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A method is presented for estimating the number of bound sta-
tes of different orbital angular momentum quantum number for an F-cen-
tre residing in an alkali halide crystal through the introduction of a
spherically symmetric potential well of finite depth. The method is il-
lustrated through its application to the F-centre in sodium chloride,and
the results for F-centres in various alkali halide lattices are tabula-
ted. The results provide a good account of the experimental features of
the F-centre including the K-band which we suggest is due to transi-
tions from the 2p to excited levels. Values for the effective range of
penetration of the defect electron with the neighbouring cation in dif-
ferent crystals are determined by requiring that the well depth be in-
dependent of orbital angular momentum quantum number. The technique is
applied to estimate the Madelung constant and Madelung potential for the

host crystal.

Apresenta-se um método para estimar o numero de estados 1i-
gados de diferente momento angular orbital para um F-centro residente
em um cristal de haleto alcal ino, pela introducdo de um polo de poten-
cial esfericamente simétrico de profundidade infinita. O método € ilus-

trado pela sua aplicacao ao F-centro em cloreto de sddio, e osresulta-
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dos para F-centros em varias redes de haletos alcal inos sdo tabulados.
Os resultados descrevem bem os dados experimentais do F-centro incluin-
do a banda K, que sugerimos ser devida a transicées do nivel 2p a ni-
veis excitados. Determinamos valores para o alcance efetivo de penetra-
cao do elétron de defeito com o cation vizinho em diversos cristais,
impondo que a profundidade do poco seja independente do ndmero quanti-
co de momento angular orbital. A técnica é aplicada para estimar a
constante de Madelung e o potencial de Madelung para o cristal hospe-

deiro.

1. INTRODUCTION

Trapped electrons impart a colour to the crystal inwhich they
reside owing to an electronic transition in the ultraviolet-visible re-
gion of the spectrum that is characteristic of the particular defect or
"colour centre”™. In this paper a quantum mechanical method is developed
to determine the electronic structure of an F-centre in an alkali hali-
de crystal. The central hypothesis of this procedure is that the F-cen-
tre lies in a spherically symmetric potential well, while in fact the
crystal lattice has cubic symmetry. Using the experimentally measured
transition energy of a given F-centre and the ground state energy ofthe
centre relative to the conduction band', one can ascertain the number
of bound states of different orbital angular momentum quantum number

through the solution of the transcendental equations summarized below.

The simplifying assumption of a spherically symmetric effec-
tive potential for a colour centre may be rationalized in several ways.
First, we observe that the charge distribution of the alkali halide
crystal lattice surrounding the defect centce may be viewed approxima-
tely as a spherical shell of charge surrounding the centre. The poten-

tial field of a sphere of total charge q and radius "a" is, in MKS units?

=
3
It

q/(kmea) (r ¢ a) (1)

=
3
1

q/ {bmer) (r > a) (2)

where E is the dielectric constant of the medium. Thus the potential of

the spherically symmetric charge distribution is constant within the
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shell. Second, in their reviewarticle, Gourary and Adrian® point out
that the potential for a colour centre can be witten as the sumof two
terns; a periodic potential and a spherically synmetric potential. The
periodic potential is often elimnated by substitutinganeffective mass
for the actual mass of the colour centre, leaving one with the spheri-
cally symretric attractive potential and the polarizabl e cres. Froma
consi deration of the radial charge distribution functions, we have found
that 80-95%of the el ectronic charge of the Ucentre (normally consi de-
red to be a hydride ion) in an alkal i hal ide lattice is enclosed within
a sphere of radius equal to the lattice constant® \¢ shall assume in
the following that the ‘o' of equation (J is equivalent to the nea-
rest-nei ghbour distance in the host crystal unless otherwi se specified.

