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A b s t r a c t :  The  quas i -par t ic le  and  the  boson a p p r o x i m a t i o n  are  used in the  s t u d y  of the  first  
0 +  exci ted  s t a t e  of the  pa i r ing  force: a special case is chosen for i ts  s implic i ty ,  which  al lows 
us  to s t u d y  q u a n t i t a t i v e l y  the  va l id i ty  of these  app rox ima t ions .  This  va l id i ty  shows  a s t r ong  
dependence  wi th  respect  to the  coupl ing  c o n s t a n t  and  to the  degene racy  of the  she l l -model  
levels. 

1. I n t r o d u c t i o n  

The pairing force, which was first introduced by Racah in 1943 as a conven- 
ient mathematical tool for the classification of the atomic levels, has been 
shown in the last few years to be a very good approximation of the short-range 
part of the nuclear forces for several problems of nuclear physics. Both these 
reasons, physical interest and mathematical simplicity, led us to study the 
quasi-particle approximation which is generally used to account for the 
pairing force 1), and the boson approximation 2) which is used for more general 
problems (especially for the so-called collective vibrations) but which will be 
shown to be a logical extension of the first one *. 

We shall limit ourselves to the s tudy of the first 0 +  excited state. The 
Hamiltonian of a system of nucleons interacting in an average potential by a 
pairing force is 

H . . . .  ' ' * : ' a m a ~ _ m a ~ , _ m , a ~ , ~ ,  , (1) 
jm jm 

f r o '  

where ] labels a shell. We get rid of the magnetic quantum numbers m by 
defining the following operators: 

1 
k - - !  ~jrn~J--m , A,t ~/D, m>O ~ t ~-m,,t ,,t 

= X aJmNJm' 
t n  

1 
- -  k } J - -ma im,  A j  ~v/~-2j ra>oX I - - ' J - m a  

(2) 

* See also a s imi lar  s t u d y  by  IL ~,V. Anderson  6), m a d e  in the  f rame of the  r a n d o m - p h a s e  
a p p r o x i m a t i o n  in supe rconduc t iv i ty .  
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where .Qj is the half-degeneracy of the i-shell. These operators obey the follow- 
ing commutation relations: 

[A, ,Ajt ]  =5,~ 1-- , (3) 

[Ni, A;*] = 6i~2Ai*. (4) 

Thus one has 

H = X e, N ,+G X V.Oi VD,.A ,*A t . (1 ') 
t) 

Exact solutions are known in two cases: 

I. The degenerate case. As is well known 3), the ground state is proportional 

to (~iX/~2~A,¢)~10). The first excited 0 +  states (seniority 2) are proportional 

to (X,V~)~A,*)t~-~ (~_c,V~A,*)[O) with ~.,c,D, = O. If p is the number of 
shells, there are p--1 such states, all degenerate, the energy of which is 
W : - l a i r d 2 , .  

II. The two-particle case. Looking for an operator F* = ~ic~Ai* such that 
HF*lO) = WF*]0), we are led to write 

[H, F'" = X c,2e, A**+G X %/XJ~.A,¢ X c , V ~  ( I - -  NI~ 

The operators N; acting on the vacuum give no contribution and we find the 
following eigenvalue equation: 

-G = ~, W--2e,' (5) 

which may be solved graphically. This suggests the following approximation: 
if we have few particles in rather large shells, we may forgct about the Pauli 
principle, in other words neglect the term N~/D, in eq. (3). In this approxima- 
tion, pairs of fermions are just bosons and the Hamiltonian (1') describes a 
system of bosons in a one-body potential. This problem admits solutions given 
by eq. (5). However, when we have too many particles, we have first to 
perform a canonical transformation in order to get a good approximation. 

2. The Quasi -Part ic le  and the Quas i -Boson  Approx imat ions  

2.1 THE QUASI-PARTICLE SCHEME 

We define quasi-particles by the Bogoliubov-Valatin transformation 
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and, as in the case of particles, we define the foUowing operators: 

1 
~ - - I  J'm ~'--m, 

tn 

satisfying the commutator relations 

1 

(7) 

0 

The parameters u and v are chosen in order to cancel H2o+Ho~. The parameter 2 
is chosen so that  the "vacuum" of the quasi-particle space, defined by  0ql$0>=0, 
will be an approximation for a system of n particles: 

<4'o0-)lNI4'o().)> ---- n. 

