
STEP FUNCTIONS, DELTA FUNCTIONS, AND THE VARIATION OF

PARAMETERS FORMULA

STEPHEN SCHECTER

1. The unit step function and piecewise continuous functions

The Heaviside unit step function u(t) is given by

u(t) =

{

0 if t < 0,

1 if t > 0.

The function u(t) is not defined at t = 0. Often we will not worry about the value of a
function at a point where it is discontinuous, since often it doesn’t matter.
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Figure 1.1. Heaviside unit step function.

The function u(t) turns on at t = 0. The function u(t− a) is just u(t) shifted, or dragged,
so that it turns on at t = a.

The function 1 − u(t − b) turns off at t = b.
The function u(t − a) − u(t− b), with a < b, turns on a t = a and turns off at t = b.
We can use the unit step function to crop and shift functions. Multiplying f(t) by u(t−a)

crops f(t) so that it turns on at t = a:

u(t − a)f(t) =

{

0 if t < a,

f(t) if t > a.

Multiplying f(t) by u(t − a) − u(t − b), with a < b, crops f(t) so that it turns on at t = a

and turns off at t = b:

(u(t− a) − u(t − b))f(t) =











0 if t < a,

f(t) if a < t < b,

0 if t > b.
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We can also crop f(t) at t = 0 and drag it to t = a:

u(t − a)f(t − a) =

{

0 if t < a,

f(t − a) if t > a.

1
f(t)

u(t−a)f(t)

a aa

u(t)f(t)

u(t−a)f(t−a)

Figure 1.2. Cropping and dragging.

A function f(t) is said to have a jump discontinuity at t = a if

(1) there are numbers t0 < a < t1 such that f is defined and continuous on [t0, a) and
on (a, t1];

(2) limt→a− f(t) and limt→a+ f(t) both exist as finite numbers; and
(3) limt→a− f(t) 6= limt→a+ f(t).

A function f(t) is called piecewise continuous on the real line if

(1) f is defined and continuous except at certain points where it has a jump discontinuity,
and

(2) the number of jump discontinuities in any closed interval is finite.

Usually we leave piecewise continuous functions undefined at the points where they have
jump discontinuities, because usually their values there don’t matter.

We will use the notation

f(a−) = lim
t→a−

f(t), f(a+) = lim
t→a+

f(t).

These numbers are the same at a point a where f is continuous, but they are different at a
point a where f has a jump discontinuity.

f(t)

a

f(a−)

f(a+)

Figure 1.3. A piecewise continuous function.

The functions pictured so far are piecewise continuous on the real line.
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2. The Dirac delta function

Piecewise continuous functions have continuous antiderivatives. For example, an anti-
derivative of u(t) is the “unit ramp function”

∫

u(t) dt =

{

0 if t < 0,

t if t ≥ 0.

A function with a jump discontinuity cannot possibly have a derivative at that point.
Nevertheless, let’s ask the question: if the unit step function u(t) had a derivative u′(t),
what would its properties be?

Actually, wherever t 6= 0, u(t) has a derivative, and it’s 0. So the first property is:

(1) u′(t) = 0 for t 6= 0.

The second property comes from the Fundamental Theorem of Calculus: if t0 < 0 < t1, we
should have

∫ t1

t0

u′(t) dt = u(t)]t1t0 = u(t1) − u(t0) = 1 − 0 = 1.

Thus our second property is:

(2) If t0 < 0 < t1, then
∫ t1

t0
u′(t) dt = 1.

No ordinary function has properties (1) and (2)! Nevertheless, we will go ahead and define
a “generalized function” that does have these properties. It’s called the Dirac delta function

δ(t), and its properties are:

(1) δ(t) = 0 for t 6= 0.

(2) If t0 < 0 < t1, then
∫ t1

t0
δ(t) dt = 1.