2. METHOD

V¢ consider the spherically symretric, three-di mensional squa-
re-vel 1 potential of depth V and radius "a" pictured in Figure 1.  For
a particle of mass m in this well, Schrb'dinger's equation in spherical
coordinates is

2 r?sind 96 #%51n20 92

2 | 2]
-g— La—[rza—-J+ ! —a—-[sine—g—g}+—]——a—‘i’+V(r)‘¥=E‘l’
m re 3r

(3)

where ¥V(r) = - V for r <a and ¥(r) = O otherwi se. Making the substi tu-
tions ¥(r,8,¢) = R(»)¥(6,¢) and x(r) = R(»)/», we find for the radial
part of Schr¥dinger's equation that

2 2

Z_Zr_>2< VX = BX (r < a) (1)
m
2 2

B o, > ) ©
m ar

Therefore, the radial nmotion is simlar to the one-dinensional mnotion of
a particle in the potential (5)

Vi) = -V, 4 L(+1)7 (6)

2mp?
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Fig. | - A spherically symmetric, three-di mensional square well potential

of Strengtn Vea®.

According to Schiff®, the second term in equation (6) corresponds to an

additional centrifugal potential energy for a particle having orbital

angular momentum L = /2 (2+1)72.

In the ensuing discussion of these equations we shall employ
the nomenclature from the hydrogen atom solutions. Thus energy levels
will be labelled by an integer n and the angular momentum states will
be referred to as s-and p-states, although all energy levels appearing

here are non-degenerate.

A. Zero Angular Momentum
For the case of s-states the solutions of equations of equa-
tions (4) and (5) which satisfy the constraints that R(r) is finite at

=O and that R(r) vanishes as r»~ have the form

A sin{or) (r < a) (7)

>
1]

B exp(-Br) {r > a) (8)

>
]
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where

R
1]

on(y, - |2/ (9)

and

™
i

[2n |£|/72)? (10)

By equating the logarithmic derivative (1/R) % of the two solutions at
r=q, one can solve numerically or graphically for the s-state energies.

A conveniente procedure is to define £ = {aa) and n = (Ba) and solve the

equations
Ecotf =-7n (11)
£2 407 = my a2/ (12)
Since &€ and n are required to be positive by definitions, the s-state

energy levels may be found from the interaction in the first quandrant
of the curves given by equations (I1) and (i2), provided the weil
strength Voa2 is known. Such a plot: is given in Figure 2. From this plot

it follows that there are

T 5T :
35 6 7 58 9 10

3

Fig. 2 - Curves of n = -£cotf and £ + n? = mv,a® /h%.

0|_27£234
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no bound s-states if Voa2 < (w2#2/8m)

one bound s-state if (w2%%/8m) < V,a® < (9n*%%/8m)
two bound s-state if (9%°%%/8n) < V,a® < (25m*A%/8m)

etc.

Alternatively, as for the case of the F-centre, if one knows ‘%' and

Ens’ the energy of the nth s-state, Figure 2 may be utilired to find a

value of V, and the number and energies of the bound s states as well.

B. Arbitrary Angular Momentum

After substituting ¥(r,0,¢) = R(»)Y(9,¢) into equation (3),
one has for the radial part of Schrodinger's equation for a particle with

orbital angular momentum R that

&R 2 dR E ] “‘“”]R: 0 (13)

where p = (ar) for r<a and p = (ZBr) for r>a. For the case of orbital an-
gular momentum quantum number 2=}, equating the logarithmic derivatives
of the interior and exterior solutions at r=a and setting & = (¢a) and

n = (Ba), as before, leads to

Lf%ﬁé - E%J n?-mn-1=0 (14)
£ +n% = 2mra® /A (15)

Equation (14) is a quadratic equation of the form
Sn2+ n+ u=0
and the solutions of interest to it are

r,= (1 + /1 + 43)/28 (16)
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Equations (14) and (15) are displayed in Figure 3. From this graph one

finds that there are

no bound p-states if V,a? < (w?A?/2m)

one bound p-state if (w2%%/2m) < V,a? < (20%A%/2m)
two bound p-state if (2m2%2/2m) < V,a? < (9n°R* /2m)
etc.

