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1. Introduction

On August 26th, 1856, William Henry Perkin filed a patent
claiming a synthetic dye,[1] later called Mauveine.[2] It is often

written that his was the first such invention. However, there
were earlier colorants of artificial origin, albeit none which en-

joyed such phenomenal commercial success, nor sparked the

growth of the chemical industry. Nevertheless, on April 7th of
that same momentous year for colour chemistry, Charles Gre-

ville Williams reported at a meeting of the Royal Society of Ed-
inburgh on the synthesis of beautiful blue dyes,[3] later called

Cyanine, which gave its name to a whole dye class.[4, 5] While
not making the swift financial impact that mauveine and its
analogues did in textile coloration, Cyanines in time became

very important industrially for over a century in the field of
image creation.

The first—and for a long time the main—technical applica-
tion of cyanine dyes was their use as spectral sensitisers in

silver halide photography.[6, 7] The commercial introduction of
high power laser diodes in the middle of the 1980s opened

the door to numerous new technical applications of cyanine
dyes. Among their number were fluorescent probes for bio-

medical imaging,[8–13] laser radiation absorbing dyes in CD-R
and DVD/R,[14–16] and sensitisers in computer-to-plate (CtP)

lithographic printing plates.[17, 18]

The possibilities of hi-tech applications for these dyes
prompted much research directed at developing better under-

standing of their electronic spectra. Even before such promise
was considered, investigation into cyanines formed a major

plank of the enquiry into the connection between constitution
and colour. Initially, the focus lay on the relationship between

the structures of dyes and the wavelengths of their absorption

maxima.[19–23] While the spectra of symmetrical cyanine dyes
display fine structure, this aspect received little attention for
many years. To the best of our knowledge, in 1960, Werner
Maier and Friedrich Dçrr were the first to discuss the sub-

bands present in cyanine dye spectra in the context of the
Franck–Condon principle (FCP) and the coupling of a dominant

Raman-active vibration with the electronic transition.[24] During

the next half century or so, the intensity distribution among
the sub-bands in cyanine dye spectra was explained by the

FCP assuming the sub-bands in cyanine dye spectra are largely
determined by coupling of a dominant, totally symmetric vi-

bration with the electronic transition.[25–34]

In 2007, Guillaume et al. reported the first application of

density and time-dependent density functional theory (DFT,

TDDFT) in an attempt to simulate the absorption and emission
spectra of a cyanine dye.[35] Based on their findings with such

computational tools, they developed a modern model and
pointed out:

“Contrary to what is usually assumed when adopting simple
schemes such as the Huang–Rhys approximation, the should-
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ers are not determined by a unique, dominant, vibrational
normal mode but rather by a collection of singly excited vibra-

tions.”
It is rather surprising to read of the Huang–Rhys (HR) ap-

proximation in a paper dealing with molecular spectroscopy,
given that its inception was instead related to ionic crystals. In

these materials, defects in the regular arrangement of a crystal
lattice can produce characteristic colours. Such an imperfection

is called an “F-centre”. The term derives from “Farbe”, the

German word for colour. Kun Huang and Avril Rhys developed
a theory—which will be covered in more detail later—to

explain the shapes of the absorption bands originating from F-
centres in terms of phonon-exciton coupling.[36] In molecular

spectroscopy, the (intramolecular) vibrational–electronic cou-
pling gives rise to vibrational replicas in the electronic spectra

rather than the phonon–exciton coupling in crystalline lattices

of the HR approximation.
Therefore, to be more accurate the sentence above should

really be paraphrased in the following manner:
“Contrary to what is usually assumed when adopting simple

schemes such as the Franck–Condon approximation, the
shoulders are not determined by a unique, dominant, vibra-

tional normal mode but rather by a collection of singly excited

vibrations.”
The main difference thus boils down to the following dichot-

omy. The FCP-related model assumes that a dominant, totally
symmetric vibration couples with the electronic transition,

thereby creating the vibrational–electronic (vibronic) sub-
bands (0–0, 0–1, 0–2, …) observed in electronic spectra. In

contrast, the computational model assumes that the appear-

ance of sub-bands is determined by a collection of (symmetric
and non-symmetric) singly excited vibrations.

