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I. INTRODUCTION

HE derivation of the various conservation theorems
arising in the different branches of mathematical

physics is usually carried out in each individual instance
from a study of the particular equations of motion of
the system involved. It has been shown by Klein, '
Noether, ' and Bessel-Hagen' that when the equations
of motion are derivable from a variation principle
(Hamilton's principle), a general and systematic pro-
cedure for the establishment of the conservation
theorems can be developed from a direct study of the
variational integral. Since the general equations of
mechanics, electromagnetic theory, etc., in use at the
present time are derivable from such variational prin-
ciples, this procedure furnishes the most suitable basis
for the systematic study of the conservation theorems.

Despite the fundamental importance of this theory
there seems to be no readily available account of it
which is adapted to the needs of the student of mathe-
matical physics, while the original papers are not readily
accessible. 4 ' It is the object of the present discussion
to provide a simplified account of the theory which it is
hoped will be of assistance to the reader in gaining an
idea of the concepts underlying this important problem.
In order to clarify the relationship of the equations of
motion and the conservation theorems, as they follow
from the variational principle, we shall give a systematic
review of the derivations of both sets of equations.

II. THE VARIATIONAL INTEGRAL

The irtdepertdent variables describing the nature of
the physical system under discussion will be designated
as x"(0=1, 2, , rt) while the depertdertt variables will

be designated as iP (n=1, 2, , m). The general pur-
pose of the equations of motion is to specify the quanti-
ties P~ as functions of the independent variables, sub-
ject to whatever initial and other boundary conditions
may be imposed on the problem. It will be convenient,
for the sake of brevity, to refer to the dependent vari-
ables as the state futtcti orts of the system.

The partial derivatives of the state functions with
respect to the independent variables will be indicated

' F. Klein, Nachr. kgl. Ges. Ki:ss. Gottingen, 171 (1918).' E. Noether, Nachr. kgl. Ges. Kiss. Gottingen, 235 (1918).' E. Bessel-Hagen, Math. Ann. 84, 258 (1921).
A brief discussion is given by R. Courant and D. Hilbert,

Methodel der Mathematischen Physt'h (Verlag. Julius Springer,
Berlin, 1931), second edition, p. 223.

'A treatment of Klein's application of the theory to the con-
servation theorems of general relativity theory is given by W.
Pauli, Relatkitatstheorie (B. G. Teubner, Leipzig, 1921), Sec. 23.
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J= Z(x", P, Pts)d(x). (2)

We shall refer to J as the eariaHoeeL' ietegrcl of the sys-
tem. The integrand, g, will be referred to as the
lagrangian dertsity flnctiort, and will be supposed to be a
function of the independent variables, and of the state
functions and their first partial derivatives, but will be
supposed to contain no derivatives of the state functions
higher than the first. While this restriction is adequate
to cover the cases norma1ly met with in physical prob-
lems, the mathematical theory can be generalized to
include derivatives of any desired order. ' ' ' It is sup-
posed that the integral in (2) is to be extended over an
arbitrary region of the space of the independent vari-
ables, in which d(x) represents the volume element.

III. THE FUNCTIONAL VAMATION OF J
The mathematical problem with which one is con-

cerned is the dependence of the integral, J, on the func-
tional forms of the state functions. We shall start with
the consideration of a somewhat more general problem,
however, in which we shall allow for the possibility of a
change in the region of integration as well as for a
change in the functions ip . Specifically, we consider an
infinitesimal transformation of the independent vari-
ables of the form,

x'"=x"+8x', (0=1, 2, . . ., tl),

where the quantities 6x~ are allowed to be arbitrary
infinitesimal functions of the independent variables. '

Th. de Donder, Theoric Ineariantiee du Calcul des Variations
(Gauthier-Villars, Paris, 1935), second edition.

~ The mathematical significance of the quantities, bx@, 6p, as
arbitrary infinitesimal functions can be made more evident by
writing them explicitly in the form,

ax'(x) = zq"(~), ap (~) =a~ (~),
where h"(xl and q (xl are arbitrary functions, and X is to be
treated as an infinitesimal parameter of first order. The various
orders of infinitesimal terms can be controlled by considering
them to be expressed in powers of X. The reader will find that,
after a moderate acquaintance has been obtained with the defini-

by the index notation indicated by the following
examples,

Pt, =—8$"/itx"; Ppt =—O'P /Bxsitx'. (1)

The general assumption underlying Hamilton's prin-
ciple is that the differential equations of motion are
derivable by the application of the variational proce-
dure to an integral of the form,



254 E. L. H I LL

)

- ~ 'I

+ l

I
I

Fn. i. Schematic diagram of the transformation
from region R to region R'.