Consequently, we obtain the well-known equations 

u~ 2 = ½  1-+- Ei / v~ 2 = ~  1-- E, ] 

~2, 2 ( 1 3 a )  

X 9~ 1[1_ *'-;'~ = n 
• E i ] 

E, = %//I 2 + (e,--2) z, A = --G~2,u,v,. 
t 

(ISb) 

(14) 

.0~ / (8) 

[ ~ ,  ~¢~t] = 6.2~¢d. (9) 

We rewrite the pairing Hamiltonian (introducing a chemical potential 4) in 
terms of these new operators: 

H = U+HIa+ (H2o+Ho,)+He+Hres, 

u = ~ (~ , -~)2v ,29 ,+G(~ ,u ,v , )2 ,  

H n  = X [(,,--4)(u,~--v, 2) --2Gu, v,(~S2su, v~)]JV ,, 

H2o + Hoe = • [(e,--A)2u, v, X/~+G (X f2, u, v,)V~, (u,~--v,2)] (•,*+d,), (10) 
f t 

H e ---- G X ~ V ~ ( u , 2 W ,  * - v , 2 d , )  (u,~J--vTd,*), 
O 
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Now the Hamiltonian (10) describes a system of quasi-particles interacting 
in an average potential by means of a two-body force. 

The quasi-particle approximation consists in keeping only the free quasi- 
particle Hamiltonian H" o = U + H  n. The 0 +  excited states are ]~)  ~- ~1;*]$o), 

the energy of which is W~ = 2E~ = 2V'A2+ (e~--~)*. There are p of them, one 
more than the right value: this "spurious" state, the existence of which arises 
from the non-conservation of the number of particles, is mixed up with the 
others. In the limit where G is very large, we find the degenerate case, and the 
value IG[~-(2~ for the excited states, but we have still a spurious state. 

2.2. THE QUASI-BOSON APPROXIMATION 

From eq. (10) we see that  H n and He are of the order of magnitude G~2 
(where .(2 is the total degeneracy of the system), while terms of Hres are of the 
order of GV'Q or even 1 and, besides, include the W~ operators. If the quasi- 
particle scheme is a rather good approximation, the low lying states will have 
only a few quasi-particles. Also if ~2 is large, a consistent approximation will 
be to keep only H e for the interaction of tile quasi-particles and neglect the 
Pauli principle for the pairs of quasi-particles, i.e., use the following approxi- 
mate commutator rules instead of (8): 

[~/,, ~¢j*J = ~, .  (8') 

Now we are led again to a system of bosons with a one-body force. To find the 
canonical transformation which diagonalizes the Hamiltonian it is convenient 
to go to the "space" variables. We define 

q, = ½ C 2 ( ~ , + ~ , * ) ,  p, = --½iv/~(~¢,--~¢,*) .  (15) 

Then we get 

(16) 
I-'i(q,,p,) = ~ X / ~ - ~ - - q ,  + ( 2 x / b ~ p , ) 2  . 

We are looking for 

so that  

QJ = aj, q , ,  = Y- 07) 
i i 

[Q,, P~] = i~ o, [Q,,//]  = iB ,  P , ,  [P , , /4]  ---- - i C , Q , .  

The energies we are looking for are W i = x/B~C~. 

(18) 
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By straightforward calculations one finds 

G ~ / ~  4E~2Aj m + 2 (e~--2)B s As(2~ 
2j i  - -  2E i 4E~ 2 -  Ws ~ 

(19) 
I~s~ = - G  V ~  CsA/l~+ 2(e'--2)AJCZ' 

4E~ 2 -  Ws2 

where A/1~ and As(2) are two constants defined by the following equations: 

As"' = ~ 2,,V~2-~, As,2 , = ~ . /~s ,V~ e,--2 (20) 
f i e i  

Inserting (19) into (20), we obtain the following equations for Asm andA/~"  

