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Exact and approximate energy spectrum for the finite square well
and related potentials

O. F. de Alcantara Bonfima�

Department of Physics, University of Portland, Portland, Oregon 97203

David J. Griffithsb�

Department of Physics, Reed College, Portland, Oregon 97202
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We investigate the problem of a quantum particle in a one-dimensional finite square well. In the
standard approach the allowed energies are determined implicitly as the solutions to a transcendental
equation. We obtain the spectrum analytically as the solution to a pair of parametric equations and
algebraically using a remarkably accurate approximation to the cosine function. The approach is
also applied to a variety of other quantum wells. © 2006 American Association of Physics Teachers.

�DOI: 10.1119/1.2140771�

I. INTRODUCTION

The mathematics of quantum mechanics is usually intro-
duced through physical systems described by one-
dimensional potential wells.1,2 These examples are used to
show the emergence of quantized states as solutions of the
Schrödinger equation subject to appropriate boundary condi-
tions. Unfortunately, there are not many potentials for which
the bound state energies can be expressed in closed form.
The classic example is the infinite square well, but it is ob-
viously artificial. In the more realistic case where the poten-
tial well is finite, the allowed energies as functions of the
barrier height can be found by numerically solving a tran-
scendental equation,3 by graphical methods,4–7 or by various
approximation techniques.8–12

The finite quantum well is of great practical importance
because it forms the basis for understanding low-dimensional
structures such as quantum well devices.13 Therefore, it is
useful to explore other ways of representing the spectrum of
allowed energies. In this paper we develop a method that
allows us to obtain a closed-form solution for the exact en-
ergy spectrum for the finite quantum well by expressing a
given bound state energy together with the barrier height in
parametric form. The method leads to a simple but accurate
approximation scheme involving the solution to a quadratic
equation that leads to a closed-form algebraic expression for
the nth allowed energy as a function of the well depth. �The
accuracy can be improved by allowing cubic equations with
results that are essentially indistinguishable from the exact
values, but we will restrict our attention to quadratic approxi-
mations.� We also apply the method to the semi-infinite
square well, the delta-function in an infinite square well,14

and the double delta-function well.15

II. THE FINITE SQUARE WELL—EIGENVALUE
EQUATIONS

We begin with the one-dimensional infinite square well

V��x� = �0 �− a � x � a� ,

� �otherwise� .
� �1�

The �normalized� solutions to the �time-independent�
Schrödinger equation are

�n�x� = ��1/a cos �knx� �n = 1,3,5, . . . � ,

�1/a sin �knx� �n = 2,4,6, . . . � ,
� �2�

where kn��2mEn /� is determined by the boundary condi-
tions ��=0 at x= ±a�. Specifically, kn=n� /2a and the al-
lowed energies are

En =
n2�2�2

8ma2 �n = 1,2,3, . . . � . �3�

The finite square well

V�x� = �0 �− a � x � a� ,

V0 �otherwise� ,
� �4�

is much more complicated.16 The bound states are alternately
even functions17

�n�x� = 	Ane�nx �x � − a� ,

Bn cos�knx� �
x
 � a� �n = 1,3,5, . . . � ,

Ane−�nx �x � a� ,
� �5�

and odd functions

�n�x� = 	− Ane�nx �x � − a� ,

Bn sin�knx� �
x
 � a� �n = 2,4,6, . . . � ,

Ane−�nx �x � a� ,
� �6�

where �n��2m�V0−En� /�. The continuity of � at ±a forces

An = �e�na cos�kna�Bn �n = 1,3,5, . . . � ,

e�na sin�kna�Bn �n = 2,4,6, . . . � .
� �7�

�The remaining constant Bn is determined by normalization.�
The continuity of �� at ±a imposes the constraints