The geometrical interpretation of Kqs. (3a) is indi-
cated schematically in Fig. 1, in which the original
region of integration, E., is mapped to a new region, E',
by the point-to-point correspondence indicated in
Eqs. (3a).

With Eqs. (3a) we associate also infinitesimal trans-
formations on the state functions, and their partial
derivatives, by equations of the form, ' '

0 "(*')=0'(x)+ b4"(*),

Pi,
' (x') =Pi, (x)+bgj, (x),

which can be rewritten in the form,

b4 (*)=0"(x')—4 (x),

W (x) =A"(x')-0'(x).

(3b)

(3b')

The functional variation of the integral J is now de-
fined by the relation,

bJ=— Z(x'" P' Pg' )d(x') — Z(x" P Pg )d(x)

t Z(x"+bx", P +6&, Pk +g i, )d(x')
B'

-) &(x" 4" A )d(x) (4)

tions and procedures employed in the calculus of variations, it
becomes easy in ordinary cases to keep track of the terms without
complicating the notation unduly with such formal considerations;
these can always be inserted when needed for clarification.' It is important in definition such as Eq. (3b) to note carefully
the variables in terms of which the various functions are expressed,
as will appear more definitely in the discussion. On the other hand,
it is also important to notice that, as far as the infinitesimal (varia-
tional) members are concerned, we can consider them to be ex-
pressed in terms of either the variables (x') or (x) as we choose, to
first orders of small quantities. This follows from the general
formula,

ep~(x') = ep (x)+go(g )/ex"gbx"+
Since the second and succeeding members on the right-hand side
of this equation are of second and higher order in ), they can be
dropped when we restrict our considerations to first order-terms;
and we have to this order

aP (x') =SP (x).
Ke shall make use of this property of the variational terms at a
number of points in the discussion for the simplification of the
calculations.

It is to be noted particularly from this definition that
the functional form of the integrand is not to be altered.
We are seeking to determine the dependence of the
integral on the nature of the dependence of 2 on its
variables. This point will be of particular importance in
our later study of the behavior of J under symmetry
transformations of the system (Sec. V).

It is now convenient to reduce the integral over the
region R' in Eq. (4) to an integral over the original
region E. by a change of variables. We have, to first-
order quantities, '
g(xk+$xk fN+gfn P a+gf a) —g(xI fn g,„a)

+(BZ/Bx')bx"+(BZ/BP )bg +(BZ/Bgi, ")bing, . (5)

By the usual convention of a Taylor's series expansion,
all of the quantities on the right-hand side of Eq. (5) are
supposed to be expressed in terms of the coordinates of
the region E.

In Kq. (5) and the later formulas of this paper we
shall employ the usual dummy index notation, for both
Greek and Latin indices, to indict, te summations over
the coordinates or state functions, when the corre-
sponding indices are repeated in a given member. Thus,
in Eq. (5) the index h in the second and fourth members
on the right-hand side is summed from 1 to rs, while the
index a in the third and fourth members is summed
from 1 to m.

The transformation of the volume element from E'
to E. is accomplished by means of the formula,

d(x') =d(x) c)(x')/c)(x) (6)

where 8(x')/c)(x) is the jacobian of the transformation
(3a). A short calculation from Eqs. (3a) shows that to
first-order quantities,

8 (x')/c) (x) = 1+c)(bx")/cjx", (7)

where the index k on the right-hand side is summed
from 1 to e, in accordance with the dummy index nota-
tion,

When these results are inserted in Eq. (4), we find
that we have, to erst-order quantities,

(3(bx")

cjoy

8J= ' 2 + bx"
g c)x' Bx'

BZ
+ b~+

Before the analysis of this formula can be carried
further, we must recognize an awkward fact which
arises from the definition (3b). Since the functions
defined on the two sides of these equations are expressed
at diGerent points in the space of the independent
variables, it wiO generally be the case that

SPY, WB(g )/ax' (~)
The right-hand side of Eq. (5) is to be considered as the ex-

pansion, out to first-order terms, in the parameter X discussed in
footnote tt'. The fact that the variational functions are expressed
in terms of the original coordinates (x) of the region R, to first-
order terms, follows from the argument of footnote 8.
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from which

(x )= 4' (x )+44' (x )

0' (x') =A (x')+44' (*')
(10)

(10')

It will be convenient to define new quantities, 8~/,
for which relation (9) will be turned into an equality.
To do this we write"

t. -m(ZSx') aZ aZ
8J= + 8~/ + 5„fi, d(x)

Sx" BP" Bfi,"
(15a)

~& ~(~A")
d(x), (15b)