We say δ(t) is concentrated at t = 0.
There are certain operations that one can legitimately do with δ(t). One can shift it:

δ(t − a) is concentrated at t = a. One can also multiply δ(t − a) by a function f(t) that is
continuous on an open interval that contains t = a. The resulting product has the following
properties:

(1) δ(t − a)f(t) = 0 for t 6= a.

(2) If t0 < a < t1, then
∫ t1

t0
δ(t − a)f(t) dt = f(a).

Notice that the value of the integral only depends on the value of f at t = a. A consequence
of property (2) is:

If t0 < a < t1, then

∫ t1

t0

kδ(t − a) dt = k.

There are other operations that I do not recommend trying with δ(t). For example, you
should not try to square it, and you should not multiply it by a function that has a jump
discontinuity at t = 0.

3. First-order linear differential equations

Piecewise continuous functions and delta functions can be used as forcing terms in linear
differential equations. We’ll just consider linear differential equations with constant coeffi-
cients.

We’ll often consider rest initial conditions:

y(t) = 0 for t < 0.
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Let’s first look at first-order linear differential equations

(3.1) my′ + ky = f(t).

Rules about solutions of (3.1):

(1) If f(t) is piecewise continuous, any solution y(t) is continuous.
(2) If f(t) is a delta function, any solution y(t) has a jump discontinuity where the delta

function is concentrated.

An important consequence of rule (2) is the following:

Theorem 3.1. Any solution y(t) of

(3.2) my′ + ky = δ(t − a)

has y(a+) − y(a−) = 1
m

.

Here is why this formula for the jump is correct. Let t0 < a < t1, let y(t) be a solution of
(3.2), and integrate both sides of (3.2) from t = t0 to t = t1. We get

m(y(t1) − y(t0)) + k

∫ t1

t0

y(t) dt = 1.

Now let t0 and t1 approach a. By rule (2), y(t) is an ordinary piecewise continuous function.
When we integrate it over shorter and shorter intervals, the integral approaches 0. On the
other hand, y(t1) − y(t0) approaches y(a+) − y(a−). Passing to the limit, we have

m(y(a+) − y(a−)) = 1.

Therefore

y(a+) − y(a−) =
1

m
.

Example. A new territory is discovered. People begin immigrating at a rate of 1 million
per year. In addition, the population grows naturally with a growth rate of 4% per year.
What is the population after t years?

Solution 1. Let p denote the population in millions. Then

dp

dt
= 0.4p + 1, p(0) = 0.

The solution of this initial value problem is p = 25e.04t−25. We should only use this formula
for t ≥ 0.

Solution 2. Let p denote the population in millions. Then

dp

dt
= 0.4p + u(t), p(t) = 0 for t < 0.

Since the forcing function is piecewise continuous, by rule (2) p(t) is continuous. Therefore
p(0) = 0. For t ≥ 0 we solve the initial value problem

dp

dt
= 0.4p + 1, p(0) = 0

exactly as before. The solution is therefore

p(t) =

{

0 if t < 0,

p = 25e.04t − 25 if t ≥ 0.
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Example. A new territory is discovered. One million people immediately move there.
Thereafter the population grows naturally with a growth rate of 4% per year. What is the
population after t years?

Solution 1. Let p denote the population in millions. Due to the immigration, the
population at time 0 is 1. Thus we have

dp

dt
= 0.4p, p(0) = 1.

The solution of this initial value problem is p = e.04t. We should only use this formula for
t ≥ 0.

Solution 2. Let p denote the population in millions. Then

dp

dt
= 0.4p + δ(t), p(t) = 0 for t < 0.

Since the forcing function is a delta function concentrated at t = 0, by rule (2) p(t) has a
jump discontinuity at t = 0. By Theorem 3.1 the jump is p(0+) − p(0−) = 1

1
= 1. Since

p(0−) = 0, we have p(0+) = 1. Therefore, for t > 0 we solve the initial value problem

dp

dt
= 0.4p, p(0) = 1

exactly as before. The solution to our problem is

p(t) =

{

0 if t < 0,

e.04t if t > 0.

