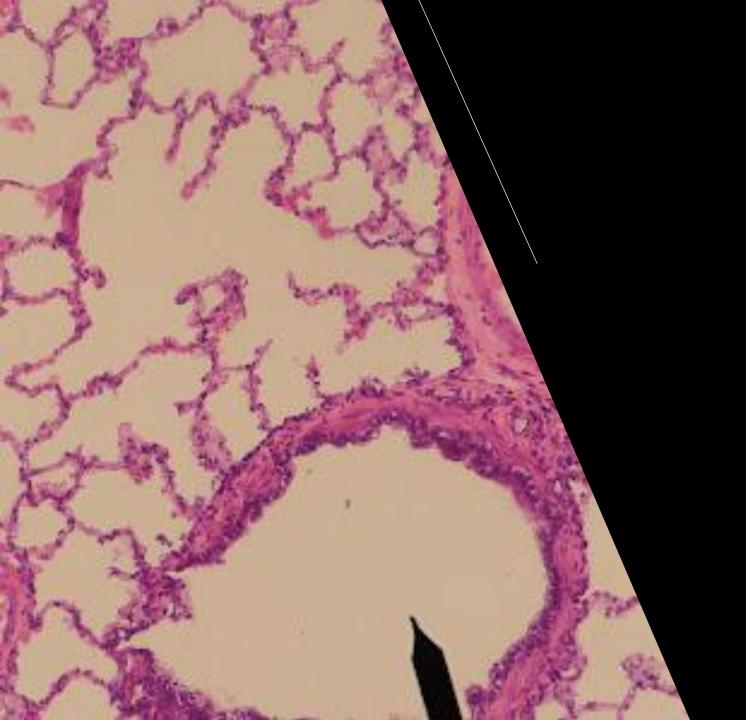



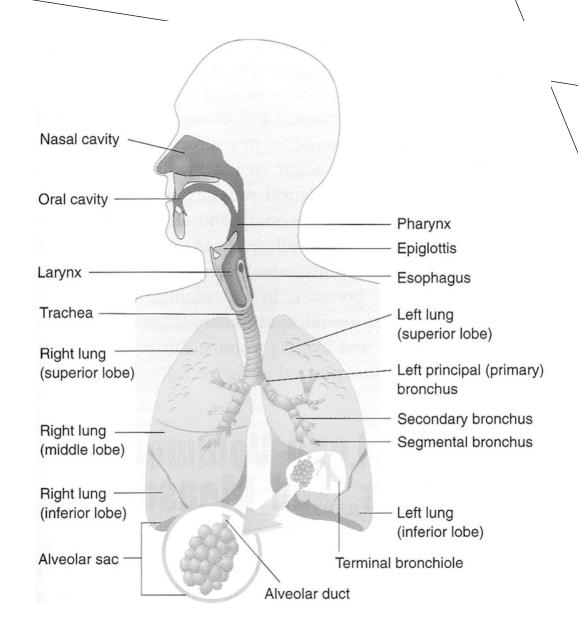

Fig. 8.57. Electrical analogs of the (a) classic or elastic Windkessel Model (W2), (b) three-element (or improved) Windkessel Model (W3), and (c) viscoelastic Windkessel Model (VW). The electrical resistances represent flow resistances and the electrical capacitances represent flow compliances. (See Appendix D)