Schiff’ rationalizes the fact that the smallest value of the well
strength for which there exists a bound state is greater for R =1 than
the corresponding value for R = 0 by referring to the term in the radial
wave equation describing the centrifugal potential energy. Physically
this suggests that a particle possessing orbital angular momentum requi-
res a stronger attractive potential to bind it than a particle with no
orbital angular momentum. ft turns out that the minimum strength Voa2

required to bind a particle increases monotonically with increasing R

3T 4 5 627 7 8 9 370
3

Fig\ 3 - Curves of % - ]—2 and £2 + n? = erd/ua2 /B2
g .
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Analogous to the case of s-states, one can employ Figure 3 to
solve for the energies of the bound p-states. Alternatively i1f one knows

I'a" and the value of the optical transition A¥ = F, - E, , Figure 3 may

2p ls
be utilized to find a value of V, and the number and energies ofthe bound

p-states as well.

3. APPLICATION TO THE F-CENTRE IN NaCl

For the F-centre in NaCl the value of the optical transition

for the colour centre is (8a)

Ap = 4580 4 at 20 .

(The value of Ap s 4540 A at -253 °C (8b)). Therefore, at room tempera-

ture

B =F - = =9, 0-? WU

AE EZp Els hc/kF 9.9483 1 a.u. , (17)
where 1 a.u. = 27.207 eV. Gourary and Adrian's point-charge-rnodel calcu-

lations on the F-centre in sodium chloride yield that relative to the

conduction band!

B = - 6.47 eV = - 2.3778 x 107! a.u. (18)

Equations (17) and (18) then irnply that

Ey,= = 1.3830 x 107" a.u. (19)

Rewriting equations (9) and (10) inatoinicunits (h=e=me=l)

results in

£ =oaa = R/2(V, -]E’]Sl)) , N =fpr= a‘/ZIElsD (20)

As rnentioned previously, ‘a'' is taken as equivalent to the crystal para-

meter, so that for NaCl, a = 5.31 Bohrs. Thus,

n=3,6618 (21)



From Figure 2 we then find E,_on the firstn =~ Ecot& curve, or
2.53 % g = 2.5359 (22)
where the latter value is obtained numerically from equation (11) using

thevalue for n given inequation (21). Fromequations (12), (21) and

(22), one obtains the well strength

v.a® =9.9199
so that

0.35818 a.u.

<
1

This implies, according to our previous discussions, that there is only

one bound s-state for the F-centre in NaCl; this we shall call the ground

state.
Pertaining to the number of bound p-states, we have, in atomic
units,
/ -
£=ua=a/2(V-|E2 ) ,n =8r=a”lE, | (23)
p 2p
Cit_g.-_]_s-l—.f.l_’ g2+n2=2V0a2 (2).4)

Since a = 5.31 Bohrs,

n o =2.7929 . (25)

Then the first curve of the transcendental equation (24) displayed inFi-

gure 3 yields

3.61 =~ £ =3.5994 , (26)

where the latter value is obtained from the numerical solution of the
transcendental expression ,in equation (24) using equation (25). This
gives a well strength of 10.3782 according to equations (24)-(26), and
the well depth is

v, = 0.3681 a.u.
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CIN< 3294 A
E{au)
Epp--0.13830 56 A
E,q--0.23778 12245804

Fig. 4 - Energy level diagram of the F-centre in NaCl

Here, too, we see that there is only one bound state. W also
note thst the value of V, obtained for s- and p-states agree reasonably
well. Therefore, we are able to draw the energy level diagram for the F-
-centre in sodium chloride as shown in Figure 4. A qualitative represen-
tation of the electronic spectrum for the defect centre based on this
diagram consists of a rather sharp peak centred at 4540 A for thels + 2p
transition, a broad band from 3294 A to higher values for the 2p excita-
tion into the conduction band with relatively low intensity and a second
broad, low-intensity band originating at 1916 A for the }s — continuum
transition. This description may be compared with the experimentally ob-
served spectrum shown in reference (9b); the agreement between the two

is apparent.

