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Notation and definitions:

. Manifold: M, parametrized by coordinates xµ, µ = 1, ...n.

. Vector field: U = Ua(x)Ea with Ua(x) the components and {Ea} the basis of

the vector space TxM∀x. In coordinate basis {∂µ}; U = Uµ(x)∂µ.

Any basis decomposes as: Ea = Eµa (x)∂µ

. 1-form field: linear functional on the space of vectors.

The action on vectors is denoted as ω(V ) = 〈ω|V 〉.
Given a basis {Ea} of V we define ωa(x)

.
= ω(Ea).

{ea} basis of V ?. Dual to {Ea} defined as

ea(Eb) = 〈ea|Eb〉 = δab ⇒ ω = ωa(x)ea

Thus, by linearity

ω(U) = ωa(x)Ua(x)

. Affine connection: asigns to each vector X on M a differential operator ∇X

which maps arbitrary vectors Y into vectors ∇XY .

The connection satisfies:

(i) Linearity∇fX+gZY = f∇XY +g∇ZY and∇X(Y +Z) = ∇XY +∇XZ

(ii) ∇Xf = X(f)

(iii) Leibniz ∇X(fY ) = (∇Xf)Y + f ∇XY .
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Linearity implies that knowing its action on a basis {Ea} is enough to know its

action on any Y . Being ∇XEb a vector, we can write

∇XEb = ωab(X)Ea ⇒ ∇EaEb = ωmb(Ea)Em = ω m
a b(x)Em

where ωab = ω a
c b(x) ec are 1-forms. We can generalize the construction strip-

ping away X in (ii) and (iii) to write

∇f = df and ∇(fY ) = df ⊗ Y + f ∇Y

with ∇Y a
(
1
1

)
tensor. The definition of ∇ on general tensors is obtained by

requiring it to satisfy Leibniz on general tensor products

∇(S ⊗ T ) = ∇S ⊗ T + S ⊗∇T

The action on 1-forms follows from Leibniz

∇X(Ω(Y )) = (∇XΩ)(Y ) + Ω(∇XY )

in terms of a local basis {Ea} and {ea} we have

∇X(ΩaY
a) = (∇XΩ)aY

a + Ωa(∇XY )a

since ∇XY = ∇X(Y aEa) = (X(Y a) + Y bωab(X))Ea, then

(∇XΩ)a = X(Ωa)− Ωb ω
b
a(X)

For Ω = eb we conclude that

∇Ea
eb = −ωbm(Ea) em = −ω b

a m(x) em (0.1) nabe
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PLAYING WITH MATRICES

—

Hadamard formula:

eABe−A = e[A,B (0.2) hada

here the exponential is understood as e[A, ≡ (1+[A, ·]+ 1
2 [A, [A, ·]]+ . . .). Then,

eABe−A = B + [A,B] +
1

2
[A, [A,B]] + . . . (0.3) hd

when thinking of this expression in terms of matrix representation of groups, it

means that conjugation by a group element is closed on the Lie algebra.

—

Proof: consider f(s) = esABe−sA, then

df

ds
= esAABe−sA + esAB(−A)e−sA = Af(s)− f(s)A = [A, f ]

From this we find f̈ = [A, ḟ ] = [A, [A, f ]], ... f (n) = [A, [A..[A, f ]]..] with n com-

mutators. If we evaluate these expressions at zero and use f(0) = B, we obtain

f (n)(0) = [A, [A, ..[A,B]]..], then

f(s) = B + s[A,B] +
s2

2
[A, [A,B]] +

s3

3!
[A, [A, [A,B]]]....

—

Duhamel formula: Where do we place the derivative Z ′(t) in eZ(t)?

d

dt
eZ(t) = Z ′ +

1

2
(Z ′ · Z + Z · Z ′) +

1

3!
(Z ′ · Z2 + Z · Z ′ · Z + Z2 · Z ′) + ...

Everywhere, this is, in all the positions in the expansion! Duhamel formula

implements the insertion of Z ′ in all possible positions of expZ.

