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A CHART FOR THE ENERGY LEVELS OF THE SQUARE
QUANTUM WELL

M. CHIANI

ABSTRACT. A chart for the quantum mechanics of a particle of mass m in a
one-dimensional potential well of width w and depth Vj is derived. The chart
is obtained by normalizing energy and potential through multiplication by
8mu}2/h27 and gives directly the allowed couples (potential, energy), providing
insights on the relation between the parameters and the number of allowed
energy levels.

1. INTRODUCTION

One of the classical examples in quantum mechanics is the study of the allowed
energy E for a particle of mass m under the effect of a potential well of width w
and finite potential depth V; (Fig. . By solving the Schrodinger equation it results
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FIGURE 1. Potential in a quantum well

that there is no quantization for £ > V{, while for £ < Vj the quantized energy
levels are the roots of some transcendental equations. The graphical discussion
of the allowed energy levels is commonly based on plots which must be drawn
specifically for the numerical values of the potential depth Vj of interest .

In this note we show that, with a suitable normalization, the inverse problem Vj =
Vo(FE) is in simple closed form, and can be represented with a graph valid for
arbitrary Vp,m and w. The graph gives the allowed couples (potential, energy),
with direct insights on energy quantization and on the number of energy levels.

2. ENERGY LEVELS FOR THE POTENTIAL WELL

The material in this section is well known and reported here just for the sake of
completeness.
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The bounded allowed energy levels E < V) for a particle of mass m under the effect
of a potential well of finite width w and potential V() are given by the solutions
of the time-independent Schrodinger equation [6),8]

) - PO | Vapite) = Bt

where t)(z) is the particle wave functions, and [~ |¢(z)[?dz = 1. By introducing
the normalized potential depth and energy

8m - 8m
(2) VO—VOh2 w? EZEFUJQ
where h is the Planck constant, equation for the quantum well is written as
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) 0*y(z) (Vo — E) E?ﬁ(ﬂ:) |z| > w/2
or? - 72
—Eﬁw(x) |z] < w/2.

Due to symmetry of the potential, only even parity solutions ¢ (—x) = ¢(z) or odd
parity solutions ¢(—z) = —(x) are possible.
The even parity general solution of is

a exp (—7‘( %_E|x|> |z] > w/2
w
=
b cos (’R’\/EE> |z] < w/2

where a,b are constants. To have continuity of ¢ (z) and its derivative at tw/2,
the following equations have to be satisfied:

(5) a:bcos(g\/g)exp< \/VO—E>
(6) \/VO—E:\/Etan (gﬁ) .

Similarly, the odd parity general solution of . is

aexp( m/Vo— E 7 12 |)31gn( ) |zl > w/2

bsin (W\/EE) lz| < w/2.
w

Imposing the continuity of ¢ (z) and of its derivative at +w/2 we have

(8) a = bsin (g\/E) exp( Vo — )
9) \/Vo — E = —VEcot (g\/g) .

In particular, equations @ and @[) give the allowed energy levels for a fixed po-
tential depth, for even and odd parity wave functions, respectively.
The transcendental equations @ and @[) are usually discussed plotting separately

the functions tan(VE7/2), —cot(VEw/2) and \/Vo/E — 1 for a given Vy [6118].

An example is reported in Figure [2| for Vj = 13. The abscissa of the intersections
are the allowed energy levels. Unfortunately the graph requires drawing the curve

\/VQ/E — 1 for the specific potential V.

(4) P(x) =

(7) P(z) =
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FIGURE 2. Blue: the function tan(VE 7/2). Red: the function

—cot(VEm/2). Black: the function 1/Vy/E — 1 for Vo = 13. The
allowed energy levels can be read as the abscissa of the intersec-
tions.

3. A UNIVERSAL GRAPH GIVING THE COUPLES (POTENTIAL, ENERGY)
In order to provide a universal graph, valid for all cases, we look explicitly for the
function V; (E) To this aim, we square @, gettin
(10) Vo — £ = Etan? (gﬁ)
Thus, the inverse relation Vy = Vj (E) for the even parity solutions is simply

(11) VOZE’(1+tan2 (%\/E)) :cos2(ijT’7r/2):E~S€C2 (g\/g)

where only the solutions with positive derivative have to be considered ]
Similarly, for the odd parity case, from @D we get

(12) Vo — E = E cot? (gﬁ).

Thus, for the odd-parity wave functions the allowed energy levels are the solutions
with positive derivative of the equation

(13 o= B (14t (SVE)) - JE@ ~ Besct (TVE).

In summary, we have the following result: the allowed couples (potential depth,
energy levels) are given by and or, equivalently, by

(14) V% = VE [secVEr2)|, %= VE ‘csc(\/EW/Z)’

for the even and odd parity wave functions, respectively. In the previous equations
only the positive derivative parts of the functions have to be considered. The chart
is reported in Fig. 3]

This chart is universal as it can be used for a graphical analysis of the allowed
energy levels for arbitrary potential depth and well width.