Computational studies like that employed in 2007, which
claim a proper theoretical analysis of the sub-bands, continue

to appear in the literature. Examples include papers dealing
with the electronic spectra of cyanines,[37–42] merocyanines[43]

and squaraines[44] on the basis that the sub-bands are com-

posed of several peaks associated with different vibrations. As
noted previously, this type of approach is far from one which
relies on the role of a single dominant vibration in the elec-
tronic spectrum.

In only one paper among the numerous studies appearing
after that of Guillaume et al. , and which directly refer to their

2007 paper, can one read a sentiment conveying doubt about
sub-band origin:[45] “The complete rationalization of this transi-
tion using theoretical models remains a matter of debate; in

particular the clear assignment of the high-energy shoulder re-
mains problematic.”

This statement remains true, but which of the two afore-
mentioned models is more appropriate?

Models are of central importance in linking theory with prac-

tice. They aid comprehension of complex experimental data and
confer the ability to predict what might happen upon changing

something within a system be they constituents or conditions.
In this paper we will argue about the “rightness” of both

models outlined above.

Before attempting to answer the above question, we feel it
is best to start with a short review of fundamental principles

by revisiting the work of those theorists who trail-blazed the
field of molecular spectroscopy.

2. The Franck–Condon Principle for Diatomic
Molecules

The development of the quantum theory of atoms and mole-

cules can be divided roughly into two periods: the “old” and
the “new quantum theory of atoms and molecules”. In 1913,
Niels Bohr extended the quantum theory of Max Planck and
Albert Einstein to explain the electronic structure of atoms
with two postulates:

(1) the Bohr quantization condition, whereby the electrons
move around the nucleus of an atom in definite orbits
with an integer quantum number n and a discrete elec-
tronic energy, Ea, Eb, Ec, …, i.e. , the stationary electronic
states;

(2) the Bohr resonance condition, which states that an atom

in the initial electronic state with the Energy Ea can absorb
or emit a photon of the energy E = hn only if there exists a

final stationary electronic state with the Energy Eb, where-
by the energy difference between Eb and Ea (DEab =

Eb@Ea = hn) matches the energy of the absorbed or emit-
ted photon.

While involving the mixing of classical physics and quantum
ideas, this historical episode is relevant because it marked the

start of the development of the “old quantum theory of atoms
and molecules”. Within this framework James Franck devel-

oped a model to explain the photo-dissociation of diatomic
molecules with schematic drawings of potential energy surfa-

ces (PES) of electronic ground and excited states.[46] Franck

postulated that the molecule does not vibrate in its electronic
ground state. A consequence of the absence of vibrational

states is that the electronic transition originates from the mini-
mum of the PES, since there can be no contribution of vibra-

tional energy to the ground state. We draw attention to this
point because the approximation of neglecting the zero-point
vibrational energy, and by implication that nuclei are stationary
on the minimum of the PES, is still used today in quantum

chemistry.[47]

Edward U. Condon first discussed the coupling of intramo-
lecular bond vibrations with electronic transitions to explain

the fine structure of electronic spectra. Building on Franck’s
idea, Condon added the element of molecular vibration. He in-

troduced vibrational states to the model in a semi-classical
way with the assumption that nuclei are stationary only at the

semi-classical turning points of the vibration: these are where

vibrational states intersect with the PES.[48, 49] In doing so,
Condon developed a theory to explain the intensity distribu-

tion of vibronic sub-bands in electronic spectra in the context
of the “old quantum theory”.