δeZ = eZ
∫ 1

0

ds e−sZδZesZ (0.4) duha

Replacing δ → d
dt in this formula gives a closed expression for the derivative of

eZ with Z(t) a matrix.
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—

Proof: same trick, take f(s) = e−sZ ~∆(esZ) with ~∆ an operator acting on anything to

its right. Then,

df

ds
= e−sZ(−Z)~∆(esZ) + e−sZ ~∆(ZesZ) = e−sZ [~∆, Z]esZ

Integrating both sides gives

f(1)− f(0) =

∫ 1

0

ds e−sZ [~∆, Z]esZ

The lhs can be worked out to give

f(1)− f(0) = e−Z ~∆ eZ − ~∆ = e−Z(~∆ eZ − eZ ~∆) = e−Z [~∆, eZ ]

inserting above we find

[~∆, eZ ] = eZ
∫ 1

0

ds e−sZ [~∆, Z]esZ

Calling δeZ = [~∆, eZ ] we get (0.4).

—

Rewrite the conjugation on the rhs using (0.2) and the definition (0.15)

δeZ = eZ
∫ 1

0

ds e−s adZ δZ

the s-integration on the rhs gives

δeZ = eZ
e−s adZ

−adZ

∣∣∣∣1
0

δZ

we conclude that

e−ZδeZ =
1− e− adZ

adZ
δZ (0.5) cl

The rhs should be understood as the expansion −
∑
k=0

(−adZ)k

(k+1)! . The nested

commutators show that the left invariant form on the lhs is Lie algebra valued.
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—

Left invariant forms belong to the Lie algebra: (0.5) can be alternatively obtained

in the following way: consider g(s, t) = esZ(t), then

g−1
∂g

∂s
= Z(t)

Defining

B(s, t) = g−1
∂g

∂t
= e−sZ(t) ∂e

sZ(t)

∂t

⇒ ∂sB = −ZB + g−1∂t(gZ)

⇒ ∂sB = −ZB +BZ + Ż (0.6)

we then find that B satisfies

∂B

∂s
= −[Z,B] + Ż with b.c. B(0, t) = 0

Solving in power series in s

B(s, t) = sŻ +
s2

2!
(−adZ)Ż + ...+

sn

n!
(−adZ)n−1Ż + ...

= s φ(−s adZ)Ż

where φ(z) = ez−1
z . Setting s = 1 we reobtain (0.5).

—

Baker-Campbell-Hausdorff formula: given eA and eB it tells us how to write their

product as a single exponential

eAeB = eZ

The result is

Z = A+

(∫ 1

0

dsψ(e[A, es[B,)

)
B (0.7) bch

with1

ψ(x) =
x lnx

x− 1

1ψ is the generating function of Bernouilli numbers: ψ(e−y) =
∑∞
n=0Bn

yn

n!
.
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This expression is formal and has a finite radius of convergence. In the case

of non-compact Lie groups if A,B are far enough from the identity the series

on the rhs diverges. The construction of Z in terms of nested commutators

shows, for the case of Lie groups, that Z belongs to the Lie algebra. An explicit

expansion with all numerical coefficients was given by Eugene Dynkin in 1947

(see wikipedia).

—

Proof: consider eZ(s) = eAesB then for δ = ∂s

δeZ(s) = eABesB = eZB ⇒ B = e−ZδeZ =
1− e− adZ

adZ
δZ

where we used (0.5). Then

Z′(s) =
adZ

1− e− adZ B

= ψ(e[Z,)B (0.8) z

where we defined

ψ(x) ≡ x lnx

x− 1
= 1−

∞∑
n=1

(1− x)n

n(n+ 1)

Now, from (0.2)

e[Z,X = eZXe−Z

= eAesBXe−sBe−A

= eA(es[B,X)e−A

= e[A,es[B,X

Inserting this in (0.8) and performing an s-integration one finds

Z(1)− Z(0) =

∫ 1

0

dsψ(e[A,es[B,)B

from Z(0) = A we get (0.7).

—

The first few terms of the expansion are

eAeB = eA+B+ 1
2 [A,B]+ 1

12 ([A,[A,B]]+[B,[B,A]])− 1
24 [B,[A,[A,B]]]+...
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—

Group theory conventions and definitions

IDENTITY - LOCAL

. Group element: g ∈ G. ∀g near the identity we can write2 g(t) = exp(tX)

with X ∈ TeG = Lie(G) which we denote g.

. Group manifold G: we parametrize it with local coordinates ξµ, µ = 1, ...n

. Lie algebra generators: {Ta} basis of TeG. Any X ∈ g can be written as

X = XaTa, a = 1, . . . n

. Structure constants of the Lie algebra f c
a b: defined at TeG. Characterize the

group composition law. Writing g1(t) = exp(tX), g2(t) = exp(tY ) and

g(t) = exp(t2Z)

g(t) = g1(t)g2(t)g−11 (t)g−12 (t)

= 1 + t2[X,Y ] + ... ; Z = [X,Y ] (0.9)

Linearity of the bracket implies that all information of composition law is

contained in

[Ta,Tb] = f c
a b Tc

Antisymmetry of the commutator implies

f c
a b = −f c

b a (0.10) as1

. ad action: action of the Lie algebra on itself. A linear transformation acting

on the Lie algebra vector space can be naturally associated to any X ∈ g as

X → adXY ≡ [X,Y ], ∀ Y ∈ g. (0.11) lad

Hence the map X → adX is a linear representation of the algebra.