$$P(t) = P(0) \exp(-(t/\tau))$$

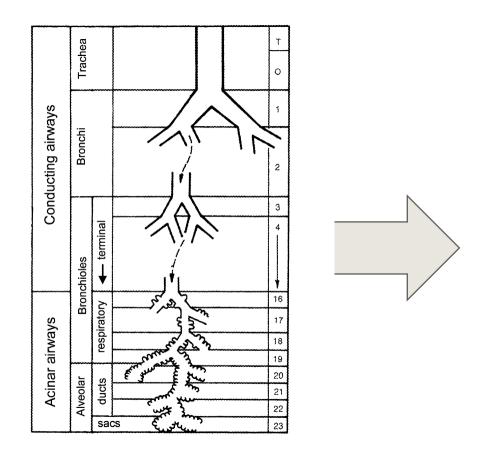


SISTEMA RESPIRATORIO

# Los pulmones


# Interactúan con la sangre

Intercambian CO<sub>2</sub> por O<sub>2</sub>


# Intercambio de calor y equilibrio hídrico

 Inhala aire seco y frio, exhala aire a T corporal y húmedo

Producción de la voz



# BIFURCACIÓN DEL SISTEMA RESPIRATORIO



La velocidad del aire es de 1 l/s

**Table 9.1.** Approximate quantification of the bronchial system. (Using data from [426, 440]. Also see [441, 442])

| pulmonary branch       | $\begin{array}{c} \text{generation} \\ z \end{array}$ | branch<br>diameter | branch length | total<br>cross-                   | $\begin{array}{c} \text{volume} \\ \text{(cm}^3) \end{array}$ | air<br>speed |
|------------------------|-------------------------------------------------------|--------------------|---------------|-----------------------------------|---------------------------------------------------------------|--------------|
|                        |                                                       | (mm)               | (mm)          | sectional area (cm <sup>2</sup> ) |                                                               | (cm/s)       |
| trachea                | 0                                                     | 18.0               | 120.0         | 2.5                               | 31                                                            | 393          |
| main bronchus          | 1                                                     | 12.2               | 47.6          | 2.3                               | 11                                                            | 427          |
| lobar bronchus         | 2                                                     | 8.3                | 19.0          | 2.1                               | 4.0                                                           | 462          |
|                        | 3                                                     | 5.6                | 7.6           | 2.0                               | 1.5                                                           | 507          |
| segmental bronchus     | 4                                                     | 4.5                | 12.7          | 2.5                               | 3.5                                                           | 392          |
|                        | 5                                                     | 3.5                | 10.7          | 3.1                               | 3.3                                                           | 325          |
| bronchi                | 6                                                     | 2.8                | 9.0           | 4.0                               | 3.5                                                           | 254          |
| w/cartilage in wall    | 7                                                     | 2.3                | 7.6           | 5.1                               | 3.8                                                           | 188          |
| , 0                    | 8                                                     | 1.86               | 6.4           | 7.0                               | 4.4                                                           | 144          |
|                        | 9                                                     | 1.54               | 5.4           | 9.6                               | 5.2                                                           | 105          |
|                        | 10                                                    | 1.30               | 4.6           | 13                                | 6.2                                                           | 73.6         |
| terminal bronchus      | 11                                                    | 1.09               | 3.9           | 20                                | 7.6                                                           | 52.3         |
|                        | 12                                                    | 0.95               | 3.3           | 29                                | 9.8                                                           | 34.4         |
| bronchioles            | 13                                                    | 0.82               | 2.7           | 44                                | 12                                                            | 23.1         |
| w/muscle in wall       | 14                                                    | 0.74               | 2.3           | 69                                | 16                                                            | 14.1         |
| ,                      | 15                                                    | 0.66               | 2.0           | 113                               | 22                                                            | 8.92         |
| terminal bronchiole    | 16                                                    | 0.60               | 1.65          | 180                               | 30                                                            | 5.40         |
| respiratory bronchiole | 17                                                    | 0.54               | 1.41          | 300                               | 42                                                            | 3.33         |
| respiratory bronchiole | 18                                                    | 0.50               | 1.17          | 534                               | 61                                                            | 1.94         |
| respiratory bronchiole | 19                                                    | 0.47               | 0.99          | 944                               | 93                                                            | 1.10         |
| alveolar duct          | 20                                                    | 0.45               | 0.83          | 1,600                             | 139                                                           | 0.60         |
| alveolar duct          | 21                                                    | 0.43               | 0.70          | 3,200                             | 224                                                           | 0.32         |
| alveolar duct          | 22                                                    | 0.41               | 0.59          | 5,900                             | 350                                                           | 0.18         |
| alveolar sac           | 23                                                    | 0.41               | 0.50          | 12,000                            | 591                                                           | 0.09         |
| alveoli, 21 per duct   |                                                       | 0.28               | 0.23          | ,                                 | 3,200                                                         |              |