A new chapter commenced in 1925 with the development
of a “new quantum theory of atoms and molecules”. This year
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heralded the publication of Louis de Broglie’s famous paper
“Recherches sur la th8orie des Quanta”, where he depicted the

particle and wave nature of electrons. A year later this proposal
led Erwin Schrçdinger to describe standing waves of electrons

surrounding nuclei. Therefore, this new quantum mechanics is
also called wave mechanics of which mathematical relation-

ships such as the one shown below were key:

Hðr, RÞYðr, RÞ ¼ E Yðr, RÞ ð1Þ

Equation (1) represents the time-independent Schrçdinger

equation with the total Hamiltonian operator H(r, R) and the
total wave-function of a molecular state Y(r, R) which depends

on both the positions of all electrons r and the positions of all
nuclei R. Without postulates it follows from the new quantum

mechanics that an atom or molecule can exist only in a dis-
crete stationary state (eigenstate), which is characterized by its
total molecular wave-function (eigenfunction) Y(r, R) and its
total energy (eigenvalue) E.

In the context of this new quantum theory Condon modified

his initial theoretical framework with the following terms and
approximations.[50–52]

2.1. The First Condon Approximation

Equation (1) can be solved analytically only for a two-body
system like the hydrogen atom. To render the task tractable for

more complex systems, Condon postulated that electronic and
nuclear motions are separable. Neglecting the rotation and

translation of a molecule, its total energy is the sum of elec-

tronic and vibrational energy. With Condon’s postulate the
total wave-function of a non-rotating but vibrating molecule

Ynv(r, R) can be expanded as a product of the electronic wave-
function yn(r, R) at fixed nuclear positions and the nuclear vi-

brational wave-function cnv(R) as shown in [Eq. (2)] .[49, 50] The
quantum number n indicates the electronic state, whereas the
quantum number v designates the vibrational state in the elec-

tronic state n.

Ynvðr, RÞ ¼ ynðr, RÞ cnvðRÞ ð2Þ

In the new quantum theory, nuclei are not stationary, but
rather they are delocalized. Their probability distribution is di-

rectly related to the square of cnv(R).

2.2. The Second Condon Approximation

When the Bohr resonance condition is met, the probability of

transition of a molecule from an initial state Ya to a final state
Yb depends on the transition moment between the two states
~Mab [Eq. (3)]:

~Mab ¼
Z

Ybðr, RÞboðr, RÞYaðr, RÞdrdR ð3Þ

The transition moment operator bo(r, R) is a complex quantity
that includes electric dipole, magnetic dipole, electric quadru-

pole, magnetic quadrupole operators, etc. The predominant
portion is contributed by the electric dipole operator bm(r, R), so
that bo(r, R) is limited to bm(r, R), which consists of the electronic
dipole moment operator bm(r) and the nuclear dipole moment
operator bm(R) as shown in [Eq. (4)] .

boðr, RÞ & bmðr, RÞ ¼ bmðrÞ þ bmðRÞ ¼ @eSiri þ eSIzIRI ð4Þ

Here, bm(r) is the sum of dipole moments of each electron, ri

the coordinates of the ith electron, bm(R) is the sum of dipole mo-
ments of each nucleus, zI the nuclear charge and RI the coordi-

nates of the ith nucleus. Thus, the electric dipole moment opera-
tor becomes the operator of the transition moment, which is

therefore called the electric transition dipole moment operator.
Considering an electronic transition from the vibrational

state v of the ground electronic state S0 to the vth vibrational

state of the first excited electronic state S1 the electric transi-
tion dipole moment is given as

~M0v@1v ¼
Z Z

y1ðr,RÞc1vðRÞ½bmðrÞ þ bmðRÞAy0ðr,RÞc0vðRÞdrdR ð5Þ

where y0(r, R) is the electronic wave-function for S0, y1(r, R) for

S1, c0v(R) is the nuclear vibrational wave-function for S0 and
c1v(R) for S1. One must keep in mind that the electric transition

dipole moment of a molecule is a transient dipole moment
which connects two different molecular states: it is not, as is

often said, related to the electric permanent dipole moment of
a molecular state.

