Geometry on group manifolds, free motion and QM spectrum

Guillermo A Silva
Departamento de Física, Universidad Nacional de La Plata

Notation and definitions:
Manifold: \mathcal{M}, parametrized by coordinates $x^{\mu}, \mu=1, \ldots n$.
Vector field: $\boldsymbol{U}=U^{a}(x) \boldsymbol{E}_{a}$ with $U^{a}(x)$ the components and $\left\{\boldsymbol{E}_{a}\right\}$ the basis of the vector space $T_{x} \mathcal{M} \forall x$. In coordinate basis $\left\{\boldsymbol{\partial}_{\mu}\right\} \sim \boldsymbol{U}=U^{\mu}(x) \boldsymbol{\partial}_{\mu}$.
Any basis decomposes as: $\boldsymbol{E}_{a}=E_{a}^{\mu}(x) \boldsymbol{\partial}_{\mu}$
. 1-form field: linear functional on the space of vectors.
The action on vectors is denoted as $\boldsymbol{\omega}(\boldsymbol{V})=\langle\boldsymbol{\omega} \mid \boldsymbol{V}\rangle$.
Given a basis $\left\{\boldsymbol{E}_{a}\right\}$ of V we define $\omega_{a}(x) \doteq \boldsymbol{\omega}\left(\boldsymbol{E}_{a}\right)$.
$\left\{\boldsymbol{e}^{a}\right\}$ basis of V^{\star}. Dual to $\left\{\boldsymbol{E}_{a}\right\}$ defined as

$$
\boldsymbol{e}^{a}\left(\boldsymbol{E}_{b}\right)=\left\langle\boldsymbol{e}^{a} \mid \boldsymbol{E}_{b}\right\rangle=\delta_{b}^{a} \Rightarrow \boldsymbol{\omega}=\omega_{a}(x) \boldsymbol{e}^{a}
$$

Thus, by linearity

$$
\boldsymbol{\omega}(\boldsymbol{U})=\omega_{a}(x) U^{a}(x)
$$

. Affine connection: asigns to each vector \boldsymbol{X} on \mathcal{M} a differential operator $\nabla_{\boldsymbol{X}}$ which maps arbitrary vectors \boldsymbol{Y} into vectors $\nabla_{\boldsymbol{X}} \boldsymbol{Y}$.

The connection satisfies:
(i) Linearity $\nabla_{f \boldsymbol{X}+g \boldsymbol{Z}} \boldsymbol{Y}=f \nabla_{\boldsymbol{X}} \boldsymbol{Y}+g \nabla_{\boldsymbol{Z}} \boldsymbol{Y}$ and $\nabla_{\boldsymbol{X}}(\boldsymbol{Y}+\boldsymbol{Z})=\nabla_{\boldsymbol{X}} \boldsymbol{Y}+\nabla_{\boldsymbol{X}} \boldsymbol{Z}$
(ii) $\nabla_{\boldsymbol{X}} f=\boldsymbol{X}(f)$
(iii) Leibniz $\nabla_{\boldsymbol{X}}(f \boldsymbol{Y})=\left(\nabla_{\boldsymbol{X}} f\right) \boldsymbol{Y}+f \nabla_{\boldsymbol{X}} \boldsymbol{Y}$.

Linearity implies that knowing its action on a basis $\left\{\boldsymbol{E}_{a}\right\}$ is enough to know its action on any \boldsymbol{Y}. Being $\nabla_{\boldsymbol{X}} \boldsymbol{E}_{b}$ a vector, we can write

$$
\nabla_{\boldsymbol{X}} \boldsymbol{E}_{b}=\boldsymbol{\omega}_{b}^{a}(\boldsymbol{X}) \boldsymbol{E}_{a} \quad \Rightarrow \quad \nabla_{\boldsymbol{E}_{a}} \boldsymbol{E}_{b}=\boldsymbol{\omega}^{m}{ }_{b}\left(\boldsymbol{E}_{a}\right) \boldsymbol{E}_{m}=\omega_{a}^{m}(x) \boldsymbol{E}_{m}
$$

where $\boldsymbol{\omega}^{a}{ }_{b}=\omega_{c}{ }^{a}{ }_{b}(x) \boldsymbol{e}^{c}$ are 1-forms. We can generalize the construction stripping away \boldsymbol{X} in (ii) and (iii) to write

$$
\nabla f=\boldsymbol{d} f \quad \text { and } \quad \nabla(f \boldsymbol{Y})=\boldsymbol{d} f \otimes \boldsymbol{Y}+f \nabla \boldsymbol{Y}
$$

with $\nabla \boldsymbol{Y}$ a $\binom{1}{1}$ tensor. The definition of ∇ on general tensors is obtained by requiring it to satisfy Leibniz on general tensor products

$$
\nabla(\boldsymbol{S} \otimes \boldsymbol{T})=\nabla \boldsymbol{S} \otimes \boldsymbol{T}+\boldsymbol{S} \otimes \nabla \boldsymbol{T}
$$

The action on 1-forms follows from Leibniz

$$
\nabla_{\boldsymbol{X}}(\boldsymbol{\Omega}(\boldsymbol{Y}))=\left(\nabla_{\boldsymbol{X}} \boldsymbol{\Omega}\right)(\boldsymbol{Y})+\boldsymbol{\Omega}\left(\nabla_{\boldsymbol{X}} \boldsymbol{Y}\right)
$$

in terms of a local basis $\left\{\boldsymbol{E}_{a}\right\}$ and $\left\{\boldsymbol{e}^{a}\right\}$ we have

$$
\nabla_{\boldsymbol{X}}\left(\Omega_{a} Y^{a}\right)=\left(\nabla_{\boldsymbol{X}} \boldsymbol{\Omega}\right)_{a} Y^{a}+\Omega_{a}\left(\nabla_{\boldsymbol{X}} \boldsymbol{Y}\right)^{a}
$$

since $\nabla_{\boldsymbol{X}} \boldsymbol{Y}=\nabla_{\boldsymbol{X}}\left(Y^{a} \boldsymbol{E}_{a}\right)=\left(\boldsymbol{X}\left(Y^{a}\right)+Y^{b} \boldsymbol{\omega}^{a}{ }_{b}(\boldsymbol{X})\right) \boldsymbol{E}_{a}$, then

$$
\left(\nabla_{\boldsymbol{X}} \boldsymbol{\Omega}\right)_{a}=\boldsymbol{X}\left(\Omega_{a}\right)-\Omega_{b} \boldsymbol{\omega}_{a}^{b}(\boldsymbol{X})
$$

For $\boldsymbol{\Omega}=\boldsymbol{e}^{b}$ we conclude that

$$
\begin{equation*}
\nabla_{\boldsymbol{E}_{a}} \boldsymbol{e}^{b}=-\boldsymbol{\omega}_{m}^{b}\left(\boldsymbol{E}_{a}\right) \boldsymbol{e}^{m}=-\omega_{a m}^{b}(x) \boldsymbol{e}^{m} \tag{0.1}
\end{equation*}
$$

PLAYING WITH MATRICES

Hadamard formula:

$$
\begin{equation*}
e^{A} B e^{-A}=e^{[A,} B \tag{0.2}
\end{equation*}
$$

hada
here the exponential is understood as $e^{[A,} \equiv\left(1+[A, \cdot]+\frac{1}{2}[A,[A, \cdot]]+\ldots\right)$. Then,

$$
\begin{equation*}
e^{A} B e^{-A}=B+[A, B]+\frac{1}{2}[A,[A, B]]+\ldots \tag{0.3}
\end{equation*}
$$

when thinking of this expression in terms of matrix representation of groups, it means that conjugation by a group element is closed on the Lie algebra.