1- X)(Z8x') 82
+ ~A"+

J@ @xi Blg clfgg clx

The definition given is of convenience because the
combination of terms contained on the right-hand side
of Eq. (14) appears explicitly in Eq. (13). With this
notation we find that Eq. (13) reduces at once to the
form~

8$ =8 P +Pi (x) 8x'

~4'a =&qadi +@i (x)»'
az 8(8,p ) nL(8z/Bpp)8, & ] $(Bz/Dpi )

paI Sx'
(16)

(12)

On making use of these relations, we can write Eq. (8) from which we find that
in the form,

bJ=)"I($/Sx")[Z8x"+(82/Bfi, )8~/ ]
+[a].a,y-Iu(x). (17)

88m~ BZ BZ
8J= I 2 + bx"+ 8,$

Bx" Bx' Bf

It follows from Eqs. (10) or (10') that we have where Eq. (15b) follows directly from Eq. (15a) when

4A (*)=~(~.4")/~x" we make use of Eq. (11).
We now perform a partial integration of the last

Furthermore, by comparison with Eqs. (3a,), we see that . member of (15b), employing the formula,

8Z 88 82
+ Pi, 6x'+ b~gi, + Pig bx" d(x). (13)

gPN ~4'a ~A

In the various di&erentiations to which we have sub-
jected the function 2 up to this point, we have supposed
consistently that, for the purpose of taking partial
derivatives, 2 is to be treated explicitly as a function
of the independent variables (x", f, fi, ), with k and 0:
running over all appropriate values. It will now be con-
venient to introduce the concept of partial derivatives
with respect to the independent variables when the state
functions and their partial derivatives have been sup-
posed to have been substituted as functions of the
independent variables. If we use for the symbol of the
partial derivatives defined in this sense the notation
S/Sx, inspection shows that, if the function involved
contains no partial derivatives of the state function
higher than the first, then"

n/X)x"=(a/ax')+Pi, (8/BP )+Pi, i 8/8&i . (14)

"From arguments exactly like those of footnote 8, we can con-
sider the function b~P and B~PI, to be expressed in terms of either
the variables (x') or (x), to first-order terms. It is convenient in
Eqs. (10) and (10') to express them in terms of the variables (x')
in order to establish Eq. (11)with a minimum of discussion. How-
ever, in Eq. (11) and Eq. (12) it is more convenient to consider
them to be expressed in terms of the original variables (x)."The reader should observe that, despite the somewhat unusual
notation, this formula is but a particular case of the ordinary
formula of calculus for the implicit diBerentiation of a function.
The use of the notation is justified by the importance of keeping
track of the exact definitions being employed. If this formula
were to be applied to a function containing higher derivatives than
the first of the state functions, further members would need to be
added to the right-hand side. For functions of the coordinates

In this expression we have introduced the quanttiy

LZ] —= (BZ/8$ )—(n/nx") (8Z/8&i"), (18)

which is called the lagrangian derivative of 2 with re-
spect to f .

It is customary to express this formula in terms of
the variational functions defined in Eqs. (3b), rather
than those of Eqs. (10'). On making use of Eqs. (12),
we find that

where 8&~ is the usual Kronecker delta-symbol.
This is our final formula for the functional variation

of J. It will scarcely be necessary to emphasize that the
discussion is of a purely formal mathematical nature,
following from the definition of the functional variation
given in Eq. (4), and implies in no way that the results
need have any application to any physical system.

IV. THE EQUATIONS OF MOTION
(HAMILTON'S PRINCIPLE)

In order to apply the results of Sec. III to a physical
system, we assume that the lagrangian density function,
2, describes the properties of the particular system
under discussion and that the equations of motion can

alone, only the first member of Eq. (14) would be required. For
example, we would have

X)(bx")/Sx'= 8(bx~)/Bx'.
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SJ= I [z7 sit- d(x) (21)

Hamilton's principle now requires that the expression .
(21) must vanish identically for every choice of the
region of integration and for every choice of the
variational functions 8P, subject only to the restriction
stated in Eq. (20). It follows from this assumption that

[z7„=0 ( =1, 2, , m). (22)

These relations constitute the differential equations of
motion of the system involved, .