The integral of [Eq. (5)] can be split off and factorized into a

product of the electronic transition dipole moment ~M01 from
S0 to S1 and the overlap integral between the wave-functions

c0v(R) and c1v(R) that are involved in the transition:

~M0v@1v ¼
Z

y1ðr,RÞ½bmðrÞAy0ðr,RÞdr

Z
c1vðRÞ½bmðRÞAc0vðRÞdR ð6Þ

The electronic transition dipole moment ~M01 is a function of
the nuclear positions R, which makes calculation very difficult.
At this point Condon introduced a second approximation. He
considered only y0(r, R) and y1(r, R) at the nuclei equilibrium
position Re of S0, enabling the substitution of both y0(r, R) and
y1(r, R) in [Eq. (6)] with y0(r, Re) to give [Eq. (7a)] . As a conse-

quence of this approximation, ~M01 is no longer a function of R.
It becomes a constant C and can be moved outside the inte-
gral to furnish [Eq. (7b)] .

~M0v@1v ¼
Z

y0ðr,ReÞ½bmðrÞAy0ðr,ReÞdr

Z
c1vðRÞ½bmðRÞAc0vðRÞdR

ð7aÞ

¼ C

Z
c1vðRÞ½bmðRÞAc0vðRÞdR ð7bÞ

By doing so, the problem reduces to solving the vibrational
overlap integral. The square of it, which is called the Franck–

Condon factor [see Eq. (8)] , is directly related to the relative in-
tensity of the vibronic sub-bands.
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I0v@1v ¼ j
Z

c1vðRÞ ½bmðRÞA c0vðRÞdRj2 ð8Þ

2.3. Computation of the Overlap Integral

However, solving this seemingly simple task is not easy. Even

with the inclusion of just the quantum harmonic oscillator to

model molecular vibration, it is challenging. Both the potential
energy V and the wave-function cv of the quantum harmonic
oscillator in a vibrational state v are functions of the reduced
mass mr, vibrational frequency n, (force constant k = 4p2 mr n

2)

and the deflection R from the equilibrium position Re,
[Eq. (9), (10)]

V ¼ 1=2 kðR@ReÞ2 ¼ 2 p2 mr n2 ðR@ReÞ2 ð9Þ
cv ¼ Nv Hv ½a1=2 ðR@ReÞA exp½@1=2 a ðR@ReÞ2A ð10Þ

with the normalization constant [Eq. (11)]

Nv ¼ 1=ð2v v! p1=2Þ1=2 ð11Þ

the Hermite polynomials Hv and the coupling parameter a

[Eq. (12)]

a ¼ 4 p2 mr n h@1 ¼ k=hn ð12Þ

Since the coupling parameter a has the dimension of 1/
(length unit)2, the terms a1/2 (R@Re) and 1=2 a (R@Re)2 are dimen-

sionless.

To calculate the intensity distribution of the vibronic sub-
bands according to [Eq. (8)] , three factors must be taken into

consideration:

1) a number of vibrational states in S0 are occupied;
2) the vibrational frequencies, that is, the shape of the PES in

both states are different [k(S0)¼6 k(S1) ; a(S0)¼6 a(S1)] ;

3) the equilibrium bond lengths of the ground and excited
electronic state differ [Re(S0)¼6 Re(S1)] .

These conditions make it difficult to calculate the overlap in-

tegrals of two harmonic oscillator wave functions. Therefore,
even for diatomic molecules, quite a number of approxima-

tions are made to calculate the overlap integrals between the
harmonic oscillator wave functions of two electronic states.

Within the harmonic approximation Elmer Hutchisson gave

the first evaluation of Franck–Condon overlap integrals based
on finite series expansion, which led to rather complicated sol-

utions.[53] During the following years a lot of papers were pub-
lished that presented various approaches to evaluate the over-

lap integrals of harmonic oscillator wave-functions. The most

rigorous approximations (4–6 below) were introduced by Carl
J. Ballhausen.[54]

4) At typical room temperatures (&290–300 K) the vibrational

ground state of S0 is by far the most populated. Only a very
small proportion of the molecules will be in anything other

than their vibrational ground state. In this case of negligi-
ble population of vibrational excited states in S0, the vi-

bronic transitions are considered to take place only from
v = 0 in S0 to different vibrational states in S1.

5) Differences in n in S0 and S1 are usually small so the vibra-
tional frequencies in S0 and S1 are taken to be equal. A con-
sequence of this assumption is that the shapes of both PES
in S0 and S1 are the same [k(S0) = k(S1) ; a(S0) =a(S1)] .