4. Second-order linear differential equations

Now let’s consider second-order linear differential equations

(4.1) my′′ + by′ + ky = f(t).

Rules about solutions of (4.1):

(1) If f(t) is piecewise continuous and y(t) is a solution, then y(t) and y′(t) are both
continuous.

(2) If f(t) is a delta function and y(t) is a solution, then y(t) is continuous, but y′(t) has
a jump discontinuity where the delta function is concentrated.

An important consequence of rule (2) is the following:

Theorem 4.1. Any solution y(t) of

(4.2) my′′ + by′ + ky = δ(t − a)

has y′(a+) − y′(a−) = 1
m

.

To derive this formula, let t0 < a < t1 and integrate both sides of (4.2) from t = t0 to
t = t1. We get

m(y′(t1) − y′(t0)) + b(y(t1) − y(t0)) + k

∫ t1

t0

y(t) dt = 1.
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Now let t0 and t1 approach a. By rule (1), y(t) is a continuous function, so y(t1) − y(t0)
and the integral approach 0. On the other hand, y′(t1)− y′(t0) approaches y′(a+)− y′(a−).
Passing to the limit, we have

m(y′(a+) − y′(a−)) = 1.

Therefore

y′(a+) − y′(a−) =
1

m
.

When a force f(t) is applied to a mass from time t = t0 to time t = t1, a change in
momentum results:

mv(t1) − mv(t0) =

∫ t1

t0

m
dv

dt
dt =

∫ t1

t0

f(t) dt.

The integral
∫ t1

t0
f(t) dt is called the impulse due to the force. It is the change in momentum

that the force produces.
Suppose a mass m is at rest and we strike it at time t = 0 with a hammer. The mass

takes off with velocity v1. Clearly the hammer imparted a force over a very short time that
caused the change in momentum. How do we represent this force mathematically?

We have v(t) = 0 for t < 0. At time t1 > 0, where t1 is very small, we have v(t1) = v1.
Let f(t) be the force imparted by the hammer. For any t0 < 0, we have

(4.3)

∫ t1

t0

f(t) dt = mv(t1) − mv(t0) = mv1 − 0 = mv1.

In a mathematical idealization, the entire force is imparted instantaneously, so we want (4.3)
to hold for any t0 < 0 and for any small t1 > 0. In other words, f(t) = mv1δ(t).

In mechanics problems in which a force is imparted instantaneously at time t = a, the
force is represented mathematically by a constant times δ(t − a). The constant represents
the impulse due to the force. Such an instantaneously applied force is often itself called an
impulse.

Example. A spring-mass system is at rest. We strike the mass with a hammer, hard
enough to cause an instantaneous positive change in momentum of 1 unit. What is the
response?

Solution 1. After t = 0, the differential equation is

my′′ + by′ + ky = 0.

The system starts at rest so y(0) = 0. Because of the hammer blow, we instantly get a
momentum of 1, so we might as well take my′(0) = 1, i.e., y′(0) = 1

m
. Now we have an initial

value problem to solve. Call the solution h(t). Of course, we only use h(t) for t ≥ 0.
Solution 2. The differential equation and initial conditions are

my′′ + by′ + ky = δ(t), y(t) = 0 for t < 0.

Recall our rule for solving second-order linear differential equations with a delta function
forcing term: the solution is continuous, and its first derivative has a jump discontinuity
where the delta function is concentrated. Since the solution is continuous, we have y(0) = 0.
By Theorem 4.1, the jump in the derivative is y′(0+) − y′(0−) = 1

m
. Since y′(0−) = 0, we

have y′(0+) = 1
m

. Therefore, for t > 0, we solve the initial value problem

my′′ + by′ + ky = 0, y(0) = 0, y′(0) =
1

m
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as before. The solution to our problem is

y(t) =

{

0 if t < 0,

h(t) if t ≥ 0.

