QM Handout - Gaussian Integration

Gaussian integration is simply integration of the exponential of a quadratic. We cannot write a simple expression for an indefinite integral of this form but we can find the exact answer when we integrate from $-\infty$ to ∞. The basic integral we need is

$$
G \equiv \int_{-\infty}^{\infty} d x e^{-x^{2}}
$$

The trick to calculate this is to square this using integration variables x and y for the two integrals and then evaluate the double integral using polar coordinates. N.B. from now on we will simply drop the range of integration for integrals from $-\infty$ to ∞. So

$$
\begin{aligned}
& G^{2}=\int d x e^{-x^{2}} \int d y e^{-y^{2}}=\int d x \int d y e^{-\left(x^{2}+y^{2}\right)} \\
& =\int_{0}^{2 \pi} d \theta \int_{0}^{\infty} d r r e^{-r^{2}}=2 \pi \int_{0}^{\infty} \frac{1}{2} d\left(r^{2}\right) e^{-r^{2}}=\pi
\end{aligned}
$$

This gives the important result

$$
\int d x e^{-x^{2}}=\sqrt{\pi}
$$

For a real constant $a>0$ a change of variables gives

$$
G(a) \equiv \int d x e^{-a x^{2}}=\frac{1}{\sqrt{a}} \int d(\sqrt{a} x) e^{-(\sqrt{a} x)^{2}}=\sqrt{\frac{\pi}{a}}
$$

For a general quadratic exponent we simply complete the square and then integrate using a similar change of variables

$$
\int d x e^{-a x^{2}+b x+c}=\int d x e^{-a\left(x-\frac{b}{2 a}\right)^{2}} e^{\frac{b^{2}}{4 a}+c}=\sqrt{\frac{\pi}{a}} \frac{b^{\frac{b^{2}}{4 a}+c}}{}
$$

These results extend to the case of complex numbers a, b and c provided the real part of a is positive. We can also consider the case where a is purely imaginary (but non-zero) which can be justified by first multiplying the integrand by $e^{-\epsilon x^{2}}$ for positive real ϵ, and then taking the limit $\epsilon \rightarrow 0$ after integrating.

Now we can also calculate integrals involving a polynomial times the exponential of a quadratic. By completing the square for the quadratic we can reduce such an integral to a sum of integrals of the form

$$
\int d x x^{N} e^{-a x^{2}}
$$

where N is a non-negative integer and, restricting to real coefficients, the constant a must be positive for the integral to be well-defined. We can
easily calculate this integral using integration by parts, integrating $x e^{-a x^{2}}$ and differentiating x^{N-1}. This relates the integral to another of the same type but with N replaced by $N-2$, giving a recursion relation. Using this method we get the following results for non-negative integers n :

$$
\begin{align*}
\int_{-\infty}^{\infty} d x x^{2 n} e^{-a x^{2}} & =\frac{(2 n-1)(2 n-3) \cdots 3 \cdot 1}{(2 a)^{n}} \sqrt{\frac{\pi}{a}} \tag{1}\\
\int_{-\infty}^{\infty} d x x^{2 n+1} e^{-a x^{2}} & =0 \tag{2}\\
\int_{0}^{\infty} d x x^{2 n} e^{-a x^{2}} & =\frac{1}{2} \frac{(2 n-1)(2 n-3) \cdots 3 \cdot 1}{(2 a)^{n}} \sqrt{\frac{\pi}{a}} \tag{3}\\
\int_{0}^{\infty} d x x^{2 n+1} e^{-a x^{2}} & =\frac{n!}{2 a^{n+1}} \tag{4}
\end{align*}
$$

Note that by symmetry, results (1) and (3) are related by a factor of 2 since the integrand is an even function, while result (2) follows from the integrand being an odd function.

It is also possible to derive these results by considering a to be a variable and differentiating with respect to a. For example starting with

$$
G(a) \equiv \int d x e^{-a x^{2}}=\sqrt{\frac{\pi}{a}}
$$

and differentiating with respect to a we get

$$
G^{\prime}(a)=\int d x\left(-x^{2}\right) e^{-a x^{2}}=-\frac{1}{2} \frac{\sqrt{\pi}}{a^{3 / 2}}
$$

which gives

$$
\int d x x^{2} e^{-a x^{2}}=\frac{\sqrt{\pi}}{2 a^{3 / 2}}
$$

in agreement with result (1) for $n=1$.
As an aside, you will have noticed the n ! appearing in result (4) and the somewhat similar product in result (3), after dividing the numerator by 2^{n}

$$
\left(n-\frac{1}{2}\right)\left(n-\frac{3}{2}\right) \cdots \frac{3}{2} \cdot \frac{1}{2}
$$

Indeed we can define a complex function, known as the gamma function, which can be viewed as an extension of the factorial function, by

$$
\Gamma(z)=2 \int_{0}^{\infty} d x x^{2 z-1} e^{-x^{2}}
$$

for $\Re(z)>0$ which satisfies the recurrence relation

$$
z \Gamma(z)=\Gamma(z+1)
$$

This recurrence relation allows us to extend the definition to all $z \in \mathbf{C}$ and from result (4) we see that for any positive integer $n, \Gamma(n)=(n-1)$!.