It is of importance for our later discussion to observe
explicitly that the choice of the lagrangian density
function in the variational integral which will lead to a
given set of equations of motion is not unique. The
simplest type of change which can be made is the multi-
plication of 8 by a quantity which does not depend on
the variables or state functions of the sytem; that is,
the multiplication of 2 by a constant. Since the lagran-
gian derivative (18) is homogeneous in the function 2,
the equations of motion (22) can be multiplied through
by any (nonvanishing) constant. This apparently
trivial process will be called a scale trtJlsformatiog

Another type of transformation on .2 which leaves
the equations of motion invariant is obtained as follows.
Let Qs(k=1, 2, , n) be any set of functions depend-
ing on the independent variables and the state func-
tions, but not on the derivatives of the state functions.
It will be shown that the two lagrangian density func-
tions 2 and 2+ SQs/Sx" both lead to the same set of
equations of motion, the proof consisting in the demon-
stration that under the conditions stated we have
identically

[SQ"/Sx"7.=O. (23)

This type of transformation of the density function
will be referred to as a ditierge~ce transformation, since
the expression SQs/Sxs has the formal appearance of a
"divergence" of a generalized vector quantity. "

"'On integration of the total derivative member of Eq. (19)
one obtains terms which vanish on the boundary of 8 by rela-
tions (20).

'~ In the usual elementary discussions of the invariance of the
equations of motion under a divergence transformation, it is not
stated whether the functions Q~ can be permitted to depend ex-
plicitly on the state functions and their derivatives. At 6rst glance

be derived from Hamilton's principle. According to the
assumptions involved in this principle, we restrict
ourselves to special types of variations in which (a)
the region of integration is unchanged and (b) the
variations of the state functions vanish identically over
the boundary of the region E. These conditions are
given analytically as

3xs=o, big =0 on the boundary of It, (20)

For variations of this special type it follows at once
from Eq. (19) that'"

To give the proof of Zq. (23) we note first that from the stated
conditions we have

x)n~ an~ an~
(24)

X)x~ Bx~ Opt

1t follows by direct calculation from Zq. (24) that

+ .y P — (2g)

and that
SQ BQ'

From Eqs. (25) and (26) we Gnd further that

X)x' BP) Sx" Sx' 8& 8& Sx" '

Assembling these results for the computation of the lagrangian
derivative, we obtain

Qq& g QQ& Q i

X)x~ BP Qx~ Sx' BPi Bx~

8$ Sx~ 8$ Sx"
which completes the explicit demonstration of Kq. (23).

V. SYMMETRY TRANSFORMATIONS OF A SYSTEM

A transformation of the variables of our system, in-
volving both the independent and the dependent vari-
ables, is expressible by the scheme of transformation
equations,

(28a)

(28b)

The transformations of the derivatives of the state
functions are determinable from Eqs. (28b).

In order to maintain the numerical invariance of the
variational integral, we allow for a change in the func-
tional form of the lagrangian density function, as speci-
6ed by the equation,

2'(x', lt', its')d(x') =Z(x, p, its)d(x). (29)

This relation may be regarded as the defi, mitiots of the
function, 2, and justifies the designation of 2 as a
density (in the space of the independent variables).

In the study of any particular physical system, those
transformations which have the property of leaving the
equations of motion invariant in form (form-invariant)
occupy a place of peculiar significance and are usually
designated as the symmetry transformatiotss of the sys-
tem. Symmetry transformations may be of many types.

this would not seem to be of importance, in consideration of the
definition of the definition of the operator S/Sx"; but it must be
kept in mind that the functional dependence of these fu'nctions
becomes of importance in the computation of the functional
variation of J. The restriction stated in the text will be seen to
be of importance in the proof of Eq. (23), for if the Q~ are allowed
to contain the PP explicitly, then a further member must be
added to the right-hand side of Eq. (24) of the form (BQ"/8 t~) hatt
which would introduce second partial derivatives of the state
functions directly into the variational integral, contrary to the
assumption that the density function is to contain no derivatives
higher than the hrst. This restriction can be lifted if one permits
the density function to contain derivatives of arbitrary order
(references 2, 3, 6).



HAM I LTON'S P RI N C I P LE AN 0 THE CONSERVATION THEOREMS

Their general characteristic is that if a symmetry trans-
formation is applied to any solution of the equations of
motion, representing any given type of behavior of the
system, it will transform this into another solution
representing some other possible motion of the system. "

It is clear from these remarks that the symmetry
transformations of the system are related intimately
to the alteration in the functional form of the lagrangian
density function which is implied in Eq. (29). If the
equations of motion, expressed in terms of the new
variables, are to be of precisely the same functional
form as in the old variables, it follows from the discus-
sion of Sec. IV that the two density functions must be
related by a divergence transformation. "That is, we
must have" .

&'(x, P', Pi,")= Z(x', P', Pi')+ X)Q'/Sx". (30)

Equations (29) and (30) form the basis of the derivation
of the conservation theorems associated with sym-
metry transformations.