2All elements in the neighbourhood of the identity can be reached by the exponential map.
The vector field could be choosen to be either the Left/Right invariant.
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adj action associates a matrix to each Lie algebra basis element T a:

adTa
→ T (adj)

a︸ ︷︷ ︸
matrix representation

: (T (adj)
a )mn = f m

a n. (0.12) mad

Jacobi identity obeyed by Lie bracket implies

[adX , adY ] = ad[X,Y ] (0.13) ad

. Adjoint action: action of the group on the Lie algebra

AdgY ≡ gY g−1, g ∈ G, Y ∈ g (0.14) Adact

Writing g(t) = etX one finds using (0.3)

Adexp(tX)Y = etXY e−tX = Y + t[X,Y ] +
1

2
t2[X, [X,Y ]] + . . .

The exponential of adtX action is given by

eadtXY = Y + t[X,Y ] +
1

2
t2[X, [X,Y ]] + . . . (0.15) aad

Then,

Adexp(X) = exp(adX) (0.16) Adad

. Killing-Cartan form: the matrix representation (0.12) of ad action induces an

inner product 〈 , 〉 : g× g→ R given by

〈X,Y 〉 ≡ −tr[adXadY ]. (0.17) km

By linearity, the expansion X = XaTa gives

〈X,Y 〉 = XaY b〈Ta,Tb〉

reducing the computation of 〈 , 〉 to the knowledge of

Killing-Cartan metric : Kab ≡ 〈Ta,Tb〉 ⇒ 〈X,Y 〉 = XaY bKab

Kab is called Killing-Cartan metric. It can be written in terms of the
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structure constants as3

Kab ≡ −tr[T (adj)
a T

(adj)
b ] = −f m

a n f
n
b m.

The inverse metric Kac is defined as usual

KacKcb = δab

—

Theorem: The inner product (0.17) is G-invariant, this means, invariant under

the Ad action

〈AdgY , AdgZ〉 = 〈Y ,Z〉. (0.18) adj

—

Proof: consider g close to the identity, g(t) = exp(tX) with t � 1, then using (0.16)

we have to first order in t

〈exp(adtX)Y , exp(adtX)Z〉 − 〈Y ,Z〉 = t (〈adXY ,Z〉+ 〈Y , adXZ〉) + ...

= t(〈[X,Y ],Z〉+ 〈Y , [X,Z]〉) + ...

= −t
(
tr[ad[X,Y ]adZ ] + tr[adY ad[X,Z]]︸ ︷︷ ︸

=0

)
+ ...

= 0 (0.19) inv

to go to the last equality we used (0.13), cyclicity of trace and Jacobi identity.

—

. Totally antisymmetric structure constants: the first line in (0.19) is zero,

inserting in it the Lie algebra basis elements Ta one finds

0 = 〈adTa
Tb,Tc〉+ 〈Tb, adTa

Tc〉

= 〈[Ta,Tb],Tc〉+ 〈Tb, [Ta,Tc]〉

= f m
a b〈Tm,Tc〉+ f m

a c〈Tb,Tm〉

= f m
a b Kmc + f m

a c Kbm (0.20) asym

3For the case of compact semisimple groups, by appropriately normalizing the generators
we can set Kab = δab.
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Defining the lower index structure constants as

fanb ≡ Knm f
m
a b

eq (0.20) implies

facb + fabc = 0 ⇒ fabc = −facb

This relation and (0.10) imply totally antisymmetric structure constants

fabc = −fcba = −facb (0.21) as

In particular (0.21) implies that the adj representation is traceless

Tr(T (adj)
a ) = f m

a m = Kmnfanm = 0 (0.22) comp

—

GLOBAL - MOVING AROUND

. Maurer-Cartan forms: from the group element matrix representation g(ξ) we

construct a Lie algebra valued 1-form field4

Left invariant form : σL
.
= g−1dg = eata, ea = eaµ(ξ)dξµ (0.23) pp

{ea} provides a globally defined basis for T ?gG ∀ g.

