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vita tensor. If we define a three-form B such that C = *B, 
then Eq. (13) can be written as 

P=dA + ~B +p(O), (17) 
where the codifferentiaJ21 ~ of B is defined as 
~B = - *d *B and the two-form p(O) is a solution to the 
wave equation. Equation ( 17) is a special case of the Hodge 
decomposition theorem.22-24 The Hodge decomposition 
theorem is the natural generalization of Helmholtz's 
theorem to an arbitrary dimensional space. 
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When an object is cooled by immersion in a liquid, there is an unexpected increase in the violence 
of boiling just before the boiling stops. Most people seem fascinated by this phenomenon yet few 
are acquainted with its explanation in terms of a change in the heat-transfer mechanism from film 
boiling to nucleate boiling. We have developed two variations of an intermediate level 
undergraduate laboratory experiment to measure the heat-transfer rate after a sample is 
immersed in liquid nitrogen. The temperature of the sample, as measured by a thermocouple, is 
recorded as a function of time using either a potentiometer strip-chart recorder or a digital 
voltmeter-microcomputer combination. The heat-transfer rate as a function of sample 
temperature is computed from these results, and the reason for the effect is clearly seen. 

I. INTRODUCTION 

When a metal object such as a steel bolt is suddenly im-
mersed in liquid nitrogen, the liquid starts boiling violent-
ly. As time goes on, the violence of the boiling slowly de-
creases, and soon it appears as if the boiling is just about to 
stop. But instead of stopping, there is suddenly a big in-
crease in the violence of boiling and then the boiling stops. 

If you have never seen this effect for yourself, you may 
question whether it really occurs. You can easily observe it 
if liquid nitrogen is available and may already have ob-
served it when filling a room temperature vacuum system 
cold trap with liquid nitrogen. If liquid nitrogen is not 
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available, you can see the same effect by dropping an incan-
descent piece of metal into water. 

The explanation for this effect, called the Leidenfrost 
effect, I lies in the nature of heat transfer between a solid 
surface and a colder surrounding liquid.2 This apparently 
simple process consists of six distinct and identifiable re-
gimes of pool boiling. 

Figure 1 shows the principal boiling regimes of water at 
atmospheric pressure as reported by Farber and Scorah.3 

In their experiment, an electrically heated p~atinum wire 
was immersed in water, and the power input Q required to 
maintain the wire at various temperatures T above the sat-
uration temperature of the water TSAT was measured. 
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Fig. 1. Q / A versus temperature difference between platinum wire and 
water bath. 

(The saturation temperature of a liquid is the normal boil-
ing temperature of the liquid at the existing pressure.) The 
logarithm of the power input per unit area of the platinum 
wire Q / A was then plotted against the logarithm of the 
difference between the temperature of the wire an~ the sat-
uration temperature of the liquid (T - T SAT)' Q was di-
vided by A in an attempt to scale the heat-transfer rate data 
so the results displayed in Fig. 1 could be applied to any 
object immersed in water. 

The first regime of boiling is characterized by free-con-
vection. The superheated liquid next to the warm solid sur-
face is convected to the liquid-air surface where the energy 
is released by evaporation. Convection is dominant only 
when the solid is no more than a few degrees warmer than 
the liquid and does not transfer heat very efficiently, since 
both the heat capacity of the liquid and the buoyant forces 
driving the convection current are small. 

At higher temperatures nucleate boiling occurs. In the 
second regime bubbles form at so-called nucleation sites on 
the solid surface and detach. As the bubbles rise, they are 
reabsorbed by the liquid, and the energy reaches the liquid-
air interface by convection. Once the bubbles reach the liq-
uid-air interface and directly release their vapor, the boil-
ing is said to be in the third regime. Nucleate boiling is a 
more efficient heat transfer mechanism than convection 
because the latent heat of vaporization is much larger than 
the product of the heat capacity and the small temperature 
increase of the water encountered in convection. 

Once the violence of nucleate boiling reaches a critical 
value, the bubbles begin to coalesce before they detach and 
form a thin unstable vapor film around parts of the solid. 
The heat-transfer rate in this fourth regime is lower than 
that for nucleate boiling because energy must be conducted 
through the thin vapor film to its outer edges where bubbles 
form. 