The most important type of transformation in the
study of conservation theorerns is comprised by those
which can be developed by the iteration of infinitesimal
transformations. In this case it is sufficient to study the
infinitesimal transformation itself. Ke shall use the
symbol b to represent the infinitesimal changes asso-
ciated with a symmetry transformation. With a nota-
tion corresponding to that of Eqs. (3a, b), the infinitesi-
mal form of Eqs. (28a, b) becomes

x'"=x'+bx", p' (x') =p (x)+bp (x),
A"(x') =A (x)+bA (*) (31)

We shall now use relations (31) to formulate from
Eqs. (29) and (30) an equation which can be used as
a test of whether or not Eq. (31) represents a symmetry
transformation of the system. Equations (29) and (30)
now take the forms

2'(x+bx, P+bg, Pp+bgi)d(x') = Z(x, P, P&)d(x), (32)

2'(x+ bx, Q+ bf, Pi+ bfi)d(x')
=Z(x+bx, P+bg, Pi,+hfdf, )d(x')

+I~(bQ~)/»~Ed(x). (33)

"This general statement of the deanition of symmetry trans-
formations would allow the scale and divergence transformations
of Sec. IV to be considered as symmetry transformations. How-
ever, since they app1y to every system and depend in no way on
the particular functional form of the lagrangian density function,
it is not profitable to include them as symmetry transformations."Our discussion only makes it clear that Eq. (30) is sggcient to
preserve the form of the equations of motion under the symmetry
transformations. Th'e elements of the proof that this condition is
also necessary are indicated in Courant-Hilbert (reference 4, p.
165, et st.)"It should be appreciated that we are concerned here only
with the study of the functional forms of g and g', and not
primarily with the actual variables in terms of which they are ex-
pressed. For the sake of brevity in the succeeding discussion we
have expressed them in terms of the primed variables in Eq. (30).

a 8(bx')
+b4i +

Blowy Bx

x)(bQ")
(36)

The objective in the application of Eq. (36) to a
particular system would usually be to test some sup-
posed symmetry transformation. The test would con-
sist in showing that, on calculation of the left-hand
side of Eq. (36) with the assumed density function,
the terms could be collected into the form of a diverg-
ence expression as given on the right-hand side. In
this manner the functions bQ" can be identified. In the
particularly important case that the left-hand side of
Eq. (36) vanishes identically, and the jacobian of the
transformation is unity, the density function is said to
be form invariant under th-e transformation. This is the
usual case encountered in applications to'field theories.

VI. THE CONSERVATION THEOREMS

We shall now make use of Eqs. (29) and (30) for the
formulation of the conservation theorem associated
with an infinitesimal symmetry transformation. We
first rewrite Eq. (34) in the form,

~(*+b, V+b~, e.+be.)d(")
=Lz(x, y, g,)—n(bQ')/nx'$d(x). (37)

On integration of the right-hand side of Eq. (37) over a
region R ag.d the left-hand side over the corresponding
region E.', we And

z(x+bx, P+bP, Pi+bPi)d(x')
B'

= "L~(*,~, e.)-~(bQ")i~*"3d(*) (»)

"The reader will note that the form of the equation for the
jacobian of the transformation which is used in Eq. (35) is

8(xl/s(x'l = 1—B(bx"l/Bx~,
which is obtained as the reciprocal of Eq. (7).

In the second member on the right-hand side of Eq. (33),
we have again taken advantage of the in6nitesimal
character of the functions bQ" to express them in terms
of the variables (x) rather than (x').8 By comparison
of Eqs. (32) and (33), we find the relation,

z(x, P, Pi,)d(x) =z(x+bx, @+bP, Pi+bgi)d(x')
+n(bQ&)/nx" d(x). (34)

On the rearrangement of Eq. (34) and use of Eq. (7)
for the jacobian of the transformation, we And the
expression"

2(x+bx, P+bP, Pi,+bPg)
= LZ(x, P, Pg) —X)(bQ')/X)x"j(1 —B(b x)/8 x) (.35)

We now expand the various members of Eq. (35), re-
taining only first-order terms, and find the equation,
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The combination of the two integrals,

Z(x+bx, P+bP, P,+by, )d(x')

—
) Z(x, P, Pg)d(x), (39)

yields just the functional variation of J under the sym-
metry transformation (31), according to the fundamen-
tal definition of Eq. (4)."The insertion of Eq. (39) into
Eq. (38) reduces the latter to the form, "

bJ+ t LS(bQ~)/X)x~7d(x) = 0. (4o)

We can now introduce the actual expression for bJ'

from Eq. (19) simply by replacing the variational
symbol 8 by b throughout that formula. This brings
Eq. (40) to the form,

S (
&. nx

BZ ) BZ
P ~ )bx'+ bf~+bQ~

~A

+L&7 (b& —A b*') &(x)=0 (41)

Since this integral must vanish identically for every
region of integration, E, the integrand must vanish
identically, and we have the differential equation,

n it'
i

Z8P-
Sx'

BZ ) BZ
P - (bx'+ bP-+bQ&

~4'I " ~ ~/A:

+LZ7 (bf~ —P( bx') =0. (42)

The reader will appreciate that this relation is a direct
mathematical consequence of the existence of the sym-
metry transformation (31), since we have as yet made
no use of the equations of motion of the system.