�n = �kn tan�kna� �n = 1,3,5, . . . � ,

− kn cot�kna� �n = 2,4,6, . . . � ,
� �8�

which, in turn, determine the allowed energies.
Equation �8� can be solved graphically. Let

z � kna =
a

�
�2mEn, z0 �

a

�
�2mV0, �9�

where z is a dimensionless measure of the energy and z0 is a
dimensionless measure of the size of the well. In this nota-
tion Eq. �8� becomes
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��z0/z�2 − 1 = �tan�z� �n = 1,3,5, . . . � ,

− cot�z� �n = 2,4,6, . . . � .
� �10�

In Fig. 1 we plot both sides of Eq. �10� on the same graph for
the case z0=15; the points of intersection represent solutions
�see Table I�. Notice that the left side of Eq. �10� is zero at
z=z0. As the well becomes broader/deeper, more and more
solutions occur, and the intersections approach z=n� /2, that
is, En→n2�2�2 /8ma2, reproducing the infinite square well
result �Eq. �3��. As the well becomes narrower/shallower,
there are fewer and fewer solutions, and when z0�� /2, only
a single bound state �n=1� survives.

It would be helpful if we could obtain an exact closed-
form expression for the allowed energies, as functions of the
well depth, but such an expression is out of the question.
What about approximate formulas? In 1979 Garrett8,18 pro-
posed a method that amounts to treating the finite square
well as an infinite well whose half-width a is augmented by
the penetration depth of the exponential tail of the wave
function, 1 /�n. Although the idea seems reasonable, the ac-
tual results are not very good. It gives very poor estimates
for the energies and predicts the existence of unphysical
bound states above the barrier. Our purpose is to present a
parametric expression for the energy spectrum and a simple
and surprisingly accurate formula for the bound state ener-
gies of the finite square well as functions of the well depth.
We will also discuss similar approaches to some related po-
tentials.

III. EXACT AND APPROXIMATE ENERGIES OF
THE FINITE SQUARE WELL

We rewrite Eq. �10� as

�z0/z�2 − 1 = �tan2�z� �n = 1,3,5, . . . � ,

cot2�z� �n = 2,4,6, . . . � ,
� �11�

or

z

z0
= �
cos z
 �n = 1,3,5, . . . � ,


sin z
 �n = 2,4,6, . . . � ,
� �12�

where n� /2−� /2�z�n� /2 �see Fig. 2�. The eigenvalue
equations in this form and their graphical representation have
been the focus of previous work.3,5,6 Equation �12� is equiva-
lent to Eq. �10�, but Eq. �12� is in a more convenient form. In
particular, the ground state �n=1� is determined by the root
of

z = z0 cos z �13�

in the range 0�z�� /2 �the first intersection in Fig. 2�.
We propose to solve Eq. �13� by approximating the cosine:

cos x � fs�x� �
1 − �2x/��2

�1 + cx2�s �0 � x � �/2� . �14�

The numerator guarantees that fs�x� goes to zero at x=� /2.
We shall use three values for the power in the denominator:
s=0 �the parabolic approximation�, s= 1

2 , and s=1. In the last
two cases the parameter c in the denominator can be chosen
so as to match the first two terms in the Taylor expansion of
cos x at the origin,

c1 = �1 − 8/�2 �s = 1
2� ,

1
2 �1 − 8/�2� �s = 1� ,

� �15�

or by a least-squares fit

c2 = �0.212 012 6 �s = 1
2� ,

0.101 016 4 �s = 1� .
� �16�

Either way, the approximation is excellent: for s= 1
2 the maxi-

mum discrepancy is 0.68% using c1 and 0.30% using c2; for
s=1 the maximum discrepancies are 0.41% and 0.17%, re-
spectively. See Fig. 3 for a pictorial representation of these
approximations. But the point of representing cos z in this
way is that for s= 1

2 Eq. �13� reduces to a quadratic for z2,
with the solution

Fig. 1. Graphical solution of Eq. �10� for z0=15. Here g�z�
= ��z0 /z�2−1 , tan z ,−cot z�, and intersections �marked with bullets� indicate
solutions.