[ 
~1 + G  ~ 4 ~ s V  G ~+ E , ~ , ' ) !  BsAs'" : O, (21) 

G(Xt2, ~,-2 2(~,--2)~ 1 

Defining 

~,  D, Ce,--2) C22) 
~s = X 2E,(4e,~_ws 6 ,  bs = X e,(4e,~-ws')' 

and using (13a), we can write (21) in a simpler way, viz., 

W~Za~A/l~+bsBsAs(~) = O, C~bsAsm+ (Ws2--4A~)a~As ~z) = 0. (21') 

The condition of solvability of this equation gives the eigenvalue equation 

W j g ( W s 2 - - 4 A i ) a s  2 = b~ 2 Ws 2. (23) 

There are two cases to be considered. 

1) W j ~ 0  

Let us put  
yj2 = W ~_4A 2. (24) 

Using (23) and (22) one finds 

~2~ 
5:, E,(vs+2(~,-2)) = o. (25) 

If A and 2 are known, these equations can be solved graphically. Let us notice 
the important fact that there are just p- -1  solutions. This is the right number 
of our excited states. We shall see below that the whole spurious state has been 
taken up by  the W = 0 solution. The case when the e~ are symmetrical with 
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respect  to the X-value is of special interest :  because of the symmet ry ,  the 
y = 0 solution leads to the lowest eigenvalue W = 2A: this is just  the gap. 
F rom eq. (13b), we see that ,  in order  to obta in  this si tuation,  we need two 
things: a symmetr ica l  d is t r ibut ion of the shell model  energy levels, and a 
number  of particles which is just  half  the to ta l  degeneracy of the system t. 
In the limit where all the levels are degenerate,  it is a half-filled shell. In  sect. 3, 
we shall s t udy  the case of two levels. One can write (19) in thefollowing form: 

[ W,2~D-~ X/-~7 --GA, '2' V ' ~  (--GA/2)) .  (26) 
e , J  2 - # , 7 '  " , ' :  ' 

A~ ~) is a normalisat ion cons tan t  so tha t  ~)-~i#ji  = 1. 

2) W = 0  

This solution can occur  only  for A ~ 0 and corresponds to B = 0. This ex t ra  
degree of f reedom which introduces a cont inuous spect rum clearly does not  
belong to our  physical  problem. In fact,  it is easy to see tha t  the wave funct ion 
Q0[$o) describes a l inear combinat ion of the ground states of the neighbouring 
nuclei such tha t  the average value of the number  of particles is nevertheless 
equal  to n. Eq.  s(19) give 

~ / ~  K o %/~-~ A2as+ (e '--2)ba (27) 2i ° -----A E-~-  ' # o =  .. E~ 2 . , 

with 

89, Q , ( , , - , ~ )  
a3 = X E,3'  = y - -  K0 (  az +b3 = 1 

f E i  3 ' . 

The  Hami l ton ian  can be rewri t ten  as follows: 

~ - 1  
/.~ 1 2 1 = ~CoQo +2 Y. W~(P~2-t-QJ~) • (28) 

5=1 

The canonical  t r ans fo rmat ion  is given by  formulas (17), (26), (27). Thus,  
including H c in the Hami l ton ian  leads to the el imination of the spurious state.  
However ,  the number  of particles is not  ye t  a good q u an tu m  number ,  some 
terms in Hre s are playing an impor t an t  role in this respect.  

2.3 .  T H E  A V E R A G E  N U M B E R  O F  P A R T I C L E S  I N  T H E  Q U A S I - B O S O N  
A P P R O X I M A T I O N  

The Bogoliubov-Valat in  t rans format ion  has been chosen so tha t  the average 
numbe r  of particles in the quasi-part icle vacuum has the correct  value n: 

<401N[¢0> = n. 

* T h i s  is p r e c i s e l y  t h e  c a s e  in  s u p e r c o n d u c t i v i t y .  
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This is no t  true any  more for an excited state.  If  this excited s tate  is built 
up with 2 quasi-particles from the i-shell, we have 

<¢~lYl¢~> = n , + 2 - -  
E~ 

For G large, i.e. A large, the extra-term is small. But for zl = 0, it is just -{-2: 
the state Cj describes a system with n+2 or n--2 particles. 