The name left invariant follows from the invariance of ea under left transla-

tions L : G×G→ G5

Left action : g → g′(ξ′) = gL(ξ0) g(ξ) ⇒ e′a = ea (0.24) Lact

4The Left/Right globally defined Maurer-Cartan forms are linear mapping of the tangent
space at each g ∈ G into the Lie algebra g, σ : TgG→ TeG. The Left invariant MCF is given
by the pushforward of a vector in TgG along the left-translation in the group

σL(v) = (Lg−1 )∗v, v ∈ TgG

5For a given g ∈ G, Lg : G×G where Lg(h) = gh. Left/Right actions generate non-linear
realizations of the symmetry group.
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Right translations induce Ad action on the LIF (0.23)

Right action : g → g g−1R ⇒ ea → gR e
ag−1R = AdgRe

a (0.25) Ract

Right invariant forms fa are defined in complete analogous fashion

Right invariant form : σR
.
= dg g−1 = fa ta

{fa} provide another globally defined basis for T ?gG ∀ g.

. Maurer-Cartan identities: left invariant forms satisfy

LI Maurer-Cartan identity : d(g−1dg) + g−1dg ∧ g−1dg = 0 (0.26) mc

Calling A = g−1dg, this expression reads to the integrability condition

Maurer-Cartan ≡ F (A) = dA+A2 = 0

showing the existence of a globally defined flat connection over G.

Writing (0.26) using (0.23) we find

ta de
a + tbtc e

b ∧ ec = 0

tade
a +

1

2
[tb, tc]e

b ∧ ec = 0

ta

(
dea +

1

2
f a
b c e

b ∧ ec
)

= 0 (0.27) spc

Its components in coordinate basis are

∂µe
a
ν(ξ)− ∂νea(ξ)µ + f a

b c e
b
µ(ξ)ecν(ξ) = 0 (0.28) tor

RIF satisfy a Maurer-Cartan identity with a sign shift in the equation

RI Maurer-Cartan identity : d(dg g−1)− dg g−1 ∧ dg g−1 = 0 (0.29) RMC

. Left invariant vector fields: we define dual vectors {Eb} to the {ea} basis in

the standard way

ea(Eb) = 〈ea|Eb〉 = δab , (0.30) dualL
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Writing Ea = Eµa (ξ)∂µ, we obtain the following relations

Eνa (ξ)eaµ(ξ) = δνµ and eaµ(ξ)Eµb (ξ) = δab (0.31) vierb

The set {Eb} provides a local basis for TgG ∀ g.

—

Theorem: structure constants for the {Ea} basis are constant over the manifold

[Ea,Eb] = f c
a bEc (0.32) const

Renaming Ea → La we find left invariant vector fields over the group manifold

G. They provide a realization of the Lie algebra as first order differential op-

erators acting on G. The fact of being globally defined make group manifolds

parallelizable.

—

Proof: from (0.31) we get

∂ν(eaµ(ξ)Eµb (ξ)) = 0 ⇒ ∂νE
ρ
b (ξ) = −Eρa(ξ) ∂νe

a
µ(ξ) Eµa (ξ)

The commutator (0.32) takes the form

[Eµa (ξ)∂µ, E
ν
b (ξ)∂ν ] = (Eνa (ξ)∂νE

µ
b (ξ)− Eνb (ξ)∂νE

µ
a (ξ))∂µ

= (Eρa(ξ)Eνb (ξ(ξ))− Eνa (ξ)Eρb (ξ))∂νe
c
ρ(ξ)Ec

= Eρa(ξ)Eνb (ξ)(∂νe
c
ρ(ξ)− ∂ρecν(ξ))Ec

= −Eρa(ξ)Eνb (ξ)f c
m ne

m
ν (ξ)enρ (ξ)Ec

= f c
a bEc (0.33) left

in going from the third to the fourth line we used (0.28), from the fourth to the last

we used (0.31) and the antisymmetry of structure constants.