Table I. Numerical solution to Eq. �9� for z0=15.

n z En /V0

1 1.472 473 0.009 636
2 2.944 041 0.038 522
3 4.413 720 0.086 582
4 5.880 355 0.153 683
5 7.342 468 0.239 608
6 8.798 006 0.344 022
7 10.243 82 0.466 382
8 11.674 42 0.605 743
9 13.078 15 0.760 168

10 14.416 91 0.923 765

Fig. 2. Graphical solution of Eq. �12� for z0=15. The slope of the straight
line is 1 /z0, and g�z� is now the right side of Eq. �12�.
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z2 =
1 + 8z0

2/�2 − �1 + 4z0
2�c + �2/��2�

2�16z0
2/�4 − c�

. �17�

For example, if z0=15, we obtain z=1.4761 using c1 and
1.4745 using c2; the correct answer from Table I is 1.4725—
errors of 0.24% and 0.14%, respectively.19 In Fig. 4 we plot
the ground state energy E1 �which, apart from the scale fac-
tor in Eq. �9�, is z2� as a function of the well depth V0 �which,
with the same scale factor, is z0

2�. To the eye, the curves are
indistinguishable.

The excited states can be obtained in much the same way
if we first shift the intersection points in Fig. 2 to the left as
illustrated for n=2 in Fig. 5:20

zn = xn + �n − 1�
�

2
�0 � xn � �/2� . �18�

Now

yn = cos xn = zn tan 	1 = zn/z0, �19�

so

z0 =
xn + �n − 1��/2

cos xn
. �20�

Equation �20� determines xn �implicitly� as a function of z0,
and Eq. �18� then yields the nth allowed energy. If we treat xn
as a parameter, we can construct the graph of zn �Eq. �18�� as
a function of z0 �Eq. �20��. When xn ranges from 0 to � /2, zn
goes from �n−1�� /2 to n� /2, and z0 from �n−1�� /2 to
infinity. If we express all energies in the terms of �2 /2ma2,
then zn=�En and z0=�V0. In this notation Eqs. �18� and �20�
may be written in a more transparent way:

�En = t + �n − 1�
�

2
, �21�

�V0 =
t + �n − 1��/2

cos t
, �22�

where t ranges from 0 to � /2. In Fig. 6 we plot zn=�En

versus 1/z0=1/�V0. Moving to the left means increasing the
well depth, so more and more bound states appear; the nth
state comes on line as z0=�V0 hits �n−1�� /2.

To obtain a closed-form expression for the excited ener-
gies �as a function of the barrier height� we use the parabolic
approximation21

cos x � f0�x� = 1 − �2x/��2, �23�

which yields22

zn �
�

8z0
�4�n − 1�z0 − � + ��4z0 + ��2 − 8�nz0� . �24�

The graph of Eq. �22� is virtually indistinguishable from Fig.
6.

IV. RELATED POTENTIALS

We next apply the same strategy to three related poten-
tials: the semi-infinite square well, the delta-function in an
infinite square well,14 and the double delta-function well.15

Fig. 5. Projecting the intersection points: zn is the nth intersection �in Fig.
2�, xn is the corresponding point in the interval �0,� /2�.

Fig. 6. Plot of zn �scaled �En� vs. 1 /z0 �scaled 1/�V0� for n=1, 2, 3, 4, 5,
and 6. This plot shows the exact spectrum, obtained using Eqs. �21� and
�22�.

Fig. 3. Plot of cos�x� versus x �lower curve�, together with the approxima-
tions fs as defined by Eq. �14� using the parameters c1 from Eq. �15�. The
upper curve is the parabolic approximation, f0; the others are indistinguish-
able from cos�x�, on this scale.

Fig. 4. Scaled ground state energy �z2=2ma2En /�2� as a function of scaled
well depth �z0

2�. The exact solution �dots� and the two approximations, Eq.
�17� with c1 and c2, are practically indistinguishable.
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A. Semi-infinite square well

The potential

V�x� = 	� �x � 0� ,

0 �0 � x � a� ,

V0 �x � a� ,
� �25�

admits as bound states all the odd solutions to the finite
square well in Eq. �6�, because these are the solutions that go
to zero at the origin. There is nothing new to be said about
this case; we simply select the n=2,4 ,6 , . . . results from Sec.
III.