Proof: consider $f(s)=e^{s A} B e^{-s A}$, then

$$
\frac{d f}{d s}=e^{s A} A B e^{-s A}+e^{s A} B(-A) e^{-s A}=A f(s)-f(s) A=[A, f]
$$

From this we find $\ddot{f}=[A, \dot{f}]=[A,[A, f]], \ldots f^{(n)}=[A,[A . .[A, f]] .$.$] with n$ commutators. If we evaluate these expressions at zero and use $f(0)=B$, we obtain $f^{(n)}(0)=[A,[A, . .[A, B]] .$.$] , then$

$$
f(s)=B+s[A, B]+\frac{s^{2}}{2}[A,[A, B]]+\frac{s^{3}}{3!}[A,[A,[A, B]]] \ldots
$$

Duhamel formula: Where do we place the derivative $Z^{\prime}(t)$ in $e^{Z(t)}$?

$$
\frac{d}{d t} e^{Z(t)}=Z^{\prime}+\frac{1}{2}\left(Z^{\prime} \cdot Z+Z \cdot Z^{\prime}\right)+\frac{1}{3!}\left(Z^{\prime} \cdot Z^{2}+Z \cdot Z^{\prime} \cdot Z+Z^{2} \cdot Z^{\prime}\right)+\ldots
$$

Everywhere, this is, in all the positions in the expansion! Duhamel formula implements the insertion of Z^{\prime} in all possible positions of $\exp Z$.

$$
\begin{equation*}
\delta e^{Z}=e^{Z} \int_{0}^{1} d s e^{-s Z} \delta Z e^{s Z} \tag{0.4}
\end{equation*}
$$

Replacing $\delta \rightarrow \frac{d}{d t}$ in this formula gives a closed expression for the derivative of e^{Z} with $Z(t)$ a matrix.

Proof: same trick, take $f(s)=e^{-s Z} \vec{\Delta}\left(e^{s Z}\right)$ with $\vec{\Delta}$ an operator acting on anything to its right. Then,

$$
\frac{d f}{d s}=e^{-s Z}(-Z) \vec{\Delta}\left(e^{s Z}\right)+e^{-s Z} \vec{\Delta}\left(Z e^{s Z}\right)=e^{-s Z}[\vec{\Delta}, Z] e^{s Z}
$$

Integrating both sides gives

$$
f(1)-f(0)=\int_{0}^{1} d s e^{-s Z}[\vec{\Delta}, Z] e^{s Z}
$$

The lhs can be worked out to give

$$
f(1)-f(0)=e^{-Z} \vec{\Delta} e^{Z}-\vec{\Delta}=e^{-Z}\left(\vec{\Delta} e^{Z}-e^{Z} \vec{\Delta}\right)=e^{-Z}\left[\vec{\Delta}, e^{Z}\right]
$$

inserting above we find

$$
\left[\vec{\Delta}, e^{Z}\right]=e^{Z} \int_{0}^{1} d s e^{-s Z}[\vec{\Delta}, Z] e^{s Z}
$$

Calling $\delta e^{Z}=\left[\vec{\Delta}, e^{Z}\right]$ we get (0.4).

Rewrite the conjugation on the rhs using (0.2) and the definition (0.15)

$$
\delta e^{Z}=e^{Z} \int_{0}^{1} d s e^{-s a d z} \delta Z
$$

the s-integration on the rhs gives

$$
\delta e^{Z}=\left.e^{Z} \frac{e^{-s a d_{Z}}}{-a d_{Z}}\right|_{0} ^{1} \delta Z
$$

we conclude that

$$
\begin{equation*}
e^{-Z} \delta e^{Z}=\frac{1-e^{-a d_{Z}}}{a d_{Z}} \delta Z \tag{0.5}
\end{equation*}
$$

The rhs should be understood as the expansion $-\sum_{k=0} \frac{\left(-a d_{Z}\right)^{k}}{(k+1)!}$. The nested commutators show that the left invariant form on the lhs is Lie algebra valued.

Left invariant forms belong to the Lie algebra: (0.5) can be alternatively obtained in the following way: consider $g(s, t)=e^{s Z(t)}$, then

$$
g^{-1} \frac{\partial g}{\partial s}=Z(t)
$$

Defining

$$
\begin{gather*}
B(s, t)=g^{-1} \frac{\partial g}{\partial t}=e^{-s Z(t)} \frac{\partial e^{s Z(t)}}{\partial t} \\
\quad \Rightarrow \quad \partial_{s} B=-Z B+g^{-1} \partial_{t}(g Z) \\
\quad \Rightarrow \quad \partial_{s} B=-Z B+B Z+\dot{Z} \tag{0.6}
\end{gather*}
$$

we then find that B satisfies

$$
\frac{\partial B}{\partial s}=-[Z, B]+\dot{Z} \quad \text { with b.c. } \quad B(0, t)=0
$$

Solving in power series in s

$$
\begin{aligned}
B(s, t) & =s \dot{Z}+\frac{s^{2}}{2!}\left(-a d_{Z}\right) \dot{Z}+\ldots+\frac{s^{n}}{n!}\left(-a d_{Z}\right)^{n-1} \dot{Z}+\ldots \\
& =s \phi\left(-s a d_{Z}\right) \dot{Z}
\end{aligned}
$$

where $\phi(z)=\frac{e^{z}-1}{z}$. Setting $s=1$ we reobtain (0.5).

Baker-Campbell-Hausdorff formula: given e^{A} and e^{B} it tells us how to write their product as a single exponential

$$
e^{A} e^{B}=e^{Z}
$$

The result is

$$
\begin{equation*}
Z=A+\left(\int_{0}^{1} d s \psi\left(e^{[A,} e^{s[B,}\right)\right) B \tag{0.7}
\end{equation*}
$$

with 1

$$
\psi(x)=\frac{x \ln x}{x-1}
$$

[^0]This expression is formal and has a finite radius of convergence. In the case of non-compact Lie groups if A, B are far enough from the identity the series on the rhs diverges. The construction of Z in terms of nested commutators shows, for the case of Lie groups, that Z belongs to the Lie algebra. An explicit expansion with all numerical coefficients was given by Eugene Dynkin in 1947 (see wikipedia).