A stable vapor film envelopes the sample at higher tem-
peratures, and in this fifth regime the heat-transfer rate 
remains roughly constant. At even higher temperatures, 
energy transfer through the vapor film due to radiation 
becomes significant, and the heat-transfer rate rises in this 
sixth regime. 

Cooling by immersion may be explained straightfor-
wardly in terms of these regimes of boiling. When a room-
temperature object is first immersed in liquid nitrogen, it is 
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surrounded by a vapor film. As the object slowly cools 
through the sixth and fifth boiling regimes, the violence of 
boiling decreases with the heat transfer rate. Finally, the 
vapor film becomes unstable and collapses, and the sample 
rapidly cools through the fourth, third, and second regimes 
as the heat-transfer rate increases by more than an order of 
magnitude. This corresponds to the sudden increase ob-
served in the violence of bubbling. The boiling then enters 
the first regime in which all heat transfer is by convection, 
and no bubbles are observed. 

II. EXPERIMENT 
We have developed two variations of an intermediate 

level laboratory experiment to measure the heat-transfer 
rate as a function of temperature for objects immersed in 
liquid nitrogen. In each version of the experiment, the tem-
perature of a copper cylinder was measured as a function of 
the time after immersion. The cylinder we used was 5.08 
cm in diameter, 7.25 cm long, and had a mass of 1.34 kg. A 
sample this massive was chosen to lengthen the cool-down 
time and make semiautomated data taking easier. A high 
thermal conductivity copper sample was chosen so we 
could assume that the temperature is essentially the same 
at all points in the sample as it cools.4 Sample temperatures 
were measured with a chromel-alumel thermocouple 
which had one junction soldered into a small hole in the 
surface of the sample. The reference junction of the ther-
mocouple was immersed in an ice bath. The two experi-
mental versions of the experiment differ in how thermo-
couple emfs were measured as a function of time. 

The first variation was similar to the experiment of 
Merte and Clark.5 The thermocouple leads were connected 
to a potentiometer, and the imbalance of the potentiometer 
was recorded on a strip-chart recorder. Merte and Clark set 
the potentiometer and recorder so the entire cooldown was 
recorded across the width of the strip chart without any 
changes in dial settings. Voltage imbalance and time read-
ings were then determined directly from the strip chart for 
their analysis. We chose a much larger sample to lengthen 
the cool-down time and eliminate the need to take voltage 
imbalance measurements from the strip chart. As our sam-
ple cooled, the time when the potentiometer was balanced 
for a particular potentiometer dial setting was indicated by 
the location of the null crossover on the strip chart. This, of 
course, indicated the time the sample temperature reached 
the value corresponding to the emf set on the potentiometer 
dials. The potentiometer dial setting was written on the 
strip chart next to the corresponding null crossover, the 
dail setting was changed, and the entire procedure was re-
peated over and over to follow the sample temperature dur-
ing cooling. The resulting table of thermoelectric emf val-
ues as a function of time after immersion was analyzed to 
determine the heat-transfer rate as a function of sample 
temperature. 

The second variation of the experiment replaced the po-
tentiometer and strip-chart recorder with a digital volt-
meter read at a predetermined rate by a computer. This 
rate was increased during the experiment since cooling was 
very rapid once the vapor layer collapsed. Figure 2 shows a 
sample set of thermoelectric emf versus time-after-immer-
sion data obtined by this second variation of the experi-
ment. 

We began the analysis ofthe data with the conversion of 
the emf versus time data to temperature versus time data 
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Fig. 2. Thermoelectric emf versus time after immersion. 

using standard thermocouple calibration tables.6 At first, 
this conversion, along with the rest of the analysis, was 
done by hand. Later, when the second version of the experi-
ment resulted in large numbers of data points per run, the 
entire analysis was carried out ona computer. (It is still 
useful, however, for students to analyze a few data points 
by hand to learn the analysis procedures.) The hand proce-
dures can be automated straightforwardly. Data from the 
standard thermocouple tables must first be entered into a 
computer file. Temperatures can then be determined by 
having the computer search for measured emfs in the table 
and interpolate between tabular values. We chose instead 
to represent the data in the calibration tables by a power 
series in thermoelectric emfs and to directly compute tem-
peratures using this series representation. Both the least-
square fitting to the power series and the temperature com-
putation were performed with extended precision 
FORTRAN programs to ensure the same accuracy previous-
ly obtained with hand conversion. Figure 3 shows the same 
data as in Fig. 2 converted to sample temperature versus 
time-after-immersion data by this procedure. 