B. Delta function in an infinite square well

Imagine introducing a delta-function barrier at the center
of the infinite square well:

V�x� = �
��x� �
x
 � a� ,

� �otherwise� .
� �26�

The odd solutions �Eq. �2�� are not affected, because the
wave function vanishes at the location of the spike:

�n�x� =
1
�a

sin�knx� �n = 2,4,6, . . . � . �27�

The even solutions �n=1,3 ,5 , . . . � can be written in the form

�n�x� = �A sin �kn�a + x�� �− a � x � 0� ,

A sin �kn�a − x�� �0 � x � a� .
� �28�

To express the wave function this way we have invoked
continuity at x= ±a and 0; the delta function puts a kink in �
at the origin23

−
�2

2m
����0� + 
��0� = 0, �29�

or

tan z = − z/z0, �30�

where z�kna is a dimensionless measure of the energy, and
z0�ma
 /�2 is a measure of the strength of the delta func-
tion. In Fig. 7 we plot −tan z and z /z0 and look for points of
intersection.

For large n �small z0� the solutions are just above z
=n� /2, so En=n2�2�2 /8ma2�n=1,3 ,5 , . . . �, filling in the re-
mainder of the infinite square well energies. For very large

z0, the solutions are just below n�, doubling the odd solu-
tions; in this limit the barrier is impenetrable, the well sepa-
rates into two �with half the width�, and the energies are all
doubly degenerate, because the particle could be in the left or
the right half.

What we really want is En as a function of 
, that is, zn as
a function of z0. As before, we project zn down to the first
cell �0�x�� /2�:

zn = �n + 1�
�

2
− xn. �31�

Now,

yn = tan xn = zn/z0, �32�

so

z0 =
�n + 1��/2 − xn

tan xn
. �33�

We treat xn as a parameter �which runs from 0 to � /2� and
plot zn �Eq. �31�� versus z0

−1 �Eq. �33�� in Fig. 8; for com-
pleteness, we also plot the odd solutions �which are con-
stants�.

We would prefer to have a closed-form expression for zn
�as a function of z0�, rather than an implicit formula, Eq.
�30�, or a parametric relation, Eqs. �31� and �33�. Such a
relation is not possible, but a fairly good approximation is
afforded by the same procedure as before:24

tan x �
cx

1 − �2x/��
. �34�

A nonlinear curve fit gives c=0.450. Using this value we
find

zn �
�

4
�n − cz0 + ��n + cz0�2 + 4cz0� . �35�

In Fig. 8 this approximation for n=1, 3, and 5 is superim-
posed on the exact results.

C. Double delta-function potential

The double delta-function well,

V�x� = − 
���x + a� + ��x − a�� , �36�

is sometimes used as a toy model for a diatomic ion such as
H2

+.15 It has at least one bound �negative energy� state and at

Fig. 7. Graphical solution of Eq. �30�: We plot g�z�= z /z0 ,−tan z�, and look
for points of intersection. Also included is tan z on the interval 0�z
�� /2 and the projection of y3 onto it at x3.

Fig. 8. The allowed energies for the delta-function barrier in an infinite
square well; zn in Eq. �31� is plotted against 1 /z0 in Eq. �33� for n=1, 3, and
5. The horizontal lines are the odd solutions for n=2, 4, and 6. The dots
represent the approximation, Eq. �35�.
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most two. The former is an even function; the latter �if it
exists� is odd.