The conservation theorem which we have been seek-

ing now follows at once from Eq. (42) if we impose
the condition that the equations of motion of the system
are those following from the variational principle,
namely, Eqs. (22). This yields the conservation equa-
tion,

K) ( BZ 't BZ
~

Z~, &— P,- ~bx&g bP-+bQ~ =0 (43)
Sx" E Bpg~ ) BQI,~

It follows from our mode of derivation that each
infinitesimal symmetry transformation of the system

'7 It is to be emphasized that bJ is actually the functional
derivative of J, as dehned in Eq. (4), and is not the change in the
numerical value of J under Eq. (31), for according to our dehni-
tion (29), the integral for J is numerically invariant under (33).

' Equation (40) can be derived directly from Eq. (36) by com-
parison with Eq. (8). This means, of course, that Eqs. (36) and
(42) are essentially the same; but the procedure adopted in the
text appears to be the simplest means of performing the work.

leads to its own particular conservation relation, and
that these conservation equations must be compatible
with the lagrangian equations of motion of the system
(22). Since the complete set of such symmetry trans-
formations will form a group, we find the conservation
theorems associated with this symmetry group of the
system.

In the next two sections we present two relatively
simple illustrations of the -use of the conservation
theorems. The examples chosen are the Ã-body prob-
lem of newtonian mechanics and the scalar meson field.
The differential equations of the first are the usual
equations of particle mechanics, while for the second
they are illustrative of the partial differential equations
of 6eld theories. The reader will 6nd it instructive to
make a comparison of the points of similarity and of
divergence which appear in the study of these quite
dissimilar cases. The applications to the more complex
cases of the electromagnetic 6eld and the fj.elds of
particles of higher spin than zero will be left to the
reader to develop.

VII. THE CONSERVATION EQUATIONS OF
CLASSICAL MECHANICS

The conservation theorems of the E-body problem
of newtonian mechanics will be familiar to the reader
from his study of elementary mechanics, as will be the
equations of motion. We shall therefore devote our
attention to the application of the more abstract
method which we have developed earlier in this dis-
cussion. 3,19

The lagrangian function of the problem is simply

I.= T V= Q, ,'m, (xP+j——,'+sf) P;~,Gm—,m;/r;, (44).
There is now but a single independent variable which is
the time, t, while the "state functions" are just the
coordinates of the particles which we seek to determine
as functions of t. The lagrangian function in Eq. (44) is

expressed directly in terms of the cartesian coordinates
of the particles. In the succeeding discussion we shall

also at times designate by the symbol q"(n= 1, 2, 31V)

the whole set of cartesian coordinates of the 2V particles,
arranged in' some suitable sequence. When the latter
notation is used, the dummy index convention for sum-

mations will be retained.
The present formulation of Eq. (36), by means of

which we can test the behavior of the lagrangian func-

tion, is

8 8 8 d(bt) d(bQ)
b~—+by +bq- -+ I.= —.(45)—

8$ Bg Bg dt dt

~9 F. Engel, Nachr. kgl. Ges. Wiss. Gottingen, 270 (1916};ibid.
189 (1917).F. Kngel and K. Faber, Die Liesche Theoric der Partiel-
len DQ"erentialgleichungen Erster Ordnlng (B. G. Teubner, Leip-
zig, 1932).
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The appropriate general form of the conservation
theorem is found from Eq. (43) to be

(d/dt) I Ã —(~L/~i )i jbt
+(BJ/ct j )bit +bnI =0, (46a)

or, in the more usual elementary formulation,

$L (ctl/f—)j )j jbt+(cia/cttt )btt +bQ= const. (46b)

%e can now consider in turn the various special
symmetry transformations which are known for this
problem, with their appropriate conservation theorems.