4. APPLICATIONTO OTHER ALKALI HALIDE CRYSTALS

The method developed and illustrated above has been applied to
the F-centre residing in all the alkali halide lattices for which a
ground-state energy of the bound electron has been calculated by Gourary
and Adrian’®. The results are Iisted in Table 1. The well width "a" em-
ployed in each case is the nearest-neighbour distance. E2p has been cal-

culated, as before, from the equation
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E’zp = Els + hc/)\F

where the second term in the sum is an experimental quantity while the
first term is calculated via the point-charge model. It would have been
preferable to employ experimental values for E,q, of course, had they

been available.

Table I. Results of Calculations on the P-centre in Various Alkali Halide Lattices
. x?:l:h Ap (A) Els(au) Ezp(au) Vea? Vea? v, for V, for !no. of no. of ‘ .
Lattice 2 (aw) . for s— | for p- | s-states| p-stateg bound bound 2g 3p
() (2) m 6 states | states (au) (au) | s-states| p-states] (au} |(au)
Lif 3.80 2570 -0.297 { -0.1197 7.2797 | 7.6786 | 0.5041 0.5318 1 1 - -
NaF 4.37 3419 -0.271 -0.1374 8.2606 | 8.8295| 0.4326 0.4624 1 I - -
Ltic1 4.86 3850 -0.253 | -0.1346 9.1334 | 9.5156 | 0.3867 0.4029 1 1 - -
NaCl 5.31 4580 -0.238 | -0.1383 9.9199 1 10.3790 | 0.3518 0.3681 1 1 - -
Il 5.93 | 5560 | -0.219 | -0.1371 | 10.9857 | 11.4540 | 0.3124 0.3257 i 1 - -
RbBr 6.48 6940 -0.205 -0:|39l 11.9479 [ 12.6313 | 0.2845 ' 0.3008 2 | 1 I—0.00SO ] -

(1) Gouracy. 8.S. and Adrian, F.J., Solid State Phye., 10, 127 (1960); p.214;
(2) Ibid, pp. 135-136

he
B) Byp=x-+Eyy

From Table 1 it is obvious that, with the exception of the #-
-centre in RbBr, which has a bound 2s state, the results are qualitati-
vely the same as for NaCl. An energy level diagram for the F-centre in
RbBr is shown in Figure 5. A qualitative description of the electronic
spectrum of the F-centre in RDbBr expected on the basis of this diagram
consists of a narrow, intense peak at 6940 A for the ls — 2p excitation,
a broad, less-intense band starting at 3392 A for the 2p — 2s  excita-
tion and spreading over the 2p —> continuum transition which starts at
3271 A, a band for the ls - continuum from 2222 A plus a possible,
though certainly broad and weak, band from the 2p > continuum at 91120

A.

An additional band, known as the K-band, has been observed on
the high-energy side of the main F-band in the high-resolution absorp-
tion spectra of coloured potassium and ribidium chloride, bromide and
iodide salts'* %, Examples of the K-band in RbCl at two different tem-

peratures are shown in the work of Spinolo and Smith®. Even at low tem-
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E=0 )/ conduction
Eps=-0.0050 ( - band
A< 91120 A
£
(au) <3270 A
E,p=-01393 A=3392 A |
7\<2222A
E g --0.2050 A=6940 4]

Fig. 5 - Energy level diagram of the F-centre in RbBr

peratures, no resolved K-bands have been observed in the lithium or so-
dium salts, although in NaCl the experimental F-band has a long, high-
energy tail which may be due to the presence of an unresolved K-band.
Mott and Gurney have suggested that the additional band is due to the
electronic transition of the F-centre to highly excited states'®. They
employed a hydrogenic model for the F-centre and assigned the K-band to
the sum of 1s - mp, » 2 3, transitions. There has been some dispute
over this interpretation although it seems to be clearly established
now that the X-band absorption is at leat partly due to transitions wi-
thin the F-centre®. On the basis of our calculations, however, it would
seem that the K-band is instead due to transition of 2p electrons to the
conduction band as well as s and 2p electrons to higher excited states,

especially 2p — 2s, that exist in the crystal.