6) The transition of an electron from S0 to S1 leads to an in-
crease of the equilibrium bond length Re(S1) in comparison
with that of Re(S0). Therefore, the two electronic states are

described by PES of the same shape but whose minima are
in different locations [Re(S0)<Re(S1)]—the “displaced har-

monic oscillator approximation”.

Originally, Ballhausen introduced the symbol k for the cou-

pling strength, which led to confusion with the force constant
k.[54] Later he switched to the symbol S, which is more popular

today [Eq. (13)] .[55]

S ¼ 1=2 a ½ReðS1Þ@ReðS0ÞA2 ¼ 1=2 k=hnvi ½ReðS1Þ@ReðS0ÞA2 ð13Þ

Here, nvi is the vibrational frequency of the symmetric har-

monic valence vibration of a diatomic molecule in S0 and in S1.
Making these approximations rendered it necessary only to

consider changes in equilibrium bond length [Re(S1)@Re(S0)] for
both electronic states in order to predict the intensity distribu-

tion of the vibronic sub-bands in a given electronic transition.
They enabled Ballhausen to reduce [Eq. (8)] to [Eq.(14)]] for the

calculation of the intensities of vibrational-electronic transitions

between the vibrational ground state (v = 0) in S0 and vibra-
tional states v in S1.[54, 55]

I0@v ¼ e@S Sv=v! ¼ I0@0 Sv=v! ð14Þ

[Eq. (14)] makes possible the calculation of the normalised

intensity I0–v (transition probability) for a molecule from v =0 in

S0 toward the vth vibrational state in S1 if the coupling strength
S is known. Conversely, [Eq. (14)] permits determination of S
from the experimental ratio of I0–v/I0–0, i.e., derived from inten-
sities of sub-bands appearing in the fine structure of spectra

where one assumes an assignment of sub-bands to particular vi-
bronic transitions. In the case of symmetrical trimethine cyanine

dyes, for instance, S falls in the range of 0.44 to 0.68,[32] whereas
for polyenes the value of S lies between 0.92 and 1.29.[49]

3. The Huang–Rhys Approximation for
Diatomic Lattices

Crystallographic defects in the regular arrangement of crystal

lattices represent a deviation from ideal colourless ionic crys-

tals, conferring characteristic colours upon them. Such an im-
perfection is called an F-centre. It constitutes a location within

a crystalline lattice where an anion is missing and the vacancy
may be occupied by an electron. Light of particular energies

excites this electron from the valence band into the conduc-
tion band. The resulting localized excited state of a crystal, the
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positively charged electron hole and the electron bound to-
gether, is called an “exciton”.

One might expect this effect to lead to the appearance of
narrow absorption lines, which is not the case in reality. Crystal

lattices are not completely rigid. The atoms in the crystal vi-
brate. The vibrations of the crystalline lattices are called “pho-

nons”. Incorporation of phonon-exciton coupling into the
theory of excitons enables a better understanding and descrip-

tion of the shape of exciton absorption bands.

Thus Huang and Rhys developed a theory using FCP as its
foundation to explain the shapes of the absorption bands of F-

centres present in lattices by invoking the phenomenon of
phonon-exciton coupling.[36] Also here further approximations

were introduced to solve the overlap integrals. Melvin Lax ex-
tended and formalized the HR approach.[56] Thomas H. Keil

used the harmonic oscillator for the phonons and consid-

ered—like Ballhausen—the approximations 4–6 outlined in the
previous section and derived a formula, [Eq. (15)] , which close-

ly resembles [Eq. (13)]:[57]

S ¼ 1=2 a ½ReðS1Þ@ReðS0ÞA2 ¼ 1=2 k=hnph ½ReðS1Þ@ReðS0ÞA2 ð15Þ

In the context of [Eq. (15)] , the term S is often called the

“Huang–Rhys factor”. Despite the form of these equations
being similar, the vibrational properties of the systems to

which they apply of course are not. One must not forget that
in [Eq. (13)] nvi represents the frequency of the symmetric har-

monic valence vibration of the bond in a diatomic molecule,
whereas in [Eq. (15)] nph symbolises the frequency of the sym-

metric harmonic phonon of a lattice. The sizes of the coupling

strength S for molecular species and the Huang–Rhys factor, as
well as the coupling parameter a (and so also the force con-

stant k and vibrational frequency) between [Eq. (13) and (15)] ,
differ substantially.