Here the normalization makes the results easier to interpret with respect to [11).
2These are the only allowed for obvious physical reasons. In fact, it can be checked that the
solutions of (11)) with negative derivative do not satisfy @
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FIGURE 3. Normalized potential depth vs. energy levels for a
particle of mass m and energy F in a finite potential well of depth
Vo and width w.

Blue: plot of the function VE |sec(VE 7/2)| (positive derivative
parts only) corresponding to the even parity solutions;

Red: plot of the function VE |esc(VE 7/2)| (positive derivative
parts only) corresponding to the odd parity solutions.

3.1. Example of use of the chart. Let us consider an electron, for which 8m /h? =
2.66 - 10'8 [eV "1 m 1], in a well of width w = 10A. The normalizing constant is
then 8mw?/h? = 2.66 [eV ~1]. Assume a potential depth Vg = 4.9 [eV], giving the
normalized potential Vy = 13.

From the chart we see that for the ordinate \/‘70 = 3.6 there are four possi-
ble normalized energy levels, approximately of values VE € {0.85,1.7,2.5,3.3}.
Squaring we have E € {0.72,2.89,6.25,10.89}, which in electronvolt are FE[eV] €
{0.27, 1.09, 2.36, 4.1}.

These values, obtained from the graph, are quite close to the exact values, which
can calculated as the numerical solution of to be E € {0.72,2.85,6.30, 10.73},
EleV] € {0.27, 1.07, 2.37, 4.04}.

By inspection of the chart we can also see the effect of an increase or decrease in
the potential depth level.

3.2. Some insights from the chart. The graph of the allowed couple (potential,
energy) reported in Fig. [3| leads simply to several observations. Some are reported
below, where k£ € N denotes a non-negative integer.

(1) Quantization does not depend separately on the system parameters, but on
the product Voymw?.
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(2) For a given normalized potential Vj, the overall number of energy levels is
N=[VV|+1.

(3) There is a solution E = Vj only for specific combinations of Vg, m, w, pro-
ducing an integer v/Vj. In particular, when Vy = (2k)2 and Vp = (2k+1)2,
for even and odd parity, respectively.

(4) As a particular case, if we let Vp — oo we obtain the infinite depth quantum
well. The vertical asymptotes in the chart are at VE = k, corresponding to
cos(VE/2) = 0 or sin(VEw/2) = 0. Thus, the normalized energy levels

for the infinite depth well are E = k2, and the unnormalized allowed energy
levels are E = k?h?/(8mw?).

4. CONCLUSIONS

For the classic problem of a particle in a finite potential quantum well, the chart
in Fig. [3| described in this note gives the possible couples (normalized potential,
normalized energy). It has the advantages to be universal (i.e., valid for arbitrary
system parameters Vo, m, and w), and to give general insights on the role of the
parameters, on the number of quantized energy levels, and on the relation with the
infinite depth well case. The chart is simply obtained by plotting the functions

VE |sec(VE 7/2)| and VE |csc(VE 7 /2)].

(1
2]
(3]
[4]
(5]

(10]

(11]

REFERENCES

L. D. Landau and E. Lifshitz, Course of Theoretical Physics: Vol.: 3: Quantum Mechanis:
Non-Relativistic Theory. Pergamon Press, 1965.

P. H. Pitkanen, “Rectangular potential well problem in quantum mechanics,” American Jour-
nal of Physics, vol. 23, no. 2, 1955.

C. D. Cantrell, “Bound-state energies of a particle in a finite square well: An improved
graphical solution,” American Journal of Physics, vol. 39, no. 1, 1971.

D. W. L. Sprung, H. Wu, and J. Martorell, “A new look at the square well potential,”
European Journal of Physics, vol. 13, no. 1, p. 21, 1992.

D. L. Aronstein and C. Stroud Jr, “General series solution for finite square-well energy levels
for use in wave-packet studies,” American Journal of Physics, vol. 68, no. 10, pp. 943-949,
2000.

D. Griffiths, Introduction to Quantum Mechanics. Pearson Prentice Hall, 2005.

O. F. de Alcantara Bonfim and D. J. Griffiths, “Exact and approximate energy spectrum for
the finite square well and related potentials,” American Journal of Physics, vol. 74, no. 1,
2006.

J. Binney and D. Skinner, The physics of quantum mechanics. Oxford University Press,
2015.

K. R. Naqvi and S. Waldenstrgm, “The finite square well: whatever is worth teaching at all
is worth teaching well,” arXiv:1505.03376, 2015.

V. Barsan, “Understanding quantum phenomena without solving the Schrédinger equation:
the case of the finite square well,” Furopean Journal of Physics, vol. 36, no. 6, p. 065009,
2015.

P. Guest, “Graphical solutions for the square well,” American Journal of Physics, vol. 40,
no. 8, pp. 1175-1176, 1972.

DepT. DEI “G. MARCONI”, UNIVERSITY OF BOLOGNA, ITALY
E-mail address: marco.chiani@unibo.it



	1. Introduction
	2. Energy levels for the potential well
	3. A universal graph giving the couples (potential, energy)
	3.1. Example of use of the chart
	3.2. Some insights from the chart

	4. Conclusions
	References