5. Variation of parameters formula for first-order differential equations

Definition. The solution to the problem

y′ + ay = δ(t), y(t) = 0 for t < 0.

is called the impulse response function for the differential operator y′ + ay. It is given by

y(t) =

{

0 if t < 0,

e−at if t ≥ 0.

Theorem 5.1. The solution of

(5.1) y′ + ay = f(t), y(0) = y0

is

(5.2) y(t) = y0e
−at +

∫ t

0

e−a(t−s)f(s) ds.

Formula (5.2) is called the variation of parameters formula. The reason for this name is
not important.

We will give three derivations of (5.2). Our derivations assume that f(t) is continuous, but
the formula is also correct when f(t) is only piecewise continuous, and when f(t) includes
delta functions.

Derivation 1. This isn’t really a derivation; we just check that the formula is correct.
First note that in (5.2), y(0) = y0, so the initial condition is satisfied. Next, rewrite (5.2) as

y(t) = y0e
−at + e−at

∫ t

0

easf(s) ds.

Differentiate using the product rule and the Fundamental Theorem of Calculus:

y′(t) = −ay0e
−at − ae−at

∫ t

0

easf(s) ds + e−ateatf(t)

= −a

(

y0e
−at + e−at

∫ t

0

easf(s) ds

)

+ f(t).

Plug the formulas for y(t) and y′(t) into (5.1) to check that the differential equation is
satisfied.

Derivation 2. Solve (5.1) using the method we learned in Section 2.3. Multiply (5.1) by
eat, rewrite the left-hand side as a derivative, and integrate:

eaty′ + aeaty = eatf(t),

d

dt

(

eaty
)

= eatf(t),

eaty =

∫ t

0

easf(s) ds + c.
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To integrate the right-hand side, we had to choose an antiderivative of eatf(t); we chose
∫ t

0
easf(s) ds. Multiply by e−at:

y = ce−at + e−at

∫ t

0

easf(s) ds = ce−at +

∫ t

0

e−a(t−s)f(s) ds.

Set t = 0 and y = y0 to determine c: c = y0.
Derivation 3. This derivation uses the impulse response function. It should give you a

good intuitive understanding of why the formula is true.
To estimate y(t) at some t > 0, divide the interval [0, t] into n equal parts of length h:

0 = t0 < t1 < · · · < tn = t. The impulse given to the system between t = ti−1 and t = ti
is

∫ ti

ti−1

f(t) dt, which is approximately f(ti)h. Instead of applying the continuous force f(t),

let’s apply the force in discrete impulses at the times ti. Then our force will be

fh(t) =

n
∑

i=1

δ(t − ti)f(ti)h.

If h is small, the force fh(t) should produce approximately the same result as f(t).
The response to the impulse δ(t−ti)f(ti)h is of course e−a(t−ti)f(ti)h, t ≥ ti. (The stimulus

response function is shifted to t = ti and multiplied by the appropriate constant.) To get
the response to fh(t) at the particular time t mentioned earlier, the responses to the little
blows at all the times ti must be added. Therefore the response is

yh(t) =
n

∑

i=1

e−a(t−ti)f(ti)h.

This is a Riemann sum for the integral
∫ t

0
e−a(t−s)f(s) ds. Therefore, as h → 0, yh(t) ap-

proaches
∫ t

0
e−a(t−s)f(s) ds. This is therefore the response y(t) of the system to the continuous

forcing function f(t).
Actually, this is the response when the initial condition is y(0) = 0. It is therefore a

particular solution of (5.1). To get the general solution, add the general solution of the
homogeneous problem, ce−at, and determine c from the initial condition.

6. Variation of parameters formula for second-order differential

equations

Definition. The solution to the problem

my′′ + by′ + ky = δ(t), y(t) = 0 for t < 0

is called the impulse response function for the differential operator my′′+by′+ky. It is given
by

y(t) =

{

0 if t < 0,

h(t) if t ≥ 0,

where h(t) is the solution of the initial value problem

my′′ + by′ + ky = 0, y(0) = 0, y′(0) =
1

m
.