In summary, S in [Eq. (13)] provides a quantitative descrip-
tion of vibrational-electronic coupling in molecules, whereas in

[Eq. (15)] , it represents the phonon–exciton coupling property

of lattice defects.

4. Applicability of the Franck–Condon Princi-
ple to Polyatomic Molecules and Role of
Duschinsky Rotation

In the Section 2, we have seen that calculating the intensity
distribution of the vibronic sub-bands in a given electronic
transition presents a challenge. Several approximations are

necessary to arrive at easy-to-handle solutions for diatomic
species. Polyatomic entities are of more practical interest to re-

searchers seeking to understand and design organic materials
for technological use. These systems of course exhibit far

greater complexity owing to the larger set of normal vibrations

which their extended molecular skeletons make possible.
In a diatomic molecule, the only vibration is the Raman

active symmetric valence vibration, which does not change the
symmetry of the molecule. The number of normal vibrations in

a polyatomic molecule is 3 N@5 for linear molecules and 3 N@6
for non-linear molecules, where N is the number of atoms in

the molecule. Depending on their symmetry the vibrations can
be IR- or Raman-active.

Given the considerable extra permutations, the calculation
of multidimensional overlap integrals in polyatomic molecules

is demanding and calls for additional approximations. It is
therefore worth moving on from a discussion of the applicabil-

ity of the FCP to diatomic molecules and embarking on one
which concerns polyatomic molecules.

The first approach for polyatomic molecules was developed

by Gerhard Herzberg and Edward Teller based on Condon’s ap-
proximations. They called the first Condon approximation

[Eq. (2)] “Vernachl-ssigung I” and the second Condon approxi-
mation [Eq. (7)] “Vernachl-ssigung II“ and discussed [Eq. (8)]

based on group theory.[59]

The wave-function of the vibrational ground state (v = 0) is

totally symmetric. Herzberg and Teller deduced that a) only a

totally symmetric vibrational wave-function will have a non-
zero overlap integral with it, and b) with any non-totally sym-

metric vibrational wave-function the overlap integral must be
zero. Therefore, within an intense (symmetry allowed; electron-

ic transition dipole moment¼6 0) electronic transition in a poly-
atomic molecule, vibrations can appear as a progression only if

the symmetry is the same in the excited electronic state as in

the ground state. In other words, the transition can couple
only with totally symmetric vibrations, which change the size

but not the symmetry of the molecule, just as is the case for a
diatomic molecule.

This framework means that IR-active deformation and anti-
symmetric valence vibrations cannot couple with the allowed

electronic transition. Only Raman active vibrations may do so!

To apply the simple FCP for polyatomic molecules, it is a
prerequisite that the intensity distribution of the individual

sub-bands must be largely determined by one single general-
ized parameter of changes in bond length and one dominant,

totally symmetric vibration.
Duschinsky has discussed the effect that the normal coordi-

nates of electronic excited states of polyatomic molecules are

rotated relative to those of their ground states (Duschinsky ro-
tation).[58] Contrary to Herzberg and Teller’s model the applica-

tion of Duschinsky rotation allows the coupling of an intense
electronic transition with deformation and anti-symmetric va-
lence vibrations, which change the symmetry of the molecule.

Consequently many quantitative calculations concerning

dyes which incorporated the effect of Duschinsky rotation
were performed,[37–44] whose modus operandi are consistent
with the conclusion that “…the shoulders are not determined
by a unique, dominant, vibrational normal mode but rather by
a collection of singly excited vibrations.”[35]

In the following section we will discuss the “rightness” of
both models in light of spectroscopic data obtained from in-

strumental measurement.
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5. Experimental Justification for the Franck–
Condon Intensity Distributions in the Electron-
ic Spectra of Cyanine Dyes

Let us be clear: we will not claim that only one vibration cou-
ples with the electronic dipole allowed S0–S1 electronic transi-
tion in cyanine dyes. The underlying vibronic transitions will be
far more complex owing to the population of vibrational and
rotational states of the ground electronic state. Symmetrical vi-

brations in the region of 30–300 cm@1 especially will lead to a
broadening of the dominant vibronic transitions.