In the quasi-boson approximation, let us consider the operators of creation 
and annihilation of the system of bosons which diagonalize the Hamiltonian 

1"~ + = ½ x / 2 ( Q , + i P , ) ,  F,  = { v ~ ( Q ~ - i P , ) ,  

The number  of particles in terms of d and ~¢t operators is 

e,--X V/~ (29) 
N = x x 

The ground state  is the vacuum of the new bosons: F~T~o) ---- 0. The first 
excited states are [ ~ j ) =  Fj+]yJo), and by  s t ra ightforward calculations (see 
Appendix 2) one gets 

<~v0[N--n]~Vo) = , ,  X. 
2 2 e i - ~  - * , - ) .  

(30) 
E~ - - ~  2 2 <,p, IN-,,I,p,> = <,~oIN--,,I,po> + X ~ (~,+~,,). 

As the (~--;t) have no definite signs, these quanti t ies  are ra ther  small in general. 
One can see tha t  t hey  are ident ical ly 0 for the symmetr ica l  case. 

I f  we look at  the limit of the degenerate case, we realize tha t ,  concerning the 
average number  of particles, the approximat ion improves as the number  of 
particles increases in the shell, and  is best in the middle of the shell. 

2.4. T H E  CASE OF T H E  COMPLETE SHELLS 

As can be seen from eq. (13b), in this case and  only in this case, A = 0, 
when [GI is smaller than  a critical value ]Gel. Then the quasi-particles just  
define particles and holes, as usually. The eigenvalue equat ion is 

1 O~ Om (31) 
= Z 0,--~(*~--~) ~ ' - -~(*m--a) '  

where e, is above the Fermi surface and e,, is under  the Fermi  surface. In this 
case, one boson creates two particles or two holes, and  two bosons are necessary 
to get the right number  of particles. Fig. 1 represents the solution of eq. (31). 
The energy of the first excited s ta te  is indicated by  arrows. When [G[ increases 
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from 0 to IGel, the energy of the first exci ted s ta te  decreases, and  is 0 when 
G = Ge. Then  A becomes different from 0 and  the quasi-particle scheme starts .  
This is an i l lustration of the general relation between the s tabi l i ty  of the Har t ree  
Fock  solution and the boson approximat ion  (4). 

/ 

Fig. 1. The solution of eq. (31). 

3. The Two-Shel l  Symmetrical  Case 

We use this case in order to compare the approximat ions  s tudied in the last 
section with the actual  solution. Let  e be the distance of the shells, -t--~e their 
energy a n d / 2  the common  degeneracy;  we have n = 2/2. In  the limit of G = 0, 
we have a complete shell, in the limit of G = --09, a half-filled shell. 

_w__ 
2 ~  

/ 
/ 

.0.,3 

\ /  

as I G IJ2/2c 
Fig. 2. W/2e as a function of IGlI2/2e for different values of O. 
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The quasi-particle approximation gives 2 degenerate excited states 2 E  1 = 

2E 2 = 21G1£2. The critical value Ge, for which A ---- 0, is given by IGell2 ---- 2x-e. 
For IG] < IGe[, the Boson approximation gives Wb = 2e(1--2[Gl£2/2e)½; for 
IG[ > IGe], the quasi-Boson approximation removes the spurious state. One 
remains with a one-shell problem, the Hamiltonian of which is 

82 
H = 2 1 G I t 2 B * B  81GIt2 (Bt+B)2 '  with B* = ½V'2(~Cx*--~¢,*). (32) 

w 

/ 

/ 

',', / / /  

f / .i 
/ .. 

/ V ~ 
laly2/z¢ 

Fig. 3. Comparison of the different approximat ions  (the thin curve is the case /2  = 10 taken from 
fig. 2). 

One clearly sees the interchange of the roles of [G[~Q and ~ as a result of the 
quasi-particle transformation. Diagonalization leads to the energy Wqb = 2 
([G12.Q2--~*)½. These curves are plotted in dotted lines on fig. 2. The exact 
solution was obtained with electronic computors (in Lund and in Paris), 
for the following values of Q: 

/2--~ 3, 6, 10, 20. 

