Prof.: Carlos Lamas	Seminario de Física del Sólido 2019
JTP: Arles V. Gil Rebaza	Práctica 2: Dinámica de la red - Fonones

Para todos los casos, considerar condiciones de borde periódico.

- 1. Cadena monoatómica: Considerar una cadena unidimensional monoatómica separados una distancia a, los átomos interactuan por medio de un potencial semejante a un oscilador armónico (ver figura 1). Si cada átomo tiene masa m y la constante elástica es k:
 - (a) Demostrar que la relación de dispersión es:

$$\omega(\mathbf{q}) = 2\sqrt{\frac{k}{m}}\sin\left(\frac{\mathbf{q}\cdot\mathbf{a}}{2}\right)$$

- (b) Graficar $\omega(\mathbf{q})$. Analizar la dependencia de $\omega(\mathbf{q})$ para pequelos valores de \mathbf{q} .
- 2. Cadena diatómica: Considerar una cadena unidimensional formada por dos tipos de átomos, cuyas masas son m_1 y m_2 , los cuales se encuentran separados una cierta distancia d (ver figura 2). Si la intercción interatómica es la de un osiclador armónico con constantes elástica k.
 - (a) Definir la celda unidad de repetición y calcular $\omega(\mathbf{q})$
 - (b) Graficar $\omega(\mathbf{q})$. ¿A qué se denomina modos acústicos y modos ópticos?, ¿Los fonones tienen todos los modos de vibración permitidos?
 - (c) Para que valores de \mathbf{q} , se produce el valor máximo y mínimo para los modos acústico y óptico. Analizar los casos cuando $m_1 > m_2$.
 - (d) Analizar el cociente de las amplitudes de vibración para el caso $\mathbf{q} = 0$. ¿Cómo depende con las masas atómicas?
 - (e) Hacer un esquema de los desplazamientos atómicos del modo acústico y óptico para el caso $\mathbf{q} \cong 0$.
 - (f) Analizar $\omega(\mathbf{q})$ para el caso $m_1 = m_2$, comparar con cadena monoatómica (ejercicio 1).
- 3. Cadena dimerizada: Semejante a la cadena diatómica, pero $m_1 = m_2$, además las distancias interatómicas son variables, es decir, un átomo está ligado a uno de sus vecinos por una constante elástica k_1 , mientras que con el átomo del otro lado está ligado por una constante elástica k_2 (verf figura 3).
 - (a) Definir la celda unidad de repetición y calcular $\omega(\mathbf{q})$.
 - (b) Graficar $\omega(\mathbf{q})$ y analizar el caso cuando $\mathbf{q} \to 0$.
 - (c) Para que valores de \mathbf{q} , se producen los máximos y mínimos para los modos acústico y óptico. Analizar el caso cuando $k_1 > k_2$.
 - (d) Encontrar el ancho prohibido de las frecuencias de los fonones, comparar con el caso de una cadena diatómica.
 - (e) Determinar el cociente entre las amplitudes de dispersión de los fonones para cualquier valor de \mathbf{q} , determinar el máximo y mínimo dicho cociente. Hacer un esquema de los desplazamientos atómicos del modo acústico y óptico para el caso $\mathbf{q} \cong 0$.

Figura 1: Cadena monoatómica

Figura 2: Cadena diatómica

Figura 3: Cadena dimerizada

OPCIONAL: Red cuadrada monoatómica, considerar una red cuadrada de lado a formada por átomos de masa M. Si cada átomo interactua con sus primeros vecinos (nn) con un potencial tipo oscilador armónico de constante elástica k_1 , y con sus segundos vecinos (nnn) con un potencial semejante pero de constante elástica k_2 , ver figura 4.

Si los vectores bases de la red son: $\mathbf{a}_1 = a \,\hat{\mathbf{x}}$ y $\mathbf{a}_2 = a \,\hat{\mathbf{y}}$ y cualquier vector posición puede ser descrito como $\mathbf{R}_{nm} = n \,\mathbf{a}_1 + m \,\mathbf{a}_2$

Entonces, para cualquier átomo en \mathbf{R}_{nm} , los vectores de sus primeros vecinos (nn) serán:

$$\mathbf{n}_1 = a\,\mathbf{\hat{x}} \ , \ \mathbf{n}_2 = a\,\mathbf{\hat{y}} \ , \ \mathbf{n}_3 = -a\,\mathbf{\hat{x}} \ , \ \mathbf{n}_4 = -a\,\mathbf{\hat{y}}$$

mientras que los segundos vecinos serán:

$$\mathbf{p}_1 = a\,\hat{\mathbf{x}} + a\,\hat{\mathbf{y}}$$
, $\mathbf{p}_2 = -a\,\hat{\mathbf{x}} + a\,\hat{\mathbf{y}}$, $\mathbf{p}_3 = -a\,\hat{\mathbf{x}} - a\,\hat{\mathbf{y}}$, $\mathbf{p}_4 = a\,\hat{\mathbf{x}} - a\,\hat{\mathbf{y}}$

Figura 4: Red cuadrada monoatómica, la interacción interatómica es tipo oscilador armónico con constantes k_1 y k_2 para los primeros y segundos vecinos, respectivamente.