Sometimes we will call h(t), defined for t ≥ 0, the impulse response function. I hope this
won’t be confusing.
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Theorem 6.1. The solution of

(6.1) my′′ + by′ + ky = f(t), y(0) = y0, y′(0) = y1

is

(6.2) y(t) = yc(t) +

∫ t

0

h(t − s)f(s) ds.

In this formula, yc(t) is the solution of the homogeneous initial value problem

my′′ + by′ + ky = 0, y(0) = y0, y′(0) = y1,

and h(t) is the impulse response function.

Formula (6.2) is another version of the variation of parameters formula.
We will only give one derivation of (6.2). It almost word-for-word the same as our deriva-

tion of formula (5.2) using the impulse response function.
To estimate y(t) at some t > 0, divide the interval [0, t] into n equal parts of length h:

0 = t0 < t1 < · · · < tn = t. The impulse given to the system between t = ti−1 and t = ti
is

∫ ti

ti−1

f(t) dt, which is approximately f(ti)h. Instead of applying the continuous force f(t),

let’s apply the force in discrete impulses at the times ti. Then our force will be

fh(t) =
n

∑

i=1

δ(t − ti)f(ti)h.

If h is small, the force fh(t) should produce approximately the same result as f(t).
The response to the impulse δ(t−ti)f(ti)h is of course h(t−ti)f(ti)h, t ≥ ti. (The stimulus

response function is shifted to t = ti and multiplied by the appropriate constant.) To get
the response to fh(t) at the particular time t mentioned earlier, the responses to the little
blows at all the times ti must be added. Therefore the response is

yh(t) =
n

∑

i=1

h(t − ti)f(ti)h.

This is a Riemann sum for the integral
∫ t

0
h(t − s)f(s) ds. Therefore, as h → 0, yh(t)

approaches
∫ t

0
h(t − s)f(s) ds. This is therefore the response y(t) of the system to the

continuous forcing function f(t).
Actually, this is the response when the initial condition is y(0) = 0. It is therefore a

particular solution of (5.1). To get the general solution, add the general solution of the
homogeneous problem, and determine c1 and c2 from the initial condition.

7. Using variation of parameters to find a particular solution

A consequence of Theorem 6.1 is that a particular solution of

(7.1) my′′ + by′ + ky = f(t)

is

(7.2) yp(t) =

∫ t

0

h(t − s)f(s) ds,

where h(t) is the solution of

my′′ + by′ + ky = 0, y(0) = 0, y′(0) =
1

m
.
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In fact, yp(t) is the solution of (7.1) with y(0) = 0 and y′(0) = 0. This formula provides
another way to find a particular solution of (7.1), in addition to undetermined coefficients.

Let’s do an example from Chapter 4.6 this way.
Example. Find the general solution on (−π

2
, π

2
) to

d2y

dt2
+ y = tan t.

Solution. The general solution of the homogeneous equation is

y = c1 cos t + c2 sin t.

The impulse response function h(t) is the solution of

d2y

dt2
+ y = 0, y(0) = 0, y′(0) = 1.

We easily find that h(t) = sin t.
From (7.2),

yp(t) =

∫ t

0

sin(t − s) tan s ds

=

∫ t

0

(sin t cos s − cos t sin s) tan s ds

= sin t

∫ t

0

cos s tan s ds − cos t

∫ t

0

sin s tan s ds

= sin t

∫ t

0

sin s ds − cos t

∫ t

0

sin2 s

cos s
ds.

Now
∫ t

0

sin s ds = − cos s]t0 = − cos t + 1.

With the help of p. 196 in the text, we find that
∫ t

0

sin2 s

cos s
ds = sin s − ln | sec s + tan s|]t0 = sin t − ln | sec t + tan t|.

