FISICA CUANTICA - FISICA MEDICA

PRACTICA 1

Radiación de Cuerpo Negro. Efecto Fotoeléctrico.

1. La Ley de radiación de Planck para la densidad espectral de energía, en función de la frecuencia ν , en el espectro de radiación del cuerpo negro está dada por:

$$\rho_T(\nu) \ d\nu = \frac{8\pi \ \nu^2}{c^3} \overline{E}(\nu) \ d\nu, \quad con \quad \overline{E}(\nu) = \frac{h \ \nu}{[e^{h\nu/kT} - 1]}$$
 (1)

donde $k=1,38\times 10^{-23}~J/K$ es la constante de Boltzmann y $h=6,62\times 10^{-34}~J\,s$ es la constante de Plank.

- a) Hallar $\overline{E}(\nu)$, evaluando : $\sum_{n=0}^{\infty} E_n \ P(E_n)$, con $P(E_n) = \frac{e^{-E_n/kT}}{\sum_{n=0}^{\infty} e^{-E_n/kT}}$ En el postulado de Plank la energía es una variable discreta con valores $E_n = n \ h\nu$. (Recordar que: $\frac{1}{1-X} = \sum_{n=0}^{\infty} X^n$; $\frac{1}{(1-X)^2} = \sum_{n=1}^{\infty} n X^{n-1}$, para |X| < 1).
- b) Escribir la forma asintótica de (1) para el caso de frecuencias muy bajas. La relación obtenida se conoce como ley de Rayleigh Jeans.
- c) Demostrar que la radiancia total R_T , o intensidad total I, $(W.m^{-2})$ es proporcional a T^4 (Ley de Stefan) y hallar el valor numérico de la constante de proporcionalidad σ . Esta ley puede ser obtenida de la relación $R_T(\nu)d\nu=(c/4)\rho_T(\nu)d\nu$ entre la radiancia espectral R_T por unidad de frecuencia y la densidad espectral de energía dada por (1), integrando sobre el rango completo de frecuencias. (Indicación: Emplear $\int_0^\infty [q^3/(e^q-1)] \ dq = \pi^4/15$).
- d) Expresando la densidad espectral de energía (1) en función de λ , derivar la ley de desplazamiento de Wien: $\lambda_m T = c_w$ ($c_\omega = 2,898 \times 10^{-3} \ mK$), donde λ_m corresponde al valor de λ para el cual la densidad de energía monocromática $\rho_T(\lambda)$, a una temperatura T, toma su valor máximo. Indicación: haciendo $x = \frac{hc}{\lambda kT}$ mostrar que la ecuación resultante es: $e^{-x} + x/5 = 1$, donde el valor de x que satisface la ecuación es: x = 4,965.
- 2. a) La piel humana se comporta como un absorbente casi perfecto (cuerpo negro) en el infrarrojo, con una emisividad igual a 0, 97. Si la temperatura de la piel de una persona es de 28^{o} C, empleando la ley de Wien: $\lambda_{max}T = c_{\omega}$, hallar la λ_{max} correspondiente. ¿En qué parte del espectro electromagnético cae esta longitud de onda?
 - b) Si la persona se encuentra en una habitación cuya temperatura es de 22^{o} C, empleando la ley de Stefan, hallar la potencia neta radiada por i) 1 cm^{2} de su piel; ii) por el área de todo el cuerpo si es de $1,9m^{2}$.
- 3. La mayor sensibilidad del ojo humano se registra para luz cuya longitud de onda $\lambda=560nm$.
 - a) Hallar la temperatura a la cual un cuerpo negro radiará con mayor intensidad a esta longitud de onda. Comparar con la temperatura de la superficie del Sol, suponiendo que este se comporta como un cuerpo negro.
 - b) Bajo condiciones normales el ojo humano registra una sensación visual cuando se absorben como mínimo 100 fotones en un área de la pupila de $2,5 \times 10^{-9} m^2$ durante 0,2 segundos. ¿Cuál es el nivel mínimo de intensidad de la luz para esa longitud de onda?
- 4. a) Calcular la energía y frecuencia de los fotones correspondientes a las siguientes longitudes de onda en el vacio: $\lambda = 1$ km (ondas de radio); $\lambda = 1$ cm (microondas); $\lambda = 555$ nm ($1nm = 1 \times 10^{-9}$ m). (visible); $\lambda = 0.5$ nm (rayos X); $\lambda = 500 \times 10^{-15}$ m=500 F (Fermi) (rayos γ).
 - b) ¿Cuántos fotones por segundo y por cm^2 llegan a una superficie irradiada con una intensidad de 1 watt/ cm^2 para una longitud de onda λ =600 nm?