Proof: consider $e^{Z(s)}=e^{A} e^{s B}$ then for $\delta=\partial_{s}$

$$
\delta e^{Z(s)}=e^{A} B e^{s B}=e^{Z} B \quad \Rightarrow \quad B=e^{-Z} \delta e^{Z}=\frac{1-e^{-a d_{Z}}}{a d_{Z}} \delta Z
$$

where we used (0.5). Then

$$
\begin{align*}
Z^{\prime}(s) & =\frac{a d_{Z}}{1-e^{-a d_{Z}}} B \\
& =\psi\left(e^{[Z,}\right) B \tag{0.8}
\end{align*}
$$

where we defined

$$
\psi(x) \equiv \frac{x \ln x}{x-1}=1-\sum_{n=1}^{\infty} \frac{(1-x)^{n}}{n(n+1)}
$$

Now, from (0.2)

$$
\begin{aligned}
e^{[Z,} X & =e^{Z} X e^{-Z} \\
& =e^{A} e^{s B} X e^{-s B} e^{-A} \\
& =e^{A}\left(e^{s[B,} X\right) e^{-A} \\
& =e^{[A,} e^{s[B,} X
\end{aligned}
$$

Inserting this in (0.8) and performing an s-integration one finds

$$
Z(1)-Z(0)=\int_{0}^{1} d s \psi\left(e^{[A,} e^{s[B,}\right) B
$$

from $Z(0)=A$ we get (0.7).

The first few terms of the expansion are

$$
e^{A} e^{B}=e^{A+B+\frac{1}{2}[A, B]+\frac{1}{12}([A,[A, B]]+[B,[B, A]])-\frac{1}{24}[B,[A,[A, B]]]+\ldots}
$$

Group theory conventions and definitions

IDENTITY - LOCAL

. Group element: $g \in G . \forall g$ near the identity we can write ${ }^{2} g(t)=\exp (t \boldsymbol{X})$ with $\boldsymbol{X} \in T_{e} G=\operatorname{Lie}(G)$ which we denote \mathfrak{g}.
. Group manifold G : we parametrize it with local coordinates $\xi^{\mu}, \mu=1, \ldots n$
. Lie algebra generators: $\left\{\boldsymbol{T}_{a}\right\}$ basis of $T_{e} G$. Any $\boldsymbol{X} \in \mathfrak{g}$ can be written as

$$
\boldsymbol{X}=X^{a} \boldsymbol{T}_{a}, \quad a=1, \ldots n
$$

. Structure constants of the Lie algebra $f_{a}{ }^{c}$: defined at $T_{e} G$. Characterize the group composition law. Writing $g_{1}(t)=\exp (t \boldsymbol{X}), g_{2}(t)=\exp (t \boldsymbol{Y})$ and $g(t)=\exp \left(t^{2} \boldsymbol{Z}\right)$

$$
\begin{align*}
g(t) & =g_{1}(t) g_{2}(t) g_{1}^{-1}(t) g_{2}^{-1}(t) \\
& =1+t^{2}[\boldsymbol{X}, \boldsymbol{Y}]+\ldots \quad \leadsto \quad \boldsymbol{Z}=[\boldsymbol{X}, \boldsymbol{Y}] \tag{0.9}
\end{align*}
$$

Linearity of the bracket implies that all information of composition law is contained in

$$
\left[\boldsymbol{T}_{a}, \boldsymbol{T}_{b}\right]=f_{a}{ }^{c}{ }_{b} \boldsymbol{T}_{c}
$$

Antisymmetry of the commutator implies

$$
\begin{equation*}
f_{a}{ }^{c}{ }_{b}=-f_{b}{ }^{c}{ }_{a} \tag{0.10}
\end{equation*}
$$

as1
. ad action: action of the Lie algebra on itself. A linear transformation acting on the Lie algebra vector space can be naturally associated to any $\boldsymbol{X} \in \mathfrak{g}$ as

$$
\begin{equation*}
\boldsymbol{X} \rightarrow a d_{\boldsymbol{X}} \boldsymbol{Y} \equiv[\boldsymbol{X}, \boldsymbol{Y}], \quad \forall \boldsymbol{Y} \in \mathfrak{g} \tag{0.11}
\end{equation*}
$$

Hence the map $\boldsymbol{X} \rightarrow a d_{\boldsymbol{X}}$ is a linear representation of the algebra.

[^1]adj action associates a matrix to each Lie algebra basis element \boldsymbol{T}^{a} :
\[

$$
\begin{equation*}
a d_{\boldsymbol{T}_{a}} \rightarrow \underbrace{T_{a}^{(a d j)}}_{\text {matrix }}: \quad\left(T_{a}^{(a d j)}\right)_{n}^{m}=f_{a}^{m} \tag{0.12}
\end{equation*}
$$

\]

mad

Jacobi identity obeyed by Lie bracket implies

$$
\begin{equation*}
\left[a d_{\boldsymbol{X}}, a d_{\boldsymbol{Y}}\right]=a d_{[\boldsymbol{X}, \boldsymbol{Y}]} \tag{0.13}
\end{equation*}
$$

. Adjoint action: action of the group on the Lie algebra

$$
\begin{equation*}
A d_{g} \boldsymbol{Y} \equiv g \boldsymbol{Y} g^{-1}, \quad g \in G, \boldsymbol{Y} \in \mathfrak{g} \tag{0.14}
\end{equation*}
$$

> Adact

Writing $g(t)=e^{t \boldsymbol{X}}$ one finds using (0.3)

$$
A d_{\exp (t \boldsymbol{X})} \boldsymbol{Y}=e^{t \boldsymbol{X}} \boldsymbol{Y} e^{-t \boldsymbol{X}}=\boldsymbol{Y}+t[\boldsymbol{X}, \boldsymbol{Y}]+\frac{1}{2} t^{2}[\boldsymbol{X},[\boldsymbol{X}, \boldsymbol{Y}]]+\ldots
$$

The exponential of $a d_{t \boldsymbol{X}}$ action is given by

$$
\begin{equation*}
e^{a d_{t X}} \boldsymbol{Y}=\boldsymbol{Y}+t[\boldsymbol{X}, \boldsymbol{Y}]+\frac{1}{2} t^{2}[\boldsymbol{X},[\boldsymbol{X}, \boldsymbol{Y}]]+\ldots \tag{0.15}
\end{equation*}
$$

Then,

$$
\begin{equation*}
A d_{\exp (\boldsymbol{X})}=\exp \left(a d_{\boldsymbol{X}}\right) \tag{0.16}
\end{equation*}
$$

. Killing-Cartan form: the matrix representation (0.12) of $a d$ action induces an inner product $\langle\rangle:, \mathfrak{g} \times \mathfrak{g} \rightarrow \mathbb{R}$ given by

$$
\begin{equation*}
\langle\boldsymbol{X}, \boldsymbol{Y}\rangle \equiv-\operatorname{tr}\left[a d_{\boldsymbol{X}} a d_{\boldsymbol{Y}}\right] \tag{0.17}
\end{equation*}
$$