# DIFUSIÓN OXIGENO-DIOXIDO DE CARBONO

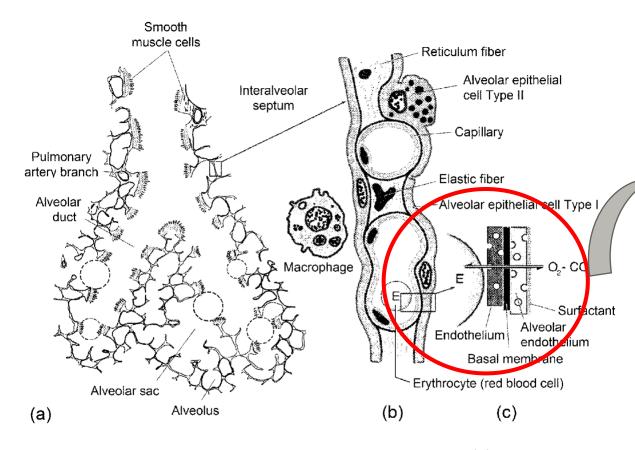



Fig. 9.4. The details of the alveolar bifurcation are shown in (a). These alveoli are sacs imbedded in capillary beds. The details of the interaction between the alveoli and capillaries are depicted in (b) and (c). (From [436])

El oxígeno (O<sub>2</sub>) difunde desde los alveolos a las células rojas de la sangre.

El dioxido de carbono (CO<sub>2</sub>) difunde desde la sangre al aire en los alveolos.

### Difusión

Presión parcial de O<sub>2</sub>: 40 mmHg a 100 mmHg

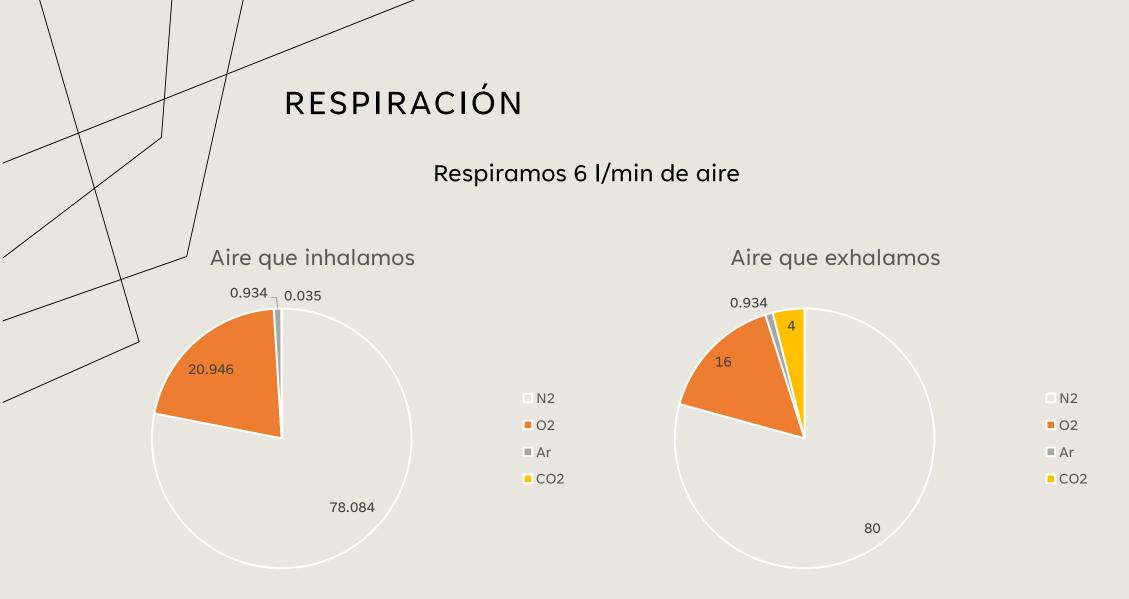
Presión parcial de CO<sub>2</sub>: 40 mmHg a 46 mmHg

# LA FÍSICA DE LOS ALVEOLOS

# Ley de Laplace

$$\Delta P = \frac{2T}{R},$$

T es la tensión ejercida sobre la superficie de la burbuja


$$\Delta P = P_{\rm in} - P_{\rm out} = \frac{4\gamma}{R}.$$

En términos de la tensión superficial, γ, para burbujas de jabón se tiene en cuenta dos superficies cóncavas, agua-jabón.

$$\Delta P_{\text{alveoli}} = P_{\text{in}} - P_{\text{out}} = \frac{2\gamma}{R}.$$

Para los alveolos, solo una superficie.