—

. Killing metric over G: with the structure we have we can construct a metric

over G as

g = ds2 = −tr[g−1dg ⊗ g−1dg] ⇒ gµν(ξ) = eaµ(ξ)ebν(ξ)Kab (0.34) metr

For semi-simple compact groups, an appropriate normalization of generators
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Fig. 1: The left invariant vector fields La over G defined as duals to the LIF in
(0.30) can be alternatively defined as the pushforward of Ta at the identity by
the Left action (0.24). Pfig

puts the KCM in the form6 Kab = δab. Computing (0.34) we find

g = Kab e
a ⊗ eb (0.35) dmetr

The action of g on vector fields U = Ua(ξ)Ea and V = V a(ξ)Ea is written

g(U ,V ) = Kab (ea ⊗ eb)(U ,V ) = Kabe
a(U) eb(V )

= KabU
a(ξ)V b(ξ) = gµν(ξ)Uµ(ξ)V ν(ξ) (0.36)

From (0.34) and (0.31) we obtain the standard relation

Eµa (ξ) = Kab g
µν(ξ)ebν(ξ) (0.37) vierb2

The KCM can be rephrased as the components of metric in the {La} basis:

g(La,Lb) = Kab

6For non-compact groups the diagonalization brings a Lorentzian like metric, with positive
and negative signs.

13



. Connections on G: any group manifold has a prefered basis given by the LIVF

La
7. This basis naturally defines a 1-parameter family of connections

∇(λ)
La
Lb = λ[La,Lb] = λf c

a b︸ ︷︷ ︸
ωc

b(La)

Lc, (0.38) Lf

which turns out to be compatible with the Killing metric (0.34)

∇(λ)
a g = ∇(λ)

a Kmn e
m ⊗ en + Kmn∇(λ)

a em ⊗ en + Kmne
m ⊗∇(λ)

a en

= −Kmn
(
ω m
a b e

b ⊗ en + em ⊗ ω n
a b e

b
)

= −λfanb
(
eb ⊗ en + en ⊗ eb

)
= 0 (0.39)

The first term in the first line is zero since Kab are constants, in the second

line we used (0.1) and the vanishing in the last line follows from the anti-

symmetry of the structure constants (see (0.21)).

Among the whole λ-family (0.38), the choice λ = 1/2 is singled out for being

torsion free as follows from (0.27). The choice

ωab =
1

2
f a
m b e

m (0.40) spcn

then gives a metric compatible and torsion free connection over G. Since

there is a unique torsion free metric compatible connection, we conclude

∇(1/2)
a ↔ Levi-Civita connection for (0.34)

. g bi-invariance and Killing vectors: bi-invariance follows from the invariance of

the metric under independent left and right shifts (0.24)-(0.25). Left inva-

riance is immediate, and right invariance follows from (0.18). These imply

G×G isometry group for g.

—

Theorem: left and right invariant vector fields are Killing vectors of g closing a

G×G isometry group

[La,Lb] = f c
a bLc, [Ra,Rb] = −f c

a bRc, [La,Rb] = 0 (0.41) kil

The first commutator is (0.33), the sign change in the RIVF commutator arises

7In fact we have two possible global basis, i.e. {La} and {Ra}.
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from a sign change in the MCI (0.29), the last follow from the commutative

character of Left and Right actions.

—

Proof: we need to compute

£Lcg = £Lc

(
Kab e

a ⊗ eb
)

= Kab
(
£Lc(ea)⊗ eb + ea ⊗£Lc(eb)

)
= Kab

(
(iLcde

a)⊗ eb + ea ⊗ (iLcde
b)
)

= −1

2
Kab
(
(iLcf

a
b d e

b ∧ ed)⊗ eb + ea ⊗ (iLcf
b
f d e

f ∧ ed)
)

= −1

2
Kab
(
f a
c d e

d ⊗ eb + f b
c d e

a ⊗ ed
)

= −1

2

(
− fcdb ed ⊗ eb + fcade

a ⊗ ed
)

= 0 (0.42)

where we used £ξω = (diξ + iξd)ω, the zero torsion condition (0.27), iLae
b =

eb(La) = δba and antisymmetry of the lower index structure constants (0.21).
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—

. Riemann curvature tensor: for the Levi-Civita connection (0.40)

Ra
b ≡ dωab + ωac ∧ ωcb

=
1

2
f a
c b de

c +
1

4
f a
m c f

c
n be

m ∧ en

=

(
−1

4
f a
c b f

c
m n +

1

4
f a
m c f

c
n b

)
em ∧ en (0.43) rie

. Ricci tensor:

Rbν ≡ Eµa (ξ)Rabµν(ξ), Rab = Eνb (ξ)Raν(ξ)

from the expression (0.43) one finds

Rab =
Kab
4

or Rµν =
gµν
4

Manifesting the fact of the geometry being Einstein and homogeneous.

. Scalar Curvature: being the group a homogeneous space the scalar curvature

is constant

R ≡ KabRab =
n

4

with n the group dimension8.