Table 2. Variation of Well Width a for the P-centre in NaCl

Els = -0.238 au

EZp = ~-0.1383 au
well Width [ v,a® for | Vea® for (¥, for [V, for (4, =V,(s)~v,(p)| no. of no. of z, By
s-states p-states | s-statesip-states (au) bound bo{".]d ° Y
2 (au) g~states pstates (au) (au)

(au) (au)

4.0 6.7357 8.310] 0.4210 | 0.519% -0.0984 1 1 - -
5.0 9.0996 9.8506 | 0.36540 | 0.3940 -0.0300 1 1 - -
5.3!“) 9.9199 10.3790 10.3518 0.368} -0.0063 1 1 - -
5-73]7‘2) 11.1035 11.134] 0.3379 | 0.3389 -0.0010 1 1 0.0000 -
6.0 11.8973 | 11.6378 0.3305 | 0.3233 +0.0072 2(barely) i -0.0005 -
7.0 15.1388 13.6734 0.3090 | 0.2790 +0.0300 2 1 -0/0437 -

|. Value of a equal to the crystal parameter in NaCl

2. Value of a for which EZS = 0.0000 au



+04 /v, (au)
+02—
° i l . l L l L 1 1 [ L l
40 50 6.0 70
i a(au)
-02|—
- AVg = Vo(s) — Vo(p)
-041- =0 at
i a=576au
—06/|-
—o08|—
10l
Fig. 6 = AV, = V,(s-states) - ¥, (p-states) as a function of the well

width a for the F-centre in NaCl.

5. F-CENTRE PROPERTIES AS A FUNCTION OF THE WELL
STRENGTH

Calculations have been carried out on the F-centre in NaCl to
determine theeffect of thewell width 'a'" on thewell strength Voaz,
and consequently, on the number of bound states. The results are repor-
ted in Table 2. It is interestina to observe the change in the diffe-
rence 7, of the potential for s- and p-states. This quantity is defined

as

AV, =\, (s-state) - \, (p-state)

and is plotted as a function of the well width "a" in Figure 6. The
spherically symmetric square-well potential defined in Figure 1 is in-
dependent of the value of the orbital angular momentum quantum number;
thus the value of V, should be exactly the same for s- and p- states.
Although this is approximately true for all the F-centres treated in Ta-

ble 1, where the value of 'g'" equal to the crystal parameter of the host
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Table 3. Calculations on the F-centre Ernploying a Value of the Well Width a Equal to the Sun of the
Nearest-Neighbour Distance Plus the Radius of the Neighbouring Cation.

o
_ Well Width :Vaaz for, Voa’for . for .V, for| no.of [no. of By, By
Lattice m | s-states prstates .s-states | p-states bound bound
a (au) l (au)  (au) | s-states|p-states| (au) (au)
LifF 5.28 111.6338 9.7210 | 0.4157 | 0.3474 (2(barely) 1 -0.0035 -
NaF ! 6.22 13.9210 | 12.0237 | 0.3598 0.3108 2 1 -0.0337 -
Licy 6.15 12,9610 11.7691 0.3427 0.3112 2 1 -0.0189 -
NaCl 7.16 ;15.6991 14,0223 | 0.3062 0.2735 2 i -0.0498 -
KCI 8.4k 19.2247 16.9500 | 0.2699 0.2380 2 i -0.0751 -
RbBr 9.28 21.3351 19.3495 | 0.2477 0.2247 2 1 -0.0829 -

(1) a is equal to the sum of the nearest-neighbour distance given in Table | plus the ionic radius
of the neigbouring cation listed in Table 9, p.129 of Kittel, C., Introduction to Solid State

Physics, 4th ed., John Wiley, N.Y., c¢ 1971. The values of Els and E2p employed in these calcu-

lations are those appearing in Table I.

lattice was employed, it can be seen from Figure 4 that in NaCl, AV =0
for a = 5.76 a.u. as cornpared to the crystal parameter of 5.31 a.u. for
the sodiurn chloride crystal.