The key question is this: does a dominant vibration give rise
to the sub-bands in the electronic spectra of cyanine dyes, or

are the sub-bands determined by a collection of singly excited
vibrations?

An important prerequisite for discussion of the electronic

spectra fine structure in the context of the FCP is that the sub-
bands belong to the same electronic transition. Polarisation

spectra prove that this applies in the case of cyanine dyes.[28, 29]

To be able to rationalise the intensity distribution of the

sub-bands in the electronic spectra of polyatomic molecules
via the diatomic Franck–Condon approximation as vibronic

sub-bands (0–0, 0–1, 0–2,…), a specific vibration-related restric-

tion must be imposed: this stipulation is that the sub-bands
are mainly determined by a dominant symmetric vibration, just

as for a diatomic molecule.
The work-horse of cyanine dye chemists is the pseudoiso-

cyanine 1, one of the most well-studied cyanine dyes. Its ab-
sorption spectrum exhibits a fine structure with a spacing of

about 1375:25 cm@1[29] At 77 K, the rigidized derivative 2 pos-

sesses a well resolved absorption spectrum whose shape is
similar to 1. The difference between the first four sub-bands of

2 was determined to be 1370 cm@1.[30]

These regularities, especially the constant difference be-
tween the first four sub-bands in the low temperature spec-

trum, are indicative of the coupling of one dominant vibration
having a frequency of about 1370 cm@1 in the excited state.

If true, then the next question concerns the identity of this

vibration. Jacques Pouradier analysed the absorption spectra
of some 90 different cyanine and merocyanine dyes. The

energy spacing between the first two sub-bands of all spectra
is in the range of 1200 cm@1:200 cm@1,[25] as illustrated in Fig-

ures 1–4. His results support the above conclusion that a domi-
nant vibration, general to these dyes, is the source of the sub-

bands. The single common structural element of the different

dyes is the polymethine chain. Because variations in vibrational
frequency pertaining to this part of the chromophore induced

Figure 1. Electronic absorption spectrum in MeOH of a symmetrical red ab-
sorbing cyanine dye.

Figure 2. Electronic absorption spectrum in DMSO of an unsymmetrical
near-infrared absorbing cyanine dye.

Figure 3. Electronic absorption spectrum in DMSO of a symmetrical cyanine
dye.
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by differences in groups at each end of the cyanine dye struc-
ture are relatively small, it may be deduced that the sub-bands

arise from the coupling of a vibration of the polymethine
chain with the S0–S1 electronic transition.It is noteworthy that

in Refs. [35, 37–44], Pouradier’s work was neither cited, nor

was his analysis of experimental spectra discussed.
Maier and Dçrr investigated 1 with resonance Raman spec-

troscopy. They determined that the strongest resonance
Raman line in the excited state appeared at 1365 cm @1. This

value correlates well with the spacing between the sub-bands
in the absorption spectrum. They identified this vibration as

the symmetric carbon-carbon valence vibration of the polyme-

thine chain. Subsequent resonance Raman investigations not
only confirmed this result for 1, but did so too for a wide

range of cyanine dyes.[60–62]

All these experimental results are consistent with the inter-

pretation that a dominant, symmetric carbon-carbon valence
vibration of the polymethine chain gives rise to the sub-bands
in the electronic spectra of cyanine dyes. The observed sub-

bands thus correspond mainly to vibronic transitions from v =

0 in S0 to v = 0, 1, 2,… in S1, where v is the vibrational quantum

number of the respective vibrational state of the symmetric
carbon–carbon valence vibration of the polymethine chain.