By linearity, the expansion $\boldsymbol{X}=X^{a} \boldsymbol{T}_{a}$ gives

$$
\langle\boldsymbol{X}, \boldsymbol{Y}\rangle=X^{a} Y^{b}\left\langle\boldsymbol{T}_{a}, \boldsymbol{T}_{b}\right\rangle
$$

reducing the computation of \langle,$\rangle to the knowledge of$

$$
\text { Killing-Cartan metric : } \mathfrak{K}_{a b} \equiv\left\langle\boldsymbol{T}_{a}, \boldsymbol{T}_{b}\right\rangle \Rightarrow\langle\boldsymbol{X}, \boldsymbol{Y}\rangle=X^{a} Y^{b} \mathfrak{K}_{a b}
$$

$\mathfrak{K}_{a b}$ is called Killing-Cartan metric. It can be written in terms of the
structure constants as ${ }^{3}$

$$
\mathfrak{K}_{a b} \equiv-\operatorname{tr}\left[T_{a}^{(a d j)} T_{b}^{(a d j)}\right]=-f_{a}{ }_{n}^{m} f_{b}{ }_{m}^{n} .
$$

The inverse metric $\mathfrak{K}^{a c}$ is defined as usual

$$
\mathfrak{K}^{a c} \mathfrak{K}_{c b}=\delta_{b}^{a}
$$

Theorem: The inner product (0.17) is G-invariant, this means, invariant under the $A d$ action

$$
\begin{equation*}
\left\langle A d_{g} \boldsymbol{Y}, A d_{g} \boldsymbol{Z}\right\rangle=\langle\boldsymbol{Y}, \boldsymbol{Z}\rangle . \tag{0.18}
\end{equation*}
$$

Proof: consider g close to the identity, $g(t)=\exp (t \boldsymbol{X})$ with $t \ll 1$, then using (0.16) we have to first order in t

$$
\begin{align*}
\left\langle\exp \left(a d_{t \boldsymbol{X}}\right) \boldsymbol{Y}, \exp \left(a d_{t \boldsymbol{X}}\right) \boldsymbol{Z}\right\rangle-\langle\boldsymbol{Y}, \boldsymbol{Z}\rangle & =t\left(\left\langle a d_{\boldsymbol{X}} \boldsymbol{Y}, \boldsymbol{Z}\right\rangle+\left\langle\boldsymbol{Y}, a d_{\boldsymbol{X}} \boldsymbol{Z}\right\rangle\right)+\ldots \\
& =t(\langle[\boldsymbol{X}, \boldsymbol{Y}], \boldsymbol{Z}\rangle+\langle\boldsymbol{Y},[\boldsymbol{X}, \boldsymbol{Z}]\rangle)+\ldots \\
& =-t(\underbrace{\operatorname{tr}\left[a d_{[\boldsymbol{X}, \boldsymbol{Y}]} a d_{\boldsymbol{Z}}\right]+\operatorname{tr}\left[a d_{\boldsymbol{Y}} a d_{[\boldsymbol{X}, \boldsymbol{Z}]}\right]}_{=0})+\ldots \\
& =0 \tag{0.19}
\end{align*}
$$

to go to the last equality we used (0.13), cyclicity of trace and Jacobi identity.
. Totally antisymmetric structure constants: the first line in (0.19) is zero, inserting in it the Lie algebra basis elements \boldsymbol{T}_{a} one finds

$$
\begin{align*}
0 & =\left\langle a d_{\boldsymbol{T}_{a}} \boldsymbol{T}_{b}, \boldsymbol{T}_{c}\right\rangle+\left\langle\boldsymbol{T}_{b}, a d_{\boldsymbol{T}_{a}} \boldsymbol{T}_{c}\right\rangle \\
& =\left\langle\left[\boldsymbol{T}_{a}, \boldsymbol{T}_{b}\right], \boldsymbol{T}_{c}\right\rangle+\left\langle\boldsymbol{T}_{b},\left[\boldsymbol{T}_{a}, \boldsymbol{T}_{c}\right]\right\rangle \\
& =f_{a}^{m}\left\langle\boldsymbol{T}_{m}, \boldsymbol{T}_{c}\right\rangle+f_{a}^{m}{ }_{c}\left\langle\boldsymbol{T}_{b}, \boldsymbol{T}_{m}\right\rangle \\
& =f_{a}^{m}{ }^{m} \mathfrak{K}_{m c}+f_{a}{ }^{m}{ }_{c} \mathfrak{K}_{b m} \tag{0.20}
\end{align*}
$$

[^2]Defining the lower index structure constants as

$$
f_{a n b} \equiv \mathfrak{K}_{n m} f_{a b}^{m}
$$

eq (0.20) implies

$$
f_{a c b}+f_{a b c}=0 \Rightarrow f_{a b c}=-f_{a c b}
$$

This relation and (0.10) imply totally antisymmetric structure constants

$$
\begin{equation*}
f_{a b c}=-f_{c b a}=-f_{a c b} \tag{0.21}
\end{equation*}
$$

In particular (0.21) implies that the adj representation is traceless

$$
\begin{equation*}
\operatorname{Tr}\left(T_{a}^{(a d j)}\right)=f_{a}{ }_{m}^{m}=\mathfrak{K}^{m n} f_{a n m}=0 \tag{0.22}
\end{equation*}
$$

GLOBAL - MOVING AROUND

. Maurer-Cartan forms: from the group element matrix representation $g(\xi)$ we construct a Lie algebra valued 1 -form field ${ }^{4}$

$$
\begin{equation*}
\text { Left invariant form : } \quad \boldsymbol{\sigma}_{L} \doteq g^{-1} \boldsymbol{d} g=\boldsymbol{e}^{a} t_{a}, \quad \boldsymbol{e}^{a}=e_{\mu}^{a}(\xi) \boldsymbol{d} \xi^{\mu} \tag{0.23}
\end{equation*}
$$

$\left\{\boldsymbol{e}^{a}\right\}$ provides a globally defined basis for $T_{g}^{\star} G \forall g$.
The name left invariant follows from the invariance of \boldsymbol{e}^{a} under left translations $L: G \times G \rightarrow G^{5}$

$$
\begin{equation*}
\text { Left action : } \quad g \rightarrow g^{\prime}\left(\xi^{\prime}\right)=g_{L}\left(\xi_{0}\right) g(\xi) \Rightarrow \boldsymbol{e}^{\prime a}=\boldsymbol{e}^{a} \tag{0.24}
\end{equation*}
$$

[^3]Right translations induce $A d$ action on the LIF (0.23)

$$
\begin{equation*}
\text { Right action : } \quad g \rightarrow g g_{R}^{-1} \Rightarrow \boldsymbol{e}^{a} \rightarrow g_{R} \boldsymbol{e}^{a} g_{R}^{-1}=A d_{g_{R}} \boldsymbol{e}^{a} \tag{0.25}
\end{equation*}
$$