By assigning the well width values equal to the sum of the
nearest-neighbaur distance plus the ionic radius of the neighbouring
cation one allows the defect electron to exchange with the electrons of
the surrounding nearest-neighbour cations. The results of these calcu-
lations are presented in Table 3. Increased values of "a' increase the
well strength, and from the table, we see that this treatmentresults in

one additional bound s-state for each crystal except RbBr.

6. SELF CONSISTENT SQUARE WELL POTEMTIAL (SCSWP)

To force our model to be mathematically consistent, we can
require that the well depth be independent of the orbital angular momen-
tum quantum number. The results of requiring AV, = 0 through the varia-
tion of the well width pararneter for the crystals are listed in Table 4.
As a consequence of this variation we arrive at one additional bound s-
-state for NaCl and KCI. Also, by forcing this self-consistency on the
model, we obtain a different well width value which may have physical
significance. W define the 'effectivé penetration range' as the diffe-

rence of the well width for which AV, = 0 and the nearest-neighbour dis-
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Table 4. Calculation of the Effective Penetration Range for the F-centre in Alkali Halide Lattices for a self-

-consistent square well potential

Lattice | Well Width| Effective Voa? for| v d for] I, for | ¥, for | no. of [no. of | &, By,
ay Penetrat 102n ] } bound bound

a a Range (au) g-states|p-states | s-states |[p-states| s-states |p-states| (au) (au)
LiF 4,09 0.29 8.0331 | 8.0388 0.4802 0.4806 1 1 - -
NaF k.86 0.49 9.5931 | 9.5938 0.4061 0.4062 1 1 - -
Licl 5.20 6.34 10.G666 [10.0707 0.3723 0.3724 1 1 - -
NaCl 5.76 0.45 11.1857 [11.1863 0.337]) 0.3372 | 2(barely) ] -0.0000 -
KCl 6.43 0.50 12.4193 112.4240 0.3004 0.3005 2 i -0.0102 -
RbBr 7.32 0.84 14,4434 1144369 0.2696 0.2694 2 1 -0.0309 -

(1) The well width a has been calculated using the SCSAP criterion that AV,= V\ (s-states)~ V (p-states) = 0.

The values of Els and EZp listed in Table 1 were empioyed in the calculation.

(2) The effective penetration range is the difference of the well width a and the nearest-neighbour distance
given as the welt-width in Table !. This difference can be regarded as a measure of the exchange interac-

tion between the F-centre electron and the outer-shell eiectrons of the neighbouring metal cations.

tance for the crystal. This effective penetration range goes in value
from a minimum of 0.29 a.u. in LiF to 0.84 for RbBr. The effective pe-
netration range may be viewed as a measure of the interaction between
the defect electron and the electrons of the neighbouring cation. 1t is
seen from Table 4 to have roughly the same percentage change from the

crystal parameter in each case.

A plot similar to Figure 6 can be employed to determine the
well width of a lattice for which "a" is unknown, provided the values
of AE and Els or equivalently E]S and E2p are known, by use of SCSWP.
The desired value of '¢' is then simply that for which AV, = 0. The va-
lues of '¢'" and ¥, so determined enable ene to find an effective Made-
lung energy for the crystal, For the exampleof NaCl, a = 5.76 aiid y, =

0.3372, while the Madelung energy for NaCl is, in atomic units,

1.747

- 17475 _
VMadelung =M/Ro R PEY 0.3291 a.u. ,

where Ro is the crystal parameter and # is the Madelung constant. Using
the values of ''g'"' and V, cited above, we find an effective Madelung

constant gV, of 1.94.