(A) Translations of the Axes (Conservation of
Momentum)

The simplest symmetry transformations consist of the transla-
'tions of the origin of the cartesian reference system. Since any
such translation can be compounded from translations along the
three coordinate directions, it will be sufficient for our purposes to
consider only an infinitesimal translation along a single direction,
say that of the x axis. The required relations corresponding to
Eqs. (33) are

x'= x—bxp,
(47)x'=x, y'= j,

Naturally it is evident from Eq. (44) that L is form-invariant
under Eq. (47); and this follows at once formally from Eq. (45),
which reduces to the single relation ZBL/Bx;=0 (with bQ=O),
which is readily seen to be satisfied from Eq. (44).

Equation (46b) now reduces to the relation,

ZiBL/Bi s =Zim&s= const, (48)

which expresses the familiar condition of the constancy of the
component of the total linear momentum of the system along the
x-axis. Taking into account the corresponding theorems for the
other two independent directions of translation, we arrive at the
vector theorem, of conservation of linear momentum.

(8) Translation in the Time (Conservation of
Energy)

The infinitesimal transformation in this case is

t'=t —btp, by~=0, bj~=0. (49)

We find again that L is form-invariant, condition (45) reducing
to the equation BL/Bt=O, which is satisfied by Eq. (44).

Equation (46b) now reduces to the equation,

L—(BL/Bq )4 =const, (50)

which is recognizable at once as the theorem of conservation of
energy, the function on the left-hand side of Eq. (50) being just
the negative of the total energy.

(C) Rotations of the Axes (Conservation of
Angular Momentum)

It will be sufhcient to consider the rotation of the reference
axes about the s axis through an infinitesimal angle b0. The
associated transformation equations are

t'=t, x'=.x+y b8 y'=y —x b8 s'=s
(51)~'=x+j b8 j"=j—~ bg i'=s.

On calculation of the result given by Eq. (45) from Eq. (51),
we find

2;{py;(B/Bx;) x;B/By;g+ pj „(B—/Bi;) i;B/Bt'I g J I.=0, —
which vanishes identically from Eq. (44), so that L is again form-
invarjgnt, as is evident by inspection, of course.

(D) Velocity Transformations (Center-of-Mass
Theorem)

We now examine the conservation theorems associated with
the transformations to uniformly moving reference systems.
If a motion along the x axis with the infinitesimal velocity bv is
taken as typical, the corresponding infinitesimal transformation
equations are

x'= x—t. bv,

i'=x —bv,

The left-hand side of Eq. (45) becomes now

bv tt tZ, (BL/B—x;) Z;BL/Bx—;g

Since Z;BL/B x0, this reduces at once to

bv Z—;m;x;= —(d/Ct)(bv Z;m;x;).

(53)

On making comparison with the right-hand side of Eq. (45), we
make the identification,

bQ= (Z;m;x, ) .bv.

With this result our conservation theorem (46b) becomes

Z;m;x; —t(Z;m;x;) =const. (55)

This relation clearly determines the motion of the x component of
the center of mass of the system of particles. On combining it
with (48), we obtain the result that the center of mass moves with
a constant x component of its velocity. With its companion rela-
tions referring to motions in the directions of the other two axes,
we obtain the vector theorem for the motion of the center of mass.
It is therefore quite appropriate that we designate the conserva-
tion theorem associated with the transformation to uniformly
moving reference systems as the celter of-mass th-eorem

VIII. THE SCALAR MESON FIELD

This is the simplest example of a field theory and is
of current interest in quantum mechanics. " The
lagrangian density function is

sc'Ln"0*0—r+t V]
= —-,'c'k(gradlt')' —(~ltl~r)'+I V3 (56)

The independent variables are x'= 7-= ct, x'= x, x'=y,
x'=s, using the ordinary index notation for the space-
time variables. The quantities q'&'=g;; are the coe%-
cients in the space-time line element

(QTs)s= (Q7xo)2+ (Jxl)2+ (dx2)2+(tfxs)s= g ' 'dxidx j (57)

The coefficient tt in Eq. (56) is expressed in terms of the
rest-ma, ss of the meson as tt=rrtsc/ttt.

When the equation of motion (22) is computed from
Eq. (56), we find it to be

[Vs—(1/cs) (ct'/cits) —tts$lt =0. (58)
2' G. Wentzel, Qmuntgm Theory of FieMs (Interscience Pub-

lishers, Inc. , New York, 1949), Chapter 2,

Equation (46b) now yields the result„

Z;px;(BL/Byf) y;—BL/Bi;]= const, (52}

which expresses the conservation of the component of angular
momentum about the s axis. The vector theorem for the conserva-
tion of angular momentum follows by consideration of the rota-
tions about the other two independent space directions.