Courtesy of Ballhausen’s approximations it is only necessary
to consider the difference Re(S1)@Re(S0) when modelling sub-

band intensity distribution. The S0–S1 electronic transition in cy-
anine dyes can be ascribed mainly to an electronic transition
from the highest occupied molecular orbital (HOMO) to the

lowest unoccupied molecular orbital (LUMO). The HOMO has
bonding character whereas the LUMO has antibonding charac-

ter. It therefore follows that Re(S1) is greater than Re(S0).
In the fluorescence spectrum of 1 a corresponding main

progression appears in approximate mirror symmetry with a

spacing between sub-bands of about 1400:50 cm@1.[29] The
well resolved fluorescence spectrum of 2 exhibits a spacing of

about 1550 cm@1. The reduction in the vibrational frequency in
the excited electronic state, 1370 cm@1, compared to that of

the ground state, 1550 cm@1, is consistent with the equilibrium
bond length increase upon excitation [Re(S1)>Re(S0)] .

Incorporating extra vinylene groups into the polymethine
chain increases the total number of p-electrons delocalised
across the dye structure. As the amount of p-electrons in the
bonding HOMO rises, the influence of an excited electron in

the antibonding LUMO decreases. Consequently the difference
Re(S1)@Re(S0) reduces and thus the experimental ratio of I0–v/I0–0

decreases as shown in Figure 5 and Table 1.

All experimental results support the point of view that a
dominant vibration gives rise to the sub-bands in the electron-

ic spectra of cyanine dyes and the intensity distribution among
the vibronic sub-bands can be explained by the FCP.

To the best of our knowledge, there are no experimental re-
sults which justify the conclusion that the sub-bands of cya-
nine dye electronic spectra are determined by a collection of

singly excited vibrations. On the contrary, if many vibrations
couple with the electronic transition of a polyatomic molecule,

then the various progressions will overlap so that the band en-
velope will be observed as a smooth absorption curve devoid
of significant fine structure.

6. Conclusions

We have presented an answer to the question posed in the

title of this article. Our response contrasts with the basis for
several computational studies conducted since the turn of the

millennium that have been devoted to modelling of fine struc-
ture in the electronic spectra of cyanine dyes. These attribute

Figure 4. Electronic absorption spectrum in 1,4-dioxane of a merocyanine
dye.

Figure 5. Electronic absorption spectra of of 2,2’-carbocyanine dyes in MeOH
in dependence on the length of the polymethine chain n.

Table 1. Absorption maxima (l) and molar absorption coefficients (e) of
the 0–0 and 0–1 sub-bands in the electronic absorption spectra of 2,2’-
carbocyanine dyes in MeOH and the intensity ratio (I0–1/I0–0) dependence
on the length of the polymethine chain (n).

n l(0–0)
[nm]

e

[dm3 mol@1 cm@1]
l(0–1)
[nm]

e

[dm3 mol@1 cm@1]
I0–1/I0–0

0 529 85 000 495 51 600 0.61
1 611 197 000 567 78 300 0.40
2 718 278 000 659 80 700 0.29
3 833 293 000 757 79 000 0.27

ChemPhysChem 2018, 19, 1016 – 1023 www.chemphyschem.org T 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim1022

Concepts



the position and intensity of sub-bands to vibronic transitions
arising from the coupling to electronic transitions of a large

array of symmetric and asymmetric vibrations. Notwithstand-
ing any inappropriate invocation of the term Huang–Rhys ap-

proximation, their approach diverges from Herzberg and Tell-
er’s extension to polyatomic molecules of the Franck–Condon

principle in which only symmetric vibrations are of significance
to electronic spectra. Even though effects such as Duschinsky

rotation provide a mechanism for non-symmetric vibrations to

contribute to the vibronic structure of polyatomic compounds,
we have demonstrated using literature data that, for a cyanine

dye, the spacing of sub-bands in its spectrum is primarily de-
termined by a dominant symmetric vibration associated with

its polymethine chain rather than a collection of singly excited
vibrations. Furthermore, the observed intensities of these sub-
bands can be explained in terms of this dominant vibration by

the Franck–Condon principle.
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