Since we have assumed the temperature is the same 
throughout the volume of the sample, the rate of heat loss 
per unit sample surface area is given by 

Q = (!!...) C (n dT . 
A A P dt 

In this equation, A is the surface area, n is the number of 
moles, Cp (T) is the molar heat capacity at constant pres-
sure at the temperature T, and dT / dt is the slope of the 
temperature-time curve. We determined the slope of this 
curve at a particular point by assuming adjacent data 
points could be connected by a straight line and determin-
ing its slope. When we first planned this experiment, we 
assumed that a more complicated procedure, including 
data smoothing to remove random error in the data points, 
would be required to find this slope. The procedure re-
quired that we know the slope of the temperature-emf cali-
bration curve as a function of temperature. This was the 
reason for the previously mentioned least-square fit of the 
thermocouple calibration curve to a power series. Fortu-
nately, the simple straight-line procedure for finding the 
slope yielded results with acceptable random scatter, so the 
more complicated procedure was never used. 

556 Am. J. Phys., VoL 54, No.6, June 1986 

Cp (T) is related to the specific heat at constant volume 
Cv (T) by the relationship7 

Cp (T) = Cv (T) + VTf32/K, 
where V is the sample volume, f3 is the isobaric thermal 
expansion coefficient, and K is the isothermal compressibil-
ity. The difference between Cp and Cv is ,3% for the sam-
ple and temperature range used in the experiment8,9 and 
was neglected in our analysis. 

We can compute Cv using microscopic models under-
graduate students have encountered in solid-state physics, 
modem physics, and statistical thermodynamics courses . 
For our copper sample it may be written as the sum of an 
electronic contribution yT and a lattice (phonon) contri-
bution C/ (T)9: 

Cv (T) = yT + C/ (n. 
In the temperature range encountered, the yT term was 
always < I % of C/ (T) 9 and was neglected in our analysis. 
(Students can be asked to justify both this assumption and 
that of the equality of Cp and Cv in their reports.) Since the 
lattice contribution varies strongly with temperature, we 
should compute it using the Debye model lO including the 
temperature variation of the Debye characteristic tempera-
ture () D • II Since for copper () D ( T) monotonically increases 
from 315-321 Kas the temperature rises from 77-300 K,11 
this variation was ignored and a constant ()D = 315 K 
used. This leads to a maximum error in Cv of - 0.1 % at 
T = 300 K. 9 The Debye model itself is difficult to use in the 
analysis since it yields an expression for Cv containing an 
integral with ()D/Tas the upper limit. (The simple one- or 
two-term power series approximation applies only at tem-
peratures much lower than those encountered in this ex-
periment.) Tabulated results of a numerical integration of 
this expression are availablel2 for hand analysis of data. A 
series solution to the expression is also availablel3 which 
could be used to evaluate C/. 

The Einstein model, 14 on the other hand, yields a simple, 
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Fig. 3. Sample temperature versus time after immersion. 
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although less accurate, expression for the lattice heat ca-
pacity: 

C _ 3R (~)2 exp ()DIT . 
1- T [exp«()DIT) _ 1]2 

In this expression, R is the gas constant and () E is the Ein-
stein characteristic temperature of the solid. Due to the 
similarity of the predictions of the two models at all except 
the lowest temperatures,15 we found the Einstein model 
gave a reasonable approximation to the Debye model when 
we let ()E = 0.77 ()D' This procedure yielded Cv values 
which differed from those of the Debye model by about 5% 
at 77 K. At higher temperatures this difference decreased 
to less than 0.02% at 300 K. A more accurate approxima-
tion of this sort is that of Listerman and ROSS16 in which a 
temperature-dependent ()E is given by 

()EIT= ()D [a + b exp ( - cT I()D)], 
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Fig. 5. Q / A versus temperature difference between sample and liquid ni-
trogen bath. 
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where 
a = 0.768 712 526 726 1697, 
b = 0.264 790 644 105 7428, 
c = 9.168 685 063 692 587 

is used. In the temperature range ofO.2<TI()D<12 the 
average difference between this approximation and the De-
bye model was 0.036%. The approximation of Listerman 
and Ross was used in analyzing the results reported here. 

