OBTENCIÓN DE LA MEJOR RELACION LINEAL ENTRE DOS MAGNITUDES

Aproximación gráfica.

Supongamos que como resultado de un experimento obtenemos una serie de datos que se representan en la Figura 1.

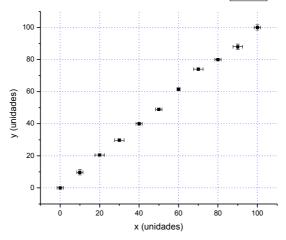


Figura 1: Representación gráfica de los datos experimentales

La representación de cada valor medido corresponde a un rectángulo que indica la incertidumbre de la medida de ambas variables. Aquí lo indicamos con barras de incertidumbres.

De acuerdo a lo que visualizamos en el gráfico, la relación funcional entre la entrada, x, y la salida, y, puede ser una relación lineal (una recta). Podríamos trazar una recta que interpole nuestros puntos experimentales, esto es, que pase por el mayor número de puntos posibles y deje la misma cantidad de puntos por encima y por debajo. La recta podremos expresarla como:

$$y = m x + b \tag{Ec. 1}$$

(m es la pendiente y b la ordenada al origen) donde m y b no pueden ser números exactos sino intervalos de la forma $m \pm \Delta m$, $b \pm \Delta b$, dado que la recta se ha trazado a partir de datos experimentales que están afectados de incertidumbre. Los coeficientes de la recta expresada en la ecuación 1 no serán por lo tanto un solo valor sino intervalo de valores.

¿Cómo hallar la pendiente m y la ordenada al origen b, que determinen la función lineal?

Podemos hacerlo buscando gráficamente las rectas de mayor y menor pendiente que pasen por el mayor número posible de rectángulos. A partir de éstas podremos obtener la <u>recta promedio</u>, como semisuma de las otras dos. Al intervalo en el que estarán comprendidas la pendiente (Δm) y la ordenada al origen (Δb) de dicha recta promedio, lo obtenemos a partir de la semidiferencia de las rectas de máxima y mínima pendiente.

A la línea recta de máxima pendiente de la Figura 5 podemos representarla por la función:

$$y = m_1 x + b_1$$
 Ec. (2)

y a la de mínima pendiente por la función:

$$y = m_2 x + b_2$$
 Ec. (3)

Si hacemos la semisuma de las expresiones (2) y (3) obtendremos los coeficientes, m y b, de la recta promedio. Mientras que la semidiferencia de (2) y (3) nos dará el intervalo de incertidumbre, Δm y Δb .

Pero antes de eso: ¿Cómo obtener m_1 , b_1 , m_2 y b_2 ?

Para determinar la pendiente y ordenada al origen de la recta de máxima o mínima pendiente, trazamos dicha recta y elegimos dos puntos P1 (x_1, y_1) y P2 (x_2, y_2) tales que se encuentren sobre la recta (no son datos experimentales).

Tratar de elegir P1 y P2 sobre la recta trazada que estén lo mas alejados posibles (así nuestra determinación es mas precisa).

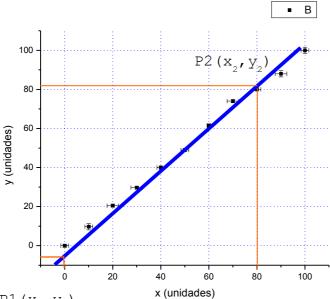


Figura 2. Determinación gráfica de los parámetros que determinan la recta de mayor pendiente

$$m_1 = \frac{y_2 - y_1}{x_2 - x_1}$$
 (Ec. 4)

Tanto P1 y P2 satisfacen la ecuación (2), por lo tanto teniendo m_1 , para P1 reemplazamos: $y_1 = m_1 x_1 + b_1$, con lo que se obtiene: $b_1 = y_1 - m_1 x_1$

Realizamos el mismo procedimiento para la recta de mínima pendiente y obtenemos m_2 y b_2 .

De los valores obtenidos m1, m2, b1 y b2, encontramos los parámetros que definene la recta promedio:

$$m = (m_1 + m_2)/2$$
 $b = (b_1 + b_2)/2$ (Ec. 5)
 $\Delta m = (m_1 - m_2)/2$ $\Delta b = (b_1 - b_2)/2$ (Ec. 6)

Por lo tanto el mejor conjunto de rectas que nos informan dentro de qué intervalo podremos esperar que caiga una nueva medida, estará dado por la expresión:

$$y = (m \pm \Delta m) x + (b \pm \Delta b)$$
 (Ec.7)

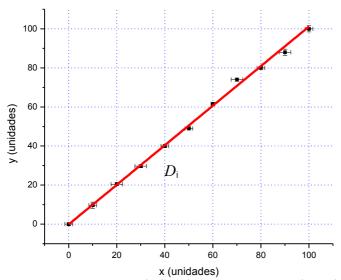


Figura 3: Representación de los datos experimentales y la recta promedio (Ec.7).

Apéndice:

Para graficar las rectas de máxima y mínima pendiente conviene marcar el centroide, en decir, el punto P que surge del promedio de las coordenadas provenientes de los datos.

Punto P (centroide):

$$\overline{x} = \frac{\sum_{i=1}^{N} x_i}{N}, \quad \overline{y} = \frac{\sum_{i=1}^{N} y_i}{N}$$

Donde N es el número de datos; (x_i, y_i) son los datos experimentales.

Una vez ubicado el centroide, trazar las recta de máxima y mínima pendiente que pase por este punto P (usarlo como punto de "pivote" al girar la regla para buscar la recta de máxima y mínima pendiente)