 $\gamma$  es una función del radio,  $\gamma(R)$ 



Inspiramos 1.2 I/min de O<sub>2</sub>

La velocidad de respiración de un hombre es tipicamente 12/min y de 20/min para mujeres

# VOLUMEN DE LOS PULMONES

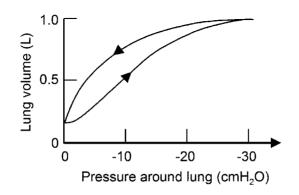
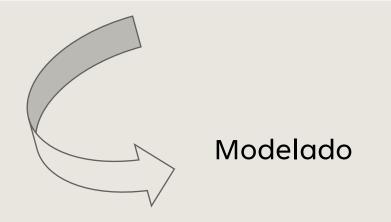




Fig. 9.12. The measurement of the pressure—volume curve of an excised lung, which shows hysteresis in inflation and deflation. (Based on [443])



## Histéresis

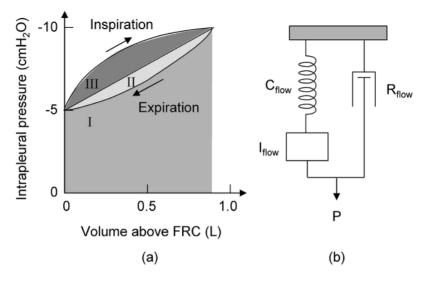



Fig. 9.16. (a) Work done during inspiration (areas I + II + III) and work recovered during expiration (area I). With no viscous, resistive forces, the work in inflating the lung would be areas I + II, and this is associated with the lung compliance. The extra work done overcoming respiratory flow resistance is area III. (b) Mechanical model of breathing has the lumped compliance (elastance)  $C_{\text{flow}}$ , resistance  $R_{\text{flow}}$ , and inertance  $I_{\text{flow}}$ , and P represents the inspiratory muscles. The inertance can be neglected except for large flows. (Based on [430, 444])

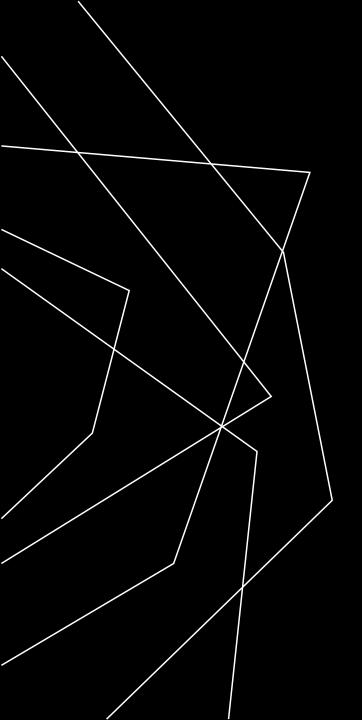
# RESUMIENDO

• Sistema circulatorio:

El flujo de la sangre a traves de los vasos del sistema puede modelarse considerando un flujo resistivo.

Estos modelos pueden usarse para entender el mal funcionamiento del corazón y Sistema circulatorio.

La energía necesaria para el funcionamiento del corazón Tambien puede modelarse.


• Sistema respiratorio

La función pulmonar y la respiración pueden comprenderse analizando el volumen, la presión y el flujo de aire durante la respiración, mediante modelos de flujo de fluidos y expansión pulmonar.

La naturaleza física de las unidades operativas individuales de los pulmones, es decir, los alvéolos, también puede comprenderse de esta manera.

Estos modelos también pueden utilizarse para comprender las consecuencias físicas de una enfermedad pulmonar

También puede modelarse la energía necesaria para el funcionamiento de los pulmones



# BIBLIOGRAFÍA

-Physics of the Human Body, Irving P. Herman, Sringer, 2006. https://drive.google.com/file/d/1NNnwxGHLHNxwR4z5pz2CfNZ NfbakeHxA/view?usp=drive\_link

- Physics in Biology and Medicine, 3<sup>rd</sup> Edition. Paul Davidovits, Academic Press, 2007.

https://drive.google.com/file/d/1j9DDKX32acROmUPWAIj7Vte WLkC\_WIkB/view?usp=drive\_link



The macroscopic basis of lung function and breathing can be understood

by analyzing the volume, pressure, and air flow during breathing, by using

models of fluid flow and lung expansion. The physical nature of the individual

operating units in the lungs, i.e., the alveoli, can also be understood this way.

These models can also be used to understand the physical consequences of a

diseased lung. The energy needed to operate the lungs can also be modeled.