Right invariant forms \boldsymbol{f}^{a} are defined in complete analogous fashion

$$
\text { Right invariant form : } \quad \boldsymbol{\sigma}_{R} \doteq \boldsymbol{d} g g^{-1}=\boldsymbol{f}^{a} t_{a}
$$

$\left\{\boldsymbol{f}^{a}\right\}$ provide another globally defined basis for $T_{g}^{\star} G \forall g$.
. Maurer-Cartan identities: left invariant forms satisfy

LI Maurer-Cartan identity : $\quad \boldsymbol{d}\left(g^{-1} \boldsymbol{d} g\right)+g^{-1} \boldsymbol{d} g \wedge g^{-1} \boldsymbol{d} g=0$

Calling $\boldsymbol{A}=g^{-1} \boldsymbol{d} g$, this expression reads to the integrability condition

$$
\text { Maurer-Cartan } \equiv \quad \boldsymbol{F}(\boldsymbol{A})=\boldsymbol{d} \boldsymbol{A}+\boldsymbol{A}^{2}=0
$$

showing the existence of a globally defined flat connection over G.
Writing (0.26) using (0.23) we find

$$
\begin{align*}
t_{a} \boldsymbol{d} \boldsymbol{e}^{a}+t_{b} t_{c} \boldsymbol{e}^{b} \wedge \boldsymbol{e}^{c} & =0 \\
t_{a} \boldsymbol{d} \boldsymbol{e}^{a}+\frac{1}{2}\left[t_{b}, t_{c}\right] \boldsymbol{e}^{b} \wedge \boldsymbol{e}^{c} & =0 \\
t_{a}\left(\boldsymbol{d} \boldsymbol{e}^{a}+\frac{1}{2} f_{b}{ }_{c}^{a} \boldsymbol{e}^{b} \wedge \boldsymbol{e}^{c}\right) & =0 \tag{0.27}
\end{align*}
$$

Its components in coordinate basis are

$$
\begin{equation*}
\partial_{\mu} e_{\nu}^{a}(\xi)-\partial_{\nu} e^{a}(\xi)_{\mu}+f_{b}{ }_{c}^{a} e_{\mu}^{b}(\xi) e_{\nu}^{c}(\xi)=0 \tag{0.28}
\end{equation*}
$$

RIF satisfy a Maurer-Cartan identity with a sign shift in the equation

$$
\begin{equation*}
\text { RI Maurer-Cartan identity : } \quad \boldsymbol{d}\left(\boldsymbol{d} g g^{-1}\right)-\boldsymbol{d} g g^{-1} \wedge \boldsymbol{d} g g^{-1}=0 \tag{0.29}
\end{equation*}
$$

. Left invariant vector fields: we define dual vectors $\left\{\boldsymbol{E}_{b}\right\}$ to the $\left\{\boldsymbol{e}^{a}\right\}$ basis in the standard way

$$
\begin{equation*}
\boldsymbol{e}^{a}\left(\boldsymbol{E}_{b}\right)=\left\langle\boldsymbol{e}^{a} \mid \boldsymbol{E}_{b}\right\rangle=\delta_{b}^{a} \tag{0.30}
\end{equation*}
$$

dualL

Writing $\boldsymbol{E}_{a}=E_{a}^{\mu}(\xi) \boldsymbol{\partial}_{\mu}$, we obtain the following relations

$$
\begin{equation*}
E_{a}^{\nu}(\xi) e_{\mu}^{a}(\xi)=\delta_{\mu}^{\nu} \quad \text { and } \quad e_{\mu}^{a}(\xi) E_{b}^{\mu}(\xi)=\delta_{b}^{a} \tag{0.31}
\end{equation*}
$$

The set $\left\{\boldsymbol{E}_{b}\right\}$ provides a local basis for $T_{g} G \forall g$.

Theorem: structure constants for the $\left\{\boldsymbol{E}_{a}\right\}$ basis are constant over the manifold

$$
\begin{equation*}
\left[\boldsymbol{E}_{a}, \boldsymbol{E}_{b}\right]=f_{a}{ }^{c}{ }_{b} \boldsymbol{E}_{c} \tag{0.32}
\end{equation*}
$$

const

Renaming $\boldsymbol{E}_{a} \rightarrow \boldsymbol{L}_{a}$ we find left invariant vector fields over the group manifold G. They provide a realization of the Lie algebra as first order differential operators acting on G. The fact of being globally defined make group manifolds parallelizable.

Proof: from (0.31) we get

$$
\partial_{\nu}\left(e_{\mu}^{a}(\xi) E_{b}^{\mu}(\xi)\right)=0 \Rightarrow \partial_{\nu} E_{b}^{\rho}(\xi)=-E_{a}^{\rho}(\xi) \partial_{\nu} e_{\mu}^{a}(\xi) E_{a}^{\mu}(\xi)
$$

The commutator (0.32) takes the form

$$
\begin{align*}
{\left[E_{a}^{\mu}(\xi) \boldsymbol{\partial}_{\mu}, E_{b}^{\nu}(\xi) \boldsymbol{\partial}_{\nu}\right] } & =\left(E_{a}^{\nu}(\xi) \partial_{\nu} E_{b}^{\mu}(\xi)-E_{b}^{\nu}(\xi) \partial_{\nu} E_{a}^{\mu}(\xi)\right) \boldsymbol{\partial}_{\mu} \\
& =\left(E_{a}^{\rho}(\xi) E_{b}^{\nu}(\xi(\xi))-E_{a}^{\nu}(\xi) E_{b}^{\rho}(\xi)\right) \partial_{\nu} e_{\rho}^{c}(\xi) \boldsymbol{E}_{c} \\
& =E_{a}^{\rho}(\xi) E_{b}^{\nu}(\xi)\left(\partial_{\nu} e_{\rho}^{c}(\xi)-\partial_{\rho} e_{\nu}^{c}(\xi)\right) \boldsymbol{E}_{c} \\
& =-E_{a}^{\rho}(\xi) E_{b}^{\nu}(\xi) f_{m}{ }^{c}{ }_{n} e_{\nu}^{m}(\xi) e_{\rho}^{n}(\xi) \boldsymbol{E}_{c} \\
& =f_{a}{ }^{c}{ }_{b} \boldsymbol{E}_{c} \tag{0.33}
\end{align*}
$$

in going from the third to the fourth line we used (0.28), from the fourth to the last we used (0.31) and the antisymmetry of structure constants.
. Killing metric over G : with the structure we have we can construct a metric over G as

$$
\begin{equation*}
\mathrm{g}=d s^{2}=-\operatorname{tr}\left[g^{-1} \boldsymbol{d} g \otimes g^{-1} \boldsymbol{d} g\right] \Rightarrow g_{\mu \nu}(\xi)=e_{\mu}^{a}(\xi) e_{\nu}^{b}(\xi) \mathfrak{K}_{a b} \tag{0.34}
\end{equation*}
$$

