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The electronic absorption spectrum of molecular iodine
has become a standard experiment in the undergraduate
physical chemistry laboratory course (1–6 ). Observation of
the vibrationally resolved spectrum in the visible region at
low resolution (∆λ ~ 0.5 nm) affords students a good dem-
onstration of the quantization of molecular energy levels,
while the treatment of the spectral data gives them valuable
experience in the determination of molecular constants. Students
typically observe transitions from the υ′′ = 0, 1, and 2 levels
in the ground electronic state to vibrational levels in the elec-
tronically excited B-state. Generally, they then analyze the
transitions originating from the υ′′ = 0 level using a Birge–
Sponer plot and thereby determine the various molecular
constants and energies.

We use a different approach to data treatment that the
students find more satisfying and that we believe has peda-
gogical advantages over the Birge–Sponer treatment. It involves
simply fitting the transition frequencies to a second-order
polynomial. This fit directly yields the important molecular
constants and the various energy terms. With the availability of
common graphing programs such as Excel, Kaleidagraph, and
SigmaPlot, students can take advantage of more advanced fit-
ting techniques and no longer have to rely on simple linear plots.

The Second-Order Polynomial Fit Treatment

The vibrational energy for a simple diatomic molecule
is given (in cm{1) by

G(υ) = ω e(υ + 1/2) – ω exe(υ + 1/2)2 (1)

where ω e is the fundamental vibrational frequency, ωexe is
the anharmonicity constant (or anharmonic correction term),
and υ is the vibrational quantum number. For an optical tran-
sition from the ground electronic state to a vibrational level
in an excited electronic state, the expression (in cm{1) is

ν  = Eel + ωe′(υ′ + 
1/2) – ωe′ xe′(υ′ + 

1/2)
2

 – ωe′′(υ′′ + 
1/2)  + ωe′′xe′′(υ′′ + 

1/2)
2(2)

where ν is the observed transition frequency, Eel is the elec-
tronic energy separation from the equilibrium positions, and
the primes and double primes refer to those values in the
upper and lower electronic states, respectively (see Fig. 1).
Rearrangement of eq 2 gives the frequency (in cm{1) for tran-
sitions from the υ′′ = 0 vibrational level in the ground elec-
tronic state as

   ν = {Eel – ωe′′/2 + ωe′′xe′′/4} + ωe′(υ′ + 
1/2) – ωe′xe′(υ′ + 

1/2)2 (3)

This is simply the equation for a second-order polynomial
in (υ′ + 1/2), that is,

ν = a + b(υ′ + 1/2) + c(υ′ + 
1/2)2 (4)

where a = {Eel – ωe′′/2 + ωe′′xe′′/4}, b = ωe′, and c = {ωe′xe′.
This expression represents the essence of the polynomial fit
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Figure 1. Potential energy diagram indicating the various energies
and electronic transitions.

Figure 2. Typical student plot of data using a second-order poly-
nomial fit.
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treatment. The electronic band origin, T00, is determined
from eq 4 when υ′ = 0. That is:

T00 = a + b/2 + c/4 (5)

where (b/2 + c/4) = (ωe′/2 – ωe′xe′/4) is the zero-point vibra-
tional energy in the excited electronic state.

A typical student plot of ν versus (υ′ + 1/2) is shown in
Figure 2. Notice how well the data are fit by a second-order
polynomial over the observed range (υ′ = 18–47). From this
plot students directly obtain ωe′, ωe′xe′, and T00 (132.42 cm{1,
1.0232 cm{1, and 15669.6 cm{1, respectively). Additionally,
students can utilize their knowledge of limits to determine the
convergence limit, E*. By taking the first derivative of the
polynomial (eq 4) with respect to (υ′ + 1/2) and setting it equal
to zero, they can solve for the asymptotic limit at (υ′ + 1/2)max:

dν/d(υ′ + 1/2) = b + 2c(υ′ + 1/2)max = 0 (6)
or

(υ′ + 1/2)max = {b/2c (7)

Substituting this into eq 4 gives the convergence limit:

νmax = E * = a – b2/4c (8)

This assumes that the vibrational quantum number is a con-
tinuous function. (See Lessinger [6 ] for a discussion of the
errors associated with this assumption.) Students can then
calculate the well depth or dissociation energy in the excited
electronic state from the υ′ = 0 vibrational level (see Fig. 1)
according to

D0′ = E * – T00 (9)

Finally, they can determine the well depth from the equilib-
rium position as

De′ = D0′ + (ωe′/2 – ωe′xe′/4) (10)

Typical student results from this treatment are shown in Table
1, along with a comparison to results from the Birge–Sponer
treatment and some literature results.