The results of this analysis for two different experi~en
tal runs are shown in Figs. 4 and 5. Figure 4 shows Q I A 
versus sample temperature. The big increase in the heat-
transfer rate just before the sample reaches liquid nitrogen 
temperature is clearly seen in this figure. The logarithm of 
Q / A versus the logarithm of the di~erence be~wee? the 
sample and saturation temperatures IS shown 10 FIg. 5. 
This result is of the same form as the data for water shown 
in Fig. 1 and is in agreement with the data of Merte and 
Clark for liquid nitrogen. 

III. CONCLUSIONS 

We found this to be a useful intermediate laboratory ex-
periment for several reasons. It exposed students to inter-
esting heat-transfer phenomena not typically mentioned in 
physics courses. Students learned experimental skills relat-
ed to the handling and use of cryogenic fluids, to thermo-
electric thermometry, and to automated data taking. The 
Einstein and/or Debye models studied in class were used in 
analyzing data along with other results related to heat ca-
pacity. Additionally students may gain a good deal of expe-
rience in programming and computer analysis of data. 

The experiment can also evolve over time as succeeding 
groups of students make modifications and improvements. 
The experiment itself can evolve from the first to the sec-
ond variation. The analysis could evolve from using the 
simple Einstein model to using the temperature-dependent 
()E Einstein model to using the actual Debye model formu-
las. Corrections can be included for the electronic contri-
bution to the specific heat, for the temperature dependence 
of () D' and for the difference between Cp and Cv ' The ran-
dom error in the results may be significantly reduced by 

Listerman, Boshinski, and Knese 557 



improving the procedure for determining the slope of the 
temperature-time curve. Rather than using only two data 
points, several points centered about the temperature of 
interest can be least-square fitted to a three-term power 
series. The least-square fitting removes much of the ran-
dom error in the data points and the slope at the tempera-
ture of interest may be computed from the fitted curve. 

In addition, the variation of the heat-transfer rate with 
changes in the details of the experiment may be studied. 
Dividing the heat-transfer rate by the sample surface area is 
a simple attempt to scale the results so that they can be 
applied to any solid transferring heat to the liquid. By using 
different metal samples, different surface textures, differ-
ent shapes and sizes, and different sample orientations a 
wide range of original experiments may be performed. 
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The phase space time evolution operator for a dynamical system is derived directly from 
Newton's equation of motion. This operator is used to show, in an elementary way, how a Lie 
group enters into the description in phase space of the path of a one-dimensional damped, driven, 
harmonic oscillator. Concepts from Lie group theory are thus illustrated in a nontrivial but 
elementary and familiar setting. Generalizations of this method for Hamiltonian systems are 
outlined in a series of remarks that suggest the broader scope of the subject. 

I. INTRODUCTION 

The time evolution of physical quantities in classical dy-
namics can be presented in a form that is closely related to 
the time evolution ofthe corresponding quantity in quan-
tum dynamics. The purpose of this paper is to present this 
operator formulation of classical mechanics and to illus-
trate its application to several elementary and familiar dy-
namical systems. 

Consider Newton's equation of motion in one dimen-
sion, 

at =!,(Xl'vt ), (1) 

where!, (XOv t ) denotes the force per unit mass, X t the posi-
tion at time t of a point particle of mass m relative to an 
inertial reference frame, Vt = xt the directed speed at time 
t, and at = xt the acceleration at time t. The force function 
!, (xt ,Vt ) is assumed to be a smooth function of XI'VI' and t 
(continuous derivatives of all orders with respect to these 
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variables). If the solution X t to Eq. (1) is analytic at all 
times t, then the solution is given by 

(2a) 
wherex'T is the position of the particle at time r<,t and O'T is 
the differential operator defined by 

OT = V'T( a~'T) + h(X'T'VT)(~J + (:r). (2b) 

This result is easily proved by repeatedly differentiating 
Eq. (1) with respect to t and substituting the k th such 
derivative into the Taylor series expansion 

xt+ T = f. (t~)(dk:t) . 
k=O k. dt t='T 

(3) 

The operator exp(t0'T) is itself defined by 

00 (t k) k exp(t0'T) = L ,OT' 
k=O k. 

(4) 
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