For semi-simple compact groups, an appropriate normalization of generators

Fig. 1: The left invariant vector fields \boldsymbol{L}_{a} over G defined as duals to the LIF in (0.30) can be alternatively defined as the pushforward of \boldsymbol{T}_{a} at the identity by the Left action (0.24).
puts the KCM in the form ${ }^{6} \mathfrak{K}_{a b}=\delta_{a b}$. Computing (0.34) we find

$$
\begin{equation*}
\mathrm{g}=\mathfrak{K}_{a b} \boldsymbol{e}^{a} \otimes \boldsymbol{e}^{b} \tag{0.35}
\end{equation*}
$$

The action of g on vector fields $\boldsymbol{U}=U^{a}(\xi) \boldsymbol{E}_{a}$ and $\boldsymbol{V}=V^{a}(\xi) \boldsymbol{E}_{a}$ is written

$$
\begin{align*}
\mathrm{g}(\boldsymbol{U}, \boldsymbol{V}) & =\mathfrak{K}_{a b}\left(\boldsymbol{e}^{a} \otimes \boldsymbol{e}^{b}\right)(\boldsymbol{U}, \boldsymbol{V})=\mathfrak{K}_{a b} \boldsymbol{e}^{a}(\boldsymbol{U}) \boldsymbol{e}^{b}(\boldsymbol{V}) \\
& =\mathfrak{K}_{a b} U^{a}(\xi) V^{b}(\xi)=g_{\mu \nu}(\xi) U^{\mu}(\xi) V^{\nu}(\xi) \tag{0.36}
\end{align*}
$$

From (0.34) and (0.31) we obtain the standard relation

$$
\begin{equation*}
E_{a}^{\mu}(\xi)=\mathfrak{K}_{a b} g^{\mu \nu}(\xi) e_{\nu}^{b}(\xi) \tag{0.37}
\end{equation*}
$$

The KCM can be rephrased as the components of metric in the $\left\{\boldsymbol{L}_{a}\right\}$ basis:

$$
\mathrm{g}\left(\boldsymbol{L}_{a}, \boldsymbol{L}_{b}\right)=\mathfrak{K}_{a b}
$$

[^4]. Connections on G : any group manifold has a prefered basis given by the LIVF $\boldsymbol{L}_{a}{ }^{7}$. This basis naturally defines a 1-parameter family of connections
\[

$$
\begin{equation*}
\nabla_{\boldsymbol{L}_{a}}^{(\lambda)} \boldsymbol{L}_{b}=\lambda\left[\boldsymbol{L}_{a}, \boldsymbol{L}_{b}\right]=\underbrace{\lambda f_{a}^{c}{ }_{b}}_{\boldsymbol{\omega}^{c} b_{b}\left(\boldsymbol{L}_{a}\right)} \boldsymbol{L}_{c}, \tag{0.38}
\end{equation*}
$$

\]

which turns out to be compatible with the Killing metric (0.34)

$$
\begin{align*}
\nabla_{a}^{(\lambda)} \mathrm{g} & =\nabla_{a}^{(\lambda)} \mathfrak{K}_{m n} \boldsymbol{e}^{m} \otimes \boldsymbol{e}^{n}+\mathfrak{K}_{m n} \nabla_{a}^{(\lambda)} \boldsymbol{e}^{m} \otimes \boldsymbol{e}^{n}+\mathfrak{K}_{m n} \boldsymbol{e}^{m} \otimes \nabla_{a}^{(\lambda)} \boldsymbol{e}^{n} \\
& =-\mathfrak{K}_{m n}\left(\omega_{a b}^{m} \boldsymbol{e}^{b} \otimes \boldsymbol{e}^{n}+\boldsymbol{e}^{m} \otimes \omega_{a b}^{n} \boldsymbol{e}^{b}\right) \\
& =-\lambda f_{a n b}\left(\boldsymbol{e}^{b} \otimes \boldsymbol{e}^{n}+\boldsymbol{e}^{n} \otimes \boldsymbol{e}^{b}\right)=0 \tag{0.39}
\end{align*}
$$

The first term in the first line is zero since $\mathfrak{K}_{a b}$ are constants, in the second line we used (0.1) and the vanishing in the last line follows from the antisymmetry of the structure constants (see (0.21)).
Among the whole λ-family (0.38), the choice $\lambda=1 / 2$ is singled out for being torsion free as follows from (0.27). The choice

$$
\begin{equation*}
\boldsymbol{\omega}_{b}^{a}=\frac{1}{2} f_{m}{ }^{a}{ }_{b} \boldsymbol{e}^{m} \tag{0.40}
\end{equation*}
$$

then gives a metric compatible and torsion free connection over G. Since there is a unique torsion free metric compatible connection, we conclude

$$
\nabla_{a}^{(1 / 2)} \leftrightarrow \text { Levi-Civita connection for }(0.34)
$$

. g bi-invariance and Killing vectors: bi-invariance follows from the invariance of the metric under independent left and right shifts (0.24)-(0.25). Left invariance is immediate, and right invariance follows from (0.18). These imply $G \times G$ isometry group for g.

Theorem: left and right invariant vector fields are Killing vectors of g closing a $G \times G$ isometry group

$$
\begin{equation*}
\left[\boldsymbol{L}_{a}, \boldsymbol{L}_{b}\right]=f_{a}{ }^{c}{ }_{b} \boldsymbol{L}_{c}, \quad\left[\boldsymbol{R}_{a}, \boldsymbol{R}_{b}\right]=-f_{a}{ }^{c}{ }_{b} \boldsymbol{R}_{c}, \quad\left[\boldsymbol{L}_{a}, \boldsymbol{R}_{b}\right]=0 \tag{0.41}
\end{equation*}
$$

The first commutator is (0.33), the sign change in the RIVF commutator arises

[^5]from a sign change in the MCI (0.29), the last follow from the commutative character of Left and Right actions.

Proof: we need to compute

$$
\begin{align*}
£_{\boldsymbol{L}_{c}} \mathrm{~g} & =£_{\boldsymbol{L}_{c}}\left(\mathfrak{K}_{a b} \boldsymbol{e}^{a} \otimes \boldsymbol{e}^{b}\right) \\
& =\mathfrak{K}_{a b}\left(£_{\boldsymbol{L}_{c}}\left(\boldsymbol{e}^{a}\right) \otimes \boldsymbol{e}^{b}+\boldsymbol{e}^{a} \otimes £_{\boldsymbol{L}_{c}}\left(\boldsymbol{e}^{b}\right)\right) \\
& =\mathfrak{K}_{a b}\left(\left(i_{\boldsymbol{L}_{c}} \boldsymbol{d} \boldsymbol{e}^{a}\right) \otimes \boldsymbol{e}^{b}+\boldsymbol{e}^{a} \otimes\left(i_{\boldsymbol{L}_{c}} \boldsymbol{d} \boldsymbol{e}^{b}\right)\right) \\
& =-\frac{1}{2} \mathfrak{K}_{a b}\left(\left(i_{\boldsymbol{L}_{c}} f_{b}{ }_{b}{ }_{d} \boldsymbol{e}^{b} \wedge \boldsymbol{e}^{d}\right) \otimes \boldsymbol{e}^{b}+\boldsymbol{e}^{a} \otimes\left(i_{\boldsymbol{L}_{c}} f_{f}{ }^{b}{ }_{d} \boldsymbol{e}^{f} \wedge \boldsymbol{e}^{d}\right)\right) \\
& =-\frac{1}{2} \mathfrak{K}_{a b}\left(f_{c}{ }_{c}^{a} \boldsymbol{e}^{d} \otimes \boldsymbol{e}^{b}+{f_{c}}^{b}{ }_{d} \boldsymbol{e}^{a} \otimes \boldsymbol{e}^{d}\right) \\
& =-\frac{1}{2}\left(-f_{c d b} \boldsymbol{e}^{d} \otimes \boldsymbol{e}^{b}+f_{c a d} \boldsymbol{e}^{a} \otimes \boldsymbol{e}^{d}\right)=0 \tag{0.42}
\end{align*}
$$

