Matemáticas Especiales Física Médica

Prof. Aníbal Iucci JTP Mariela Nieto

Práctica 3: Números complejos. Series y funciones de números complejos Año 2022

1. Sea z=1-i. Escriba en la forma x+iy, con $x,y\in\mathbb{R}$, los siguientes números complejos:

a)
$$iz$$
, b) z^{-1} , c) $(1-z)/(1+z)$, d) $z\bar{z}$, e) z^3 .

Escriba los números anteriores en la forma polar $(re^{i\theta})$.

2. Exprese en la forma z = x + iy los siguientes números complejos:

a)
$$e^{-i\pi/2}$$
, b) $e^{-i3\pi}$, c) $e^{i\pi/2 + \ln 2}$, d) $2e^{(1-i\pi)/2}$, e) $e^{\pi/(2i)} - e^{i3\pi}$.

3. Utilizando que $z^n=r^ne^{in\theta}$ para $z=re^{i\theta},$ evalúe

a)
$$(1-i)^6$$
, b) $(1+i)^4/(1-i)$, c) $(1+i\sqrt{2})^6$, d) $[(1+i)/(1-i)]^4$.

4. Encuentre las siguientes raíces:

a)
$$\sqrt[4]{i}$$
, b) $\sqrt{-9}$, c) $\sqrt[5]{-4}$, d) $\sqrt[3]{64}$.

- 5. Evalúe: a) $\ln(-e)$, b) $\ln(i)$, c) $\ln[(1+i)^2]$.
- 6. Encuentre a) i^i , b) 2^{-2i} , c) x^{i-1} (x > 0).
- 7. Utilizando la definición de $\sin z$ y $\cos z$,
 - a) Demuestre que $\cos(x + iy) = \cos(x)\cosh(y) i\sinh(y)\sin(x)$.
 - b) Demuestre que $\sin(x + iy) = \sin(x)\cosh(y) + i\sinh(y)\cos(x)$.
 - c) Evalúe i) $\sin(2i)$, ii) $\sin(\pi/2 + i \ln 2)$.
 - d) Demuestre: i) $\sin(-z) = -\sin(z)$, ii) $\cos(-z) = \cos(z)$, iii) $\cos^2(z) + \sin^2(z) = 1$.
- 8. Utilizando la definición de $\sinh z$ y $\cosh z$,
 - a) Demuestre que $\cosh(x + iy) = \cosh(x)\cos(y) + i\sin(y)\sinh(x)$.
 - b) Demostrar que $\sinh(x+iy) = \sinh(x)\cos(y) + i\sin(y)\cosh(x)$.
 - c) Evaúe i) $\sinh(2i)$, ii) $\sinh(i\pi/2 + \ln 2)$.
 - d) Demuestre: i) $\sinh(-z) = -\sinh(z)$, ii) $\cosh(-z) = \cosh(z)$, iii) $\cosh^2(z) \sinh^2(z) = 1$.
- 9. Considere una partícula moviéndose en el plano x,y y cuya posición está descripta en forma compleja por la ecuación $z(t) = re^{i\theta(t)}$, con r constante. Obtenga una expresión para la velocidad y aceleración de la partícula en términos de la velocidad angular $\omega = d\theta/dt$ y aceleración angular $\alpha = d\omega/dt$, e interprete el resultado.