- 5. Los movimientos vibratorios de los átomos de una molécula diatómica son semejantes a los osciladores de Planck. Si se supone que los dos átomos están unidos mediante un resorte de constante k, la energía vibratoria de la molécula es $E=nh\nu=n\hbar\omega$, donde $\omega=\sqrt{k/\mu}$, y μ es la masa reducida del sistema: $\mu=\frac{m_1m_2}{m_1+m_2}$, donde m_1 y m_2 son las masas de los dos átomos. El movimiento de los dos átomos es equivalente al movimiento de un cuerpo de masa reducida μ , unido a un resorte con idéntica constante k, fijo a una pared rígida.
 - Para la molécula diatómica H_2 , $m_1=m_2=1,66\times 10^{-27}kg$ (1 uma) y $h\nu=0,55eV$, hallar:
 - a)el valor de μ de la molécula
 - b) el valor de la constante de resorte k para esta molécula
- 6. La función trabajo para el Molibdeno es $\phi = 4.2$ eV. Hallar:
 - a) La λ umbral y la frecuencia umbral para el efecto fotoeléctrico.
 - b) La rapidez máxima de los electrones emitidos cuando se lo irradia con luz de $\lambda=180 \mathrm{nm}$
 - c) El potencial de frenado en este caso.
- 7. Cuando un cátodo de Cesio se ilumina con una luz de longitud de onda de λ =500nm, los fotoelectrones emitidos tienen una energía cinética máxima de 0,57eV. Encuentre:
 - a) la función de trabajo del Cesio
 - b) el potencial de frenado, si la luz incidente tiene una longitud de onda $\lambda=600$ nm.

Problemas sugeridos:

- 1. En su trabajo original (Ann. der Physik Vol. 4, 553 (1901)) Plank calculó los valores de las constantes h y k a partir de los valores experimentales de σ y $c_{\omega} = \lambda_{max}T$. Si $\sigma = 5,67 \times 10^{-8} \frac{W}{m^2 K^4}$ y $c_{\omega} = 2,898 \times 10^{-3} \ m K$, determinar h y k.
- 2. En un experimento de efecto fotoeléctrico en el cual se emplea luz monocromática y un fotocátodo de sodio encontramos un potencial de frenado de 1,85 V cuando $\lambda=3000 \mathring{A}$ y de 0,82 V cuando $\lambda=4000 \mathring{A}$. En base a estos datos determinar:
 - a) La constante de Plank
 - b) La función trabajo del sodio en eV
 - c) Su longitud de onda umbral
- 3. Para una molécula de HCl vibrando con una frecuencia ν , la constante de fuerza equivalente es k=470N/m. El átomo de H posee una masa $m_H=1$ uma y el átomo de Cl una masa $m_{Cl}=35,45$ uma. Hallar la frecuencia de la vibración ν y calcular h ν .
- 4. Un resorte de constante k=470N/m está unido a una masa puntual de 200g. El sistema ejecuta un movimiento armónico con una amplitud inicial A=6,5 cm. Hallar la energía total E del sistema, y la frecuencia ν de la vibración. Hallar el valor de $h\nu$. Suponiendo que la energía decrece debido a la fricción, ¿El decrecimiento de energía observado es discreto o continuo?