where we used $£_{\boldsymbol{\xi}} \boldsymbol{\omega}=\left(\boldsymbol{d} i_{\boldsymbol{\xi}}+i_{\boldsymbol{\xi}} \boldsymbol{d}\right) \boldsymbol{\omega}$, the zero torsion condition (0.27), $i_{\boldsymbol{L}_{a}} \boldsymbol{e}^{b}=$ $\boldsymbol{e}^{b}\left(\boldsymbol{L}_{a}\right)=\delta_{a}^{b}$ and antisymmetry of the lower index structure constants (0.21).
. Riemann curvature tensor: for the Levi-Civita connection (0.40)

$$
\begin{align*}
\boldsymbol{R}_{b}^{a} & \equiv \boldsymbol{d} \boldsymbol{\omega}_{b}^{a}+\boldsymbol{\omega}_{c}^{a} \wedge \boldsymbol{\omega}_{b}^{c} \\
& =\frac{1}{2} f_{c}{ }^{a}{ }_{b} \boldsymbol{d} \boldsymbol{e}^{c}+\frac{1}{4} f_{m}{ }^{a}{ }_{c} f_{n}{ }^{c}{ }_{b} \boldsymbol{e}^{m} \wedge \boldsymbol{e}^{n} \\
& =\left(-\frac{1}{4} f_{c}{ }^{a}{ }_{b} f_{m}{ }^{c}{ }_{n}+\frac{1}{4} f_{m}{ }^{a}{ }_{c} f_{n}{ }^{c}{ }_{b}\right) \boldsymbol{e}^{m} \wedge \boldsymbol{e}^{n} \tag{0.43}
\end{align*}
$$

. Ricci tensor:

$$
R_{b \nu} \equiv E_{a}^{\mu}(\xi) R_{b \mu \nu}^{a}(\xi), \quad R_{a b}=E_{b}^{\nu}(\xi) R_{a \nu}(\xi)
$$

from the expression (0.43) one finds

$$
R_{a b}=\frac{\mathfrak{K}_{a b}}{4} \quad \text { or } \quad R_{\mu \nu}=\frac{g_{\mu \nu}}{4}
$$

Manifesting the fact of the geometry being Einstein and homogeneous.
. Scalar Curvature: being the group a homogeneous space the scalar curvature is constant

$$
R \equiv \mathfrak{K}^{a b} R_{a b}=\frac{n}{4}
$$

with n the group dimension ${ }^{8}$.

[^6]. Laplace-Beltrami and quadratic Casimirs: we are in position to construct three 2nd order operators. The Laplacian
$$
\Delta=g^{\mu \nu} \nabla_{\mu} \nabla_{\nu}
$$
and the quadratic Casimirs for the Left and Right actions, in terms of Killing vectors they are
\[

$$
\begin{aligned}
\mathcal{C}_{L} & =\mathfrak{K}^{a b} L_{a} L_{b} \\
\mathcal{C}_{R} & =\mathfrak{K}^{a b} R_{a} R_{b}
\end{aligned}
$$
\]

Theorem: acting on scalar functions the three operators coincide ${ }^{9}$

$$
\Delta=\mathcal{C}_{L}=\mathcal{C}_{R}
$$

Proof: we start writing down the Laplace-Beltrami

$$
\begin{align*}
\Delta & =\frac{1}{\sqrt{g}} \partial_{\mu}\left(\sqrt{g} g^{\mu \nu} \partial_{\nu}\right) \\
& =g^{\mu \nu} \partial_{\mu} \partial_{\nu}+\frac{1}{\sqrt{g}} \partial_{\mu}\left(\sqrt{g} g^{\mu \nu}\right) \partial_{\nu} \tag{0.44}
\end{align*}
$$

For concreteness we consider the Left Casimir

$$
\begin{align*}
\mathcal{C}_{L} & =\mathfrak{K}^{a b} E_{a}^{\mu} \partial_{\mu}\left(E_{b}^{\nu} \partial_{\nu}\right) \\
& =\mathfrak{K}^{a b} E_{a}^{\mu} E_{b}^{\nu} \partial_{\mu} \partial_{\nu}+\mathfrak{K}^{a b} E_{a}^{\mu} \partial_{\mu}\left(E_{b}^{\nu}\right) \partial_{\nu} \tag{0.45}
\end{align*}
$$

The first terms in the last lines of (0.44) and (0.45) coincide since

$$
g^{\mu \nu}(\xi)=\mathfrak{K}^{a b} E_{a}^{\mu}(\xi) E_{b}^{\nu}(\xi)
$$

So we need to show that the last terms in (0.44) and (0.45) coincide. Calling $e=$

[^7]$\operatorname{det} e_{\mu}^{a}=\exp \left(\operatorname{tr} \ln e_{\mu}^{a}\right)$, we have $\partial_{\mu} e=e E_{a}^{\nu} \partial_{\mu} e_{\nu}^{a}$, then
\[

$$
\begin{aligned}
\frac{1}{\sqrt{g}} \partial_{\mu}\left(\sqrt{g} g^{\mu \nu}\right) & =\frac{\mathfrak{K}^{a b}}{e} \partial_{\mu}\left(e E_{a}^{\mu} E_{b}^{\nu}\right) \\
& =\mathfrak{K}^{a b}\left(E_{c}^{\rho} \partial_{\mu} e_{\rho}^{c} E_{a}^{\mu} E_{b}^{\nu}-E_{c}^{\mu} \partial_{\mu} e_{\rho}^{c} E_{a}^{\rho} E_{b}^{\nu}+E_{a}^{\mu} \partial_{\mu} E_{b}^{\nu}\right) \\
& =\mathfrak{K}^{a b}\left(E_{c}^{\rho}\left(\partial_{\mu} e_{\rho}^{c}-\partial_{\rho} e_{\mu}^{c}+\partial_{\rho} e_{\mu}^{c}\right) E_{a}^{\mu} E_{b}^{\nu}-E_{c}^{\mu} \partial_{\mu} e_{\rho}^{c} E_{a}^{\rho} E_{b}^{\nu}+E_{a}^{\mu} \partial_{\mu} E_{b}^{\nu}\right) \\
& =\mathfrak{K}^{a b}\left(E_{c}^{\rho}\left(-f_{m}^{c}{ }_{n} e_{\mu}^{m} e_{\rho}^{n}\right)+E_{c}^{\rho} \partial_{\rho} e_{\mu}^{c} E_{a}^{\mu} E_{b}^{\nu}-E_{c}^{\mu} \partial_{\mu} e_{\rho}^{c} E_{a}^{\rho} E_{b}^{\nu}+E_{a}^{\mu} \partial_{\mu} E_{b}^{\nu}\right) \\
& =\mathfrak{K}^{a b} E_{a}^{\mu} \partial_{\mu} E_{b}^{\nu}
\end{aligned}
$$
\]