The Birge–Sponer Treatment

For comparison purposes, we shall briefly review the
Birge–Sponer treatment (7 ). The Birge–Sponer treatment in-
volves using combination differences of two adjacent transi-
tions originating from the same vibrational level with υ′′ in
the ground electronic state. That is,

∆ν = ν(υ′ + 1 ← υ′′) – ν(υ′ ← υ′′) (11)

or, according to eq 2,

∆ν = ωe′ – 2ωe′xe′(υ′ + 1) (12)

According to this treatment, students prepare a Birge–Sponer
plot of ∆ν versus (υ′ + 1). The data show good linearity with
a slope of {2ωe′xe′ and an intercept of ωe′. A typical student
plot is shown in Figure 3. These are the same data as used
for Figure 2. The scatter in the data appears greater in Figure
3 than in Figure 2 because of an expansion of the y-axis. The
treatment presented here differs slightly from that in some
of the literature (2, 6 ) in that others advocate a plot of ∆ν vs
υ′ or ∆ν vs (υ′ + 1/2). We prefer the treatment presented here,
which is consistent with ref 1, since the intercept is exactly
ωe′ and not a combination of ωe′ and ωe′x e′.

The area under this curve represents the well depth or
dissociation energy in the excited electronic state from the

υ′ = 0 vibrational level, D0′:
D0′ = 1/2 base × height =

1/2(ωe′/2ωe′x e′) × (ωe′) = ωe′ 2/4ωe′xe′
(13)

The corresponding energy from the equilibrium position is then
determined from D0′ and the zero-point energy according to eq
10. Finally, the convergence limit energy, E*, and the electronic
band origin, T00, can be determined rather indirectly from one
of the observed transition frequencies by adding and subtract-
ing, respectively, a portion of the area under the Birge–Sponer
plot (see 1). Typical student values using this treatment are
given in Table 1.

Again, the Birge–Sponer treatment presented here does
not include Lessinger’s corrections for incorrectly treating the
vibrational quantum number as a continuous function (6 ).

Discussion

As presented in Table 1, the molecular constants and
energies for the two treatments are nearly identical. We are
not advocating the second-order polynomial fit treatment
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(tiL 5)a
tiFlaimonyloP renopS–egriB

ωe′ 9.131 4.331 11.231
ωe′xe′ 610.1 620.1 150.1
T 00 976,51 296,51 986,51
E* 598,91 698,91 537,91
D0′ 612,4 402,4 640,4
De′ 282,4 072,4 211,4
NOTE: All values are in units of cm{1.
aBased on band-head fitting. Includes the first anharmonic correc-

tion term only.

Figure 3. Typical student plot of data using the Birge–Sponer treat-
ment and fitting to a line. (These data are the same as in Fig. 2. The
scatter appears greater because of an expansion of the y-axis.)
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over the Birge–Sponer treatment because of superior results.
Rather, we advocate this new treatment because students find it
more understandable and straightforward. It is not uncom-
mon for students to object to the Birge–Sponer treatment
because, in their view, it is just a mathematical cookbook
approach. They do not understand the Birge–Sponer plot or
how the area under this plot is the dissociation energy. They
quickly lose sight of the potentials and the associated energies,
as presented in Figure 1. Additionally, the determination of
E* and T00 is somewhat cumbersome.

The polynomial treatment is more appealing because the
students are plotting their “raw” data, usually after the con-
version from λ (nm) to ν (cm{1). They have the mathematical
formula that expresses these data in terms of the molecular
constants and energies (see eq 3). The fit to a second-order
polynomial is very good (Fig. 2), and students immediately
have ωe′, ωe′xe′, and T00. From this, determination of the other

energy terms is straightforward, as outlined above. Students there-
fore have a greater sense of satisfaction and appear to have gained
a better understanding of vibrational quantum states, elec-
tronic potentials, and their associated energies.
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