One can see how the approximation improves when t2 increases. One sees also 
how good the quasi-boson approximation is for [G[> IGe[. On the other hand, 
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the agreement is not as good for the boson approximation when [G[<[Gc[. 
This might be explained by  the fact that, to construct our state, we must here 
use two bosons instead of one. In fact, a first-order perturbation 

Wp : 2e--2,GI.Q (1- -  ~1 

is even better in this region, as can be seen from fig. 3 (the case ~---- 10). 
Fig. 3 shows also the result of a first-order perturbation on the free quasi- 
particle Hamiltonian: the degeneracy is removed, the spurious state is isolated, 
and the result for the physical state is almost the same as the one obtained by  
the quasi-boson approximation: 

/IGI~, 
wp = I IGl~ ( 8°" ~2 4[G~] in the limit where ~2 is large. 

\ 

There remains a region around the critical value G c where no approximation is 
valid. One could see that, in that region, the average value of the number of 
quasi-particles in the ground state of the quasi-boson approximation becomes 
infinite, stressing the fact that  the Pauli principle plays a decisive role in this 
region. 

4. Conclus ion 

We have seen that for the treatment of the pairing force when no exact 
solution is known, a quasi-particle method with a first order perturbation or a 
boson approximation gives very satisfactory results, apart for values of the 
coupling constant in an intermediate region. 

The advantage of the boson approximation over the perturbation method 
is that it removes completely the spurious state of the quasi-particle approxima- 
tion, and that it can be applied to quite different problems than the one dis- 
cussed here, for which a perturbation would not give any satisfactory results. 

This work was begun during the author's stay at the Insti tute for Theoretical 
Physics of Copenhagen. It  is a pleasure for her to thank Professors Niels Bohr 
and Aage Bohr for their kind hospitality, and Professor Mottelson for suggesting 
this problem, and several illuminating discussions. 

Appendix  1. 

"[ ' I{F M A T R I X  E L E M E N T S  O F  T H E  P A I R I N G  F O R C E  

\Ve are studying the space generated by  A~ operators. An orthonormal set 
of vectors for this space is 

1 
J . . . , , , . . . >  : II, 
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with 

ni (~9 , - -n ,+  1), E",] = ~,, 
1 ni!.Q~! 

[n,][ = [ n , ] E n , - - l ]  . . . [1] = - -  - . 

~9,"' (~9~-n~) ! 

Then we have 

A , * ] . . .  n k . . . )  = X/ [n~+l ]  I . . . n , + ~ , ~ . . . ) ,  

A , I . . . n , . . . >  = X/In,] [ . . . n k - - ~ 5 , , . . . > .  

These equat ions  are ve ry  similar to those of real bosons, the difference being 
in the second te rm in the definit ion of In,I, which comes f rom the Pauli  
principle. One finds for the pairing force 

HI • • . n , . . . ) =  ( ~ 2 ~ , n , ) l  . . . n , . . . )  

+ G ~ ~¢/QjEnj-~i~+ 1 ] Qi [ni][ . . .n~+~kj--~k, • • • ). 
fJ 

A p p e n d i x  2. 

THE O P E R A T O R  N IN T H E  QUASI-BOSOX APPROXIMATION 

We s tar t  f rom the definit ion of the Q and  P operators  with respect  to the 
p and q operators:  

Q = A q ,  P = / ~ p ,  with  A/~* = 1. 

We then  get  the inverse formulas 

q = I~*Q, p = A ' P ,  

which lead to the following expression for the ~ operators:  

= ½ ( # * + A t ) F + X ( / ~ t - - A t ) F t .  

Thus,  we rewrite 

2(e , -~ . )  
N ----- ~ - -  

i E ,  
w,*w,+ v'} 90 = d t , , ~ +  V~go 

as a funct ion of the F operators:  

N = }yt(gvg* + AvA*)F+ ¼r,(+, + A) v(ut--A*) r* 

+ ¼ r(g--A),,(M + A,)F+ ¼Tr (/~v/~t +AvAt--2v)+To-F-Po t. 
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