In going from the second to the third line we used the torsion free condition (0.28). The first term in the third line vanishes since it reduces to $f_{m}{ }^{c}{ }_{c}=0$ by (0.22) and second and third terms in the same line cancel mutually leading to the answer in the forth line.
. Left invariant vector field and right actions: L_{a} as a differential operator implements the right action

$$
e^{\eta^{a} L_{a}} g(\xi)=g(\xi) g(\eta)=g(\zeta)
$$

At the infinitesimal level $\eta \rightarrow 0$, acting on a representation $D^{R}(g)=e^{X^{a} T_{a}^{(R)}}$ we get

$$
\begin{equation*}
L_{a} D(g)=D(g) T_{a}^{(R)} \tag{0.46}
\end{equation*}
$$

. Eigenfunctions of the Laplacian on a group manifold:
\triangleright The matrix elements of the irreducible representations D^{J} are eigenfunctions of the Laplacian

$$
\Delta D^{J}(g(\xi))=\lambda_{J} D^{J}(g(\xi))
$$

\triangleright The eigenvalue equals the Casimir of the irrep

$$
\lambda_{J}=\mathcal{C}(J)=\mathfrak{K}^{a b} T_{a}^{(J)} T_{b}^{(J)}
$$

\triangleright The $G \times G$ symmetry group of the group manifold is realized on the Laplacian eigenfunctions eigenspace with

$$
\Delta=\mathcal{C}_{L}=\mathcal{C}_{R}
$$

\triangleright The eigenspace degeneracy is $\left(d_{J}\right)^{2}$ with d_{J} the dimension of the D^{J} matrix.

Proof: writing $D^{J}(g(\xi))=e^{X^{a}(\xi) T_{a}^{(J)}}$ for the irrep J

$$
\begin{align*}
\Delta D^{J}(g(\xi)) & =\mathfrak{K}^{a b} L_{a} L_{b} D^{J}(g(\xi))=\mathfrak{K}^{a b} L_{a} D^{J}(g(\xi)) T_{b}^{(J)} \\
& =\mathfrak{K}^{a b} D^{J}(g(\xi)) T_{a}^{(J)} T_{b}^{(J)}=\lambda_{J} D^{J}(g(\xi)) \tag{0.47}
\end{align*}
$$

where $\lambda_{J}=\mathfrak{K}^{a b} T_{a}^{(J)} T_{b}^{(J)}$ is the quadratic Casimir of the irrep J.

Eg: For $G=S U(2)$ with hermitic generators $L_{a} \rightarrow i L_{a}$ and normalizing $\left[L_{a}, L_{b}\right]=i \epsilon_{a b c} L_{c}$ we have

$$
\begin{gathered}
\vec{L}^{2}|j, m, k\rangle=\vec{R}^{2}|j, m, k\rangle=j(j+1)|j, m, k\rangle \\
L_{3}|j, m, k\rangle=m|j, m, k\rangle \\
R_{3}|j, m, k\rangle=k|j, m, k\rangle
\end{gathered}
$$

The fact of the Casimir having the same value for left and right symmetries arises from bi-invariance. The energy eigenstates are

$$
H|j, m, k\rangle=\frac{j(j+1)}{4}|j, m, k\rangle
$$

We can figure out the energy level degeneracy immediately because the energy levels only depend on j. There are $2 j+1$ possible m values and $2 j+1$ possible k values for each value of j, thus the total degeneracy is $(2 j+1)^{2}$.

References

[1] MS Marinov and MV Terentyev, Dynamics On The Group Manifolds And Path Integral, Fortsch. Phys. 27, 511 (1979). doi:10.1002/prop. 19790271102
[2] Mathematics for Physics: A Guided Tour for Graduate Students, Michael Stone and Paul Goldbart, Cambrige University Press, 2009.
[3] GW Gibbons, Part III: Applications of Differential Geometry to Physics, DAMTP Lecture Notes, University of Cambridge,
http://www.damtp.cam.ac.uk/research/gr/members/gibbons/dgnotes3.pdf
[4] C Zachos, Crib notes on CBH expansions,
http://gate.hep.anl.gov/czachos/CBH.pdf

[^0]: ${ }^{1} \psi$ is the generating function of Bernouilli numbers: $\psi\left(e^{-y}\right)=\sum_{n=0}^{\infty} B_{n} \frac{y^{n}}{n!}$.

[^1]: ${ }^{2}$ All elements in the neighbourhood of the identity can be reached by the exponential map. The vector field could be choosen to be either the Left/Right invariant.

[^2]: ${ }^{3}$ For the case of compact semisimple groups, by appropriately normalizing the generators we can set $K_{a b}=\delta_{a b}$.

[^3]: ${ }^{4}$ The Left/Right globally defined Maurer-Cartan forms are linear mapping of the tangent space at each $g \in G$ into the Lie algebra $\mathfrak{g}, \boldsymbol{\sigma}: T_{g} G \rightarrow T_{e} G$. The Left invariant MCF is given by the pushforward of a vector in $T_{g} G$ along the left-translation in the group

 $$
 \boldsymbol{\sigma}_{L}(\boldsymbol{v})=\left(L_{g^{-1}}\right)_{*} \boldsymbol{v}, \quad \boldsymbol{v} \in T_{g} G
 $$

 ${ }^{5}$ For a given $g \in G, L_{g}: G \times G$ where $L_{g}(h)=g h$. Left/Right actions generate non-linear realizations of the symmetry group.

[^4]: ${ }^{6}$ For non-compact groups the diagonalization brings a Lorentzian like metric, with positive and negative signs.

[^5]: ${ }^{7}$ In fact we have two possible global basis, i.e. $\left\{\boldsymbol{L}_{a}\right\}$ and $\left\{\boldsymbol{R}_{a}\right\}$.

[^6]: ${ }^{8}$ One might wonder whether the final result $R=n / 4$ depends on the normalization of the generators, the answer is no: any change will scale \mathfrak{K} which compensates upon contracting with its inverse. The $1 / 4$ factor is inherited from the $1 / 2$ in the spin connection.

[^7]: ${ }^{9}$ Working with the right invariant vector fields we arrive to the same result $\mathcal{C}_{R}=\mathfrak{K}^{a b} R_{a} R_{b}=\Delta$