260 E. L. H ILL

We note from Eq. (56) that

M/&fr= c'—rf"f (82/8$, )p, = cs—rf"p p .

with which the general form of the conservation rela-
tion (43) becomes

The symmetry transformations which are involved
in this prob1em are those of the (inhomogeneous)
lorentz group, under which the wave function is to be
an invariant; i.e., f'(x')=it(x), so that bp=o. This
reduces Eq. (59) to the form, "
(&/»") I 2(ri'9—'*0')+PS')b&"+rf"vl4' »'"I =o (6o)

(A) Translations of the Axes (Conservation of
Momentum)

The infinitesimal translation along the x axis being given by
Eqs. (47), we find the corresponding conservation theorem to be,
from Eq. (60),

(grady) 2 +~2/2 +
Bp t)1$ 8 8$ 8$ 8 8$ Btt——+———+————=0. (61)

8g Bg Bx 88 88' Bx 87 Br Bx

(3) Translation in the Time (Conservation of
Energy)

With the transformation (49) the conservation theorem takes
the form,

8$ 8$ 8 8$ 8$ 8 8$ 8$+— +-
Ox Bv 8$ 8g Br Bz 88 Br

8 2

+——(gra@)2+ —+I 2' =0 (62)
BT' 2 BT

(C) Rotations of the Axes (Conservation of
Angular Momentum)

With the transformation (51) for a rotation about the s axis the
conservation theorem takes the form,

The substitute for Eqs. (53) for an infinitesimal motion along the
x axis with speed bv is

x'=x —~ bP, z=~, ~=~—x bP
I (64}

momentum density =g = S/c', (66c}

angular momentum density= M= r)& g. (66d)

It should be remarked that the definitions (66a, b, c, d} are not
unique, since we have already observed in Sec. IV that the form
of the lagrangian density function can be altered by a divergence
transformation without affecting the equations of motion. The
problem of establishing a canonical form for the density functions
of any given field is usually carried out by demanding, as is done
in the theory of relativity, that the equations nf conservation of
momentum and energy be expressible in the form ST'&'/Bx&=0,
where T'& is a suitably defined symmetric tensor. ~ 23 While such a
procedure is important when it is supposed that the dynamical
quantities of the field are actually localizable, it has no influence
on the definitions of the total energy and other entities. If the field
is contained within a finite region of space, then by integration of
each of the conservation theorems over all space, with discard of
those terms which involve the space derivatives, since these lead
only to vanishing terms on integration, we obtain the results that
the totaL energy, momentum, etc., are independent of time.

Of particular interest is the result obtained from the center-of-
mass theorem when the field is contained within a finite region of
space, so that the space integrals converge. From Eq. (65) we
obtain the result,

ER—Pc' r =const, (6&)

where 8 and P are total energy and momentum, defined by the
relations,

where bP= be/c. The corresponding conservation theorem is

1 8$ 2 8$ 8$ 8$+- (glad/) ——+p~P r+——v——x—
2 87 Bx t9x 87

1+ +- (grads}'+ —+I"4' x———~— = o. (65}
2 Bv' Bv' Bx

From an inspection of the various conservation theorems, we
can identify suitable expressions for the dynamical quantities
associated with the meson field as follows:

energy density=H=-, 'P(grad&)s+(BP/Br)'+p'Pj (66a)

energy flux vector= S= (Bp/Br)—grad/, (66b)

8 8$ 8$——— (grady)2 ——+&2P y+—y—x-
Bx 2 Br Bx Bx 8$

1 8$ 2 8$ 8 8$+—+— (grad/}2 ——+@2' x+—y——x—
8$ 2 Br Bp Bx Bg

+——y —x— +—— y——x— =O. (63}

E= IrdV, P= gdt/',

and R is the "mean center of energy, "

R= Hrd V E.

(68a)

(68b)

(D) Velocity (Lorentz) Transformations
(Center-of-Mass Theorem)

In the yresent case the galilean transformation to moving axes
must be replaced by the corresponding lorentz transformation.

2' In the expression of the conservation theorems in explicit form,
we have used the notation 8/Bx" instead of S/Sx" in order to
comply with the usual practice.

The analogy with the corresponding theorem (55) of classical
mechanics is obvious. 24

22 F. Belinfante, Physica 6, 887 (1939).L. Rosenfeld, Acad. roy.
Belg. , classe sci. , Mem. 18, No. 6 (1940).

2' J. M. Jauch, Acad. Brasileira ciencias 20, 353 (1948). J. M.
Jauch, reference 20, appendix.

24 For a discussion of the center-of-mass theorem in the theory of
relativity the reader is referred to the following papers: M. H. L.
Pryce, Proc. Roy. Soc. (London) A195, 62 (1948). C. Mgller,
Communs. Dublin Inst. Advanced Studies, Ser. A, No. 5 (1949).