a) A partir de la ecuación vectorial del movimiento

$$M\frac{\partial^2}{\partial t^2}u(\mathbf{R}_{nm},t) = k_1 \sum_{j=1}^4 \left\{ \left[u(\mathbf{R}_{nm} + \mathbf{n}_j, t) \right] \cdot \hat{\mathbf{n}}_j \right\} \hat{\mathbf{n}}_j + k_2 \sum_{j=1}^4 \left\{ \left[u(\mathbf{R}_{nm} + \mathbf{p}_j, t) \right] \cdot \hat{\mathbf{p}}_j \right\} \hat{\mathbf{p}}_j$$

y asumiendo que la solución general es semejante a la de una onda:

$$u(\mathbf{R}_{nm},t) = \begin{bmatrix} u_x(\mathbf{R}_{nm},t) \\ u_y(\mathbf{R}_{nm},t) \end{bmatrix} = \begin{bmatrix} u_x(\mathbf{q}) \\ u_y(\mathbf{q}) \end{bmatrix} e^{i\mathbf{q}\cdot\mathbf{R}_{nm}} e^{-i\,\omega t}$$

entonces:

$$u(\mathbf{R}_{nm} + \mathbf{n}_j, t) = \begin{bmatrix} u_x(\mathbf{R}_{nm} + \mathbf{n}_j, t) \\ u_y(\mathbf{R}_{nm} + \mathbf{n}_j, t) \end{bmatrix} = \begin{bmatrix} u_x(\mathbf{q}) \\ u_y(\mathbf{q}) \end{bmatrix} e^{i\mathbf{q}\cdot(\mathbf{R}_{nm} + \mathbf{n}_j)} e^{-i\omega t} = e^{i\mathbf{q}\cdot\mathbf{n}_j} u(\mathbf{R}_{nm}, t)$$

Demostrar que:

$$D(\mathbf{q}) \begin{bmatrix} u_x(\mathbf{q}) \\ u_y(\mathbf{q}) \end{bmatrix} = \omega^2 \begin{bmatrix} M & 0 \\ 0 & M \end{bmatrix} \begin{bmatrix} u_x(\mathbf{q}) \\ u_y(\mathbf{q}) \end{bmatrix}$$

donde $D(\mathbf{q})$ se denomina la matriz dinámica:

$$D(\mathbf{q}) = \begin{bmatrix} 4k_1 \sin^2\left(\frac{q_x a}{2}\right) + 2k_2 \left[1 - \cos(q_x a) \cos(q_y a)\right] & 2k_2 \sin(q_x a) \sin(q_y a) \\ 2k_2 \sin(q_x a) \sin(q_y a) & 4k_1 \sin^2\left(\frac{q_y a}{2}\right) + 2k_2 \left[1 - \cos(q_x a) \cos(q_y a)\right] \end{bmatrix}$$

b) Para obtener la relación de dispersión $\omega(\mathbf{q})$, se debe solucionar la ecuación secular:

$$\det\left(D(\mathbf{q}) - \omega^2 M \mathbb{I}\right) = 0$$

de donde se obtienen dos fonones acústicos, longitudinales (LA) y transversales (TA), demostrar que para el camino $\Gamma - X$ y $q_x \approx 0$, se tiene:

$$\omega_{LA} = \sqrt{\frac{k_1 + k_2}{M}} q_x a \quad , \quad \omega_{TA} = \sqrt{\frac{k_2}{M}} q_x a$$

mientras que para el camino $\Gamma - M$ y $q_x \approx 0$, $q_y \approx 0$, $q_x = q_y = q$, se obtiene:

$$\omega_{LA} = \sqrt{\frac{k_1 + 4k_2}{M}} qa \quad , \quad \omega_{TA} = \sqrt{\frac{k_1}{M}} qa$$

donde Γ , X y M son puntos de simetría de la primera zona de Brillouin (FBZ) en el espacio recíproco (ver Figura 5a):

$$\Gamma : \mathbf{q} = (0,0)$$
, $X : \mathbf{q} = (q,0)$, $M : \mathbf{q} = (q_x, q_y)$ para $q_x = q_y = q$

recordar que: $\mathbf{q} \cdot \mathbf{a} = 2\pi \Rightarrow q = \frac{2\pi}{a}$

- c) Graficar $\omega(\mathbf{q})$ para el camino $\Gamma X M \Gamma$, suponer que $k_1 = 200N/m$, $k_2 = 100N/m$ y $M = 2 \times 10^{-26} kg$. Se debe obtener algo semejante a la figura 5b. Si bien este es un modelo simplificado, puede describir los fonones de sistemas tales como el Ne, Ar y Kr. Comparar con los resultados teóricos y experimentales de Phys. Rev. B 75 (2007) 024101.
- d) Con ayuda de un programa en computadora calcular y graficar $\omega(\mathbf{q})$ para $-\pi \leq q_x \leq \pi$ y $-\pi \leq q_y \leq \pi$, (ver figura 6)

Figura 5: a) Puntos de simetría en la FBZ, b) Curvas de dispersión de los fon
ones para el camino $\Gamma-X-M-\Gamma.$

Figura 6: Representación 3D de la relación de dispersión $\omega(\mathbf{q})$ en la FBZ.