Therefore

yp(t) = sin t (1 − cos t) + cos t (sin t − ln | sec t + tan t|) ,

so the general solution is

y(t) = c1 cos t + c2 sin t + yp(t)

= c1 cos t + c2 sin t + sin t (1 − cos t) + cos t (sin t − ln | sec t + tan t|) .

If we multiply out the term sin t (1− cos t) to get sin t− sin t cos t, we see that the term sin t

can be combined with the term c2 sin t from the homogenous solution. Hence another form
for the general solution is

y(t) = c1 cos t + c2 sin t − sin t cos t + cos t (sin t − ln | sec t + tan t|) .
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8. From the impulse response function to Laplace transforms

You walk into a lab and see a spring-mass system set up. You strike the mass with a
hammer and measure the response h(t). Now you know the impulse response function.
Hence if the spring-mass system is started from rest and subject to any time-dependent force

f(t), you can predict the response! It will be

y(t) =

∫ t

0

h(t − s)f(s) ds.

That’s pretty good, especially considering that you didn’t bother to measure the mass m,
the damping coefficient b, or the spring constant k. In effect, you are finding solutions of the
differential equation without knowing what the differential equation is.

Let’s be greedy and try to use h(t), which we already know, to figure out what the
differential operator my′′ + by′ + ky is. Then we’ll know m, b, and k without doing any
tedious experiments to measure them.

I will describe one way to do this.
Recall how we used undetermined coefficients to find a particular to solution to the non-

homogeneous equation

(8.1) my′′ + by′ + ky = est.

(In this formula, s is a constant.) We assumed there was a solution of the form yp = Aest

and substituted into (8.1):

(ms2 + bs + k)Aest = est.

We concluded that A = 1
ms2+bs+k

. Therefore a particular solution of (8.1) is

yp =
1

ms2 + bs + k
est.

This works as long as s is not a root of the characteristic equation.
The function H(s) = 1

ms2+bs+k
is called the transfer function of the differential operator

my′′+by′+ky. If you knew the transfer function you could figure out the differential operator.
Indeed, the characteristic polynomial of the differential operator is

ms2 + bs + k =
1

H(s)
,

and once you know the characteristic polynomial, you know the differential operator.
Can we use the stimulus response function h(t) to find the transfer function H(s)? Let’s

give it a try.
Consider the differential equation (8.1) with rest initial conditions. The solution is

y(t) =

∫ t

0

h(t − r)esr dr.

(I have to use some letter other than s for the variable of integration. I chose to use r.) On
the other hand, any solution of (8.1) has the form

y = c1e
r1t + c2e

r2t + H(s)est,
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where r1 and r2 are the roots of the characteristic polynomial. Hence there must be constants
c1 and c2 such that

(8.2) c1e
r1t + c2e

r2t + H(s)est =

∫ t

0

h(t − r)esr dr.

Now let’s assume that s is bigger than both r1 and r2. Multiply both sides of (8.2) by
e−st:

c1e
−(s−r1)t + c2e

−(s−r2)t + H(s) = e−st

∫ t

0

h(t − r)esr dr

=

∫ t

0

h(t − r)e−s(t−r) dr

=

∫ t

0

h(u)e−su du.

The last simplification comes from the change of variables u = t − r, du = −dr.
Finally, let t → ∞ on both sides of the previous equation:

H(s) =

∫

∞

0

h(u)e−su du.

This equation is usually written with t instead of u:

(8.3) H(s) =

∫

∞

0

h(t)e−st dt.

We’re done! Equation (8.3) tells us how to calculate the transfer function H(s) if we know
the impulse response function h(t).

Equation (8.3) takes the function h(t), defined for t ≥ 0, and transforms it into a new
function H(s), defined for s greater than the larger of r1 and r2. It says that H(s) is the
Laplace transform of h(t). We will learn more about Laplace transforms in Chapter 7 of our
text.
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