8One might wonder whether the final result R = n/4 depends on the normalization of the
generators, the answer is no: any change will scale K which compensates upon contracting
with its inverse. The 1/4 factor is inherited from the 1/2 in the spin connection.
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. Laplace-Beltrami and quadratic Casimirs: we are in position to construct three

2nd order operators. The Laplacian

∆ = gµν∇µ∇ν

and the quadratic Casimirs for the Left and Right actions, in terms of Killing

vectors they are

CL = KabLaLb

CR = KabRaRb

—

Theorem: acting on scalar functions the three operators coincide9

∆ = CL = CR

—

Proof: we start writing down the Laplace-Beltrami

∆ =
1
√
g
∂µ(
√
ggµν∂ν)

= gµν∂µ∂ν +
1
√
g
∂µ(
√
ggµν)∂ν (0.44) ult

For concreteness we consider the Left Casimir

CL = KabEµa∂µ(Eνb ∂ν)

= KabEµaE
ν
b ∂µ∂ν + KabEµa∂µ(Eνb )∂ν (0.45) cass

The first terms in the last lines of (0.44) and (0.45) coincide since

gµν(ξ) = KabEµa (ξ)Eνb (ξ)

So we need to show that the last terms in (0.44) and (0.45) coincide. Calling e =

9Working with the right invariant vector fields we arrive to the same result

CR = KabRaRb = ∆
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det eaµ = exp(tr ln eaµ), we have ∂µe = eEνa ∂µe
a
ν , then

1
√
g
∂µ(
√
ggµν) =

Kab

e
∂µ(eEµaE

ν
b )

= Kab(Eρc ∂µe
c
ρE

µ
aE

ν
b − Eµc ∂µecρEρaEνb + Eµa∂µE

ν
b )

= Kab(Eρc (∂µe
c
ρ − ∂ρecµ + ∂ρe

c
µ)EµaE

ν
b − Eµc ∂µecρEρaEνb + Eµa∂µE

ν
b )

= Kab(Eρc (−f c
m ne

m
µ e

n
ρ ) + Eρc ∂ρe

c
µE

µ
aE

ν
b − Eµc ∂µecρEρaEνb + Eµa∂µE

ν
b )

= KabEµa∂µE
ν
b

In going from the second to the third line we used the torsion free condition (0.28).

The first term in the third line vanishes since it reduces to f c
m c = 0 by (0.22) and

second and third terms in the same line cancel mutually leading to the answer in the

forth line.

—

. Left invariant vector field and right actions: La as a differential operator imple-

ments the right action

eη
aLag(ξ) = g(ξ)g(η) = g(ζ)

At the infinitesimal level η → 0, acting on a representation DR(g) = eX
aT (R)

a

we get

LaD(g) = D(g)T (R)
a (0.46) teren
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. Eigenfunctions of the Laplacian on a group manifold:

. The matrix elements of the irreducible representations DJ are

eigenfunctions of the Laplacian

∆DJ(g(ξ)) = λJD
J(g(ξ))

. The eigenvalue equals the Casimir of the irrep

λJ = C(J) = Kab T (J)
a T

(J)
b

. The G × G symmetry group of the group manifold is realized

on the Laplacian eigenfunctions eigenspace with

∆ = CL = CR

. The eigenspace degeneracy is (dJ)2 with dJ the dimension of

the DJ matrix.
—

Proof: writing DJ(g(ξ)) = eX
a(ξ)T

(J)
a for the irrep J

∆DJ(g(ξ)) = KabLaLbD
J(g(ξ)) = KabLaD

J(g(ξ))T
(J)
b

= KabDJ(g(ξ))T (J)
a T

(J)
b = λJD

J(g(ξ)) (0.47)

where λJ = Kab T
(J)
a T

(J)
b is the quadratic Casimir of the irrep J .

—

Eg: For G = SU(2) with hermitic generators La → iLa and normalizing

[La, Lb] = iεabcLc we have

~L2|j,m, k〉 = ~R2|j,m, k〉 = j(j + 1)|j,m, k〉

L3|j,m, k〉 = m|j,m, k〉

R3|j,m, k〉 = k|j,m, k〉

The fact of the Casimir having the same value for left and right symmetries

arises from bi-invariance. The energy eigenstates are

H|j,m, k〉 =
j(j + 1)

4
|j,m, k〉

19



We can figure out the energy level degeneracy immediately because the energy

levels only depend on j. There are 2j + 1 possible m values and 2j + 1 possible

k values for each value of j, thus the total degeneracy is (2j + 1)2.

—
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