The even eigenfunction has the form

�1�x� = 	Ae�x �x � − a� ,

B cosh��x� �− a � x � a� ,

Ae−�x �x � a� ,
� �37�

where ���−2mE /�. Continuity at x= ±a leads to A
=Be�a cosh��a�; the discontinuity in the derivative Eq.
�29� yields

�2�

2m
�Ae−�a + B sinh��a�� − 
Ae−�a = 0. �38�

We then obtain

z�1 + tanh z� = z0, �39�

where z��a and z0�2ma
 /�2.
The odd eigenfunction has the form

�2�x� = 	− Ae�x �x � − a� ,

B sinh��x� �− a � x � a� ,

Ae−�x �x � a� .
� �40�

Continuity at x= ±a forces A=Be�a sinh��a�; the disconti-
nuity in the derivative yields

�2�

2m
�Ae−�a + B cosh��a�� − 
Ae−�a = 0, �41�

and for this case we obtain

z�1 + coth z� = z0. �42�

In Fig. 9 we plot tanh z and z0 /z−1. There is exactly one
intersection and hence just one even bound state. We also
plot coth z; depending on the value of z0, there may or may
not be an intersection.

To construct the graphs of z1 and z2 as functions of z0, we
treat z as a parameter, calculate z0 using Eqs. �39� and �42�,
and plot the former as ordinate and the latter as abscissa �see
Fig. 10�.

The first excited state appears when z0�1. For z0 greater
than about 5, z1�z2�z0 /2; in this regime the two wells are
effectively separated, and the particle can either be in one or
in the other, so the energy is doubly degenerate.

We would like closed-form expressions for z1�z0� and
z2�z0�. Note that

1 + coth z = 1 +
ez + e−z

ez − e−z =
2

1 − e−2z , �43�

and thus Eq. �42� can be written in the form

z

z0
=

1

2
�1 − e−2z� . �44�

Suppose we approximate the right-hand side of Eq. �44� as

1

2
�1 − e−2z� � z�1 + az + bz2

1 + cz + dz2� . �45�

The best fit on the interval 0�z�5 is25 a=0.228, b=0.010,
c=1.187, and d=0.682. We solve for z and denote the
solution as z2. The result is

z2 =
az0 − c + ��az0 − c�2 + 4�z0 − 1��d − bz0�

2�d − bz0�
. �46�

For the ground state we note that

1 + tanh z =
2

1 + e−2z , �47�

and thus Eq. �39� reads

z

z0
= 1 −

1

2
�1 − e−2z� . �48�

In this case we can adopt a two-parameter approximation26

1

2
�1 − e−2z� � z�1 + az

1 + cz
� , �49�

where the best fit on the interval 0�z�5 is a=−0.0572 and
c=1.286. Equation �39� yields

z1 =
cz0 − z0 − 1 + ��cz0 − z0 − 1�2 + 4z0�az0 + c�

2�az0 + c�
. �50�

In Fig. 10 we plot these approximate formulas for z1 and z2
superimposed on the exact results.

V. DISCUSSION AND CONCLUSION

We have developed a technique for calculating the com-
plete energy spectrum for the finite square well and related
problems. The eigenvalue equation for this family of poten-
tials takes the form of a transcendental equation z=z0g�z�,
where z is related to the energy of the system and z0 is
related to the strength of the well. Solving such equations by

Fig. 9. Graphical solution of Eqs. �39� �z1� and Eq. �42� �z2�. Here g�z�
= z0 /z−1, tanh z , coth z�. Fig. 10. Allowed energies �z1, upper, and z2, lower� for the double delta-

function well, as functions of the strength of the well �z0�. The dots are the
approximations Eqs. �46� and �50�.
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graphical or numerical means is sometimes inadequate, and
an analytical solution, even in approximate form, can be use-
ful.

Our method recasts the transcendental equation as a pair
of parametric equations. �If g�z� is periodic, we exploit this
feature to project the solution onto the interval �0,� /2�.� The
parametric equations are plotted to show the nth allowed
energy as a function of the well depth. We then approximate
the sinusoidal or hyperbolic functions as ratios of polynomi-
als �Padé approximants�, converting the transcendental equa-
tions into quadratic equations, which we solve to obtain
closed form expressions for the bound state energies. Al-
though approximate, the results are surprisingly accurate
�and can be made even more so if cubic equations are used�.
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