If the Madelung constant and nearest-neigbour distance are

known, Figures 2 and 3 can be employed to estimate values for thenumber
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and energies of the bound states. For the case of the E-centre in NaCl,
we have a well strength of 9.2793, which gives one bound s-state and one
bound p-state with energies of -0.213 a.,u. and -0.102 a.u., respective-
ly. The F-band is predicted to occur at 4110 A as compared to the expe-
rimental value of 4580 A. For the F-centre in RbBr this approximation
yields a predicted F-band at 5640 A as compared to the experimental va-
lue of 6940 A. For Rbl the predicted band is at 6350 A while the expe-
rimental value is 7560 A. In this case, where energy levels have not been

1

calculated by Gourary and Adrian”, we find Els = -0.184 a.u. and EZp =

-0.112 a.u.

7. DISCUSSION

The results of this study demonstrate the relative simplici-
ty of this model. The condition that AV, = 0 gives the required consis-
tency of the SCSMP model and yields qualitatively useful results. Inthe
potential function used here we have eliminated the asymptotic - 1/r be-
haviour which means that we canonly havea finite numberof bound states. By
making use of the experimental AE value we have a good spacing of the
first two energy levels and furthermore have sufficient additional struc-
ture in the F-centre to give a good account of the experimental featu-
res that have been observed. In the case of NaCl we have high- energy
tail on the Pband while in KClI and RbBr we have a second bound s-state
that could account for the observed K-band. Our interpretation of F-cen-
tre transitions is consistent with the conductivity data as wetll, and
our suggestion that the K-band is primarily due to transitions from the
2p level to excited levels is consistent with experimental results. We
could also have considered d-type energy levels but this added complica-
tion was not needed in order to give an adequate description of the da-
ta. A number of considerably more-complicated models have been applied
to this problem, although they do not capitalize on the available expe-

rimental data®’!7.

Since we have suggested that the XK-band may be due primarily
to excitation from the 2p state, a few words are in order on the split-

ting of the 2s and 2p energy levels. In the potential used here the
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splitting is in the opposite direction to what one might expect on the
basis of atomic electronic structure. If we treat the square-well poten-
tial as a perturbation on a coulombic potential, the first-order energy

corrections give (E28 - E as positive and proportional to the well

Zp)
depth V,. Thus the square-well model gives a 2p * 2s absorption transi-
tion while in the coulomb model perturbed by many-electron effects one
considers the 2s = 2p absorption. The energy difference predicted by
the square-well model is considerably too large for a good fit to the
K-band. Once the 2p level is occupied, the lattice will undergo relaxa-
tion, thus shifting the energy levels to higher values that could rea-
sonably decrease the predicted energy difference. However, this is a
complicated phenomenon, and it is also possible that the bound 2s level
would be moved into the continuum. Since the colour-centre properties
are specific and characteristic, we prefer to view the defect particle
as localized within the defect cavity*. Therefore, we feel that equa-
tion (1) is the predominant component in the potential and consequently
that the ordering of energy levels found here more accurately reflects

the actual situation in the crystal.

The discussion of V4 and "a" in terms of the lattice crystal
energy has considerable interpretative value. When V, and "a" are de-
termined via the requirement that AV, = 0, the values of ¥, in Table 4
are in good agreement with the Madelung crystal lattice energies. Thus
this procedure accounts for the electrostatic potential energy of the
lattice. When we employ a value of 'a'" equal to the lattice parameter
plus the cationic radius, the resulting V, values (Table 3) give reaso-
nable agreenient with the Born-Mayer crystal energy, which is the elec-
trostatic potential plus a correction for electron repulsion effects

between the nearest neighbours.

For the "a" value obtained by the AVy = 0 condition, the

well width for the defect electron extends beyond the centre of the nea-

* The 1s states are about 95% localized. For those crystals showing a
K-band the 2p state is also highly localized (KCI1 and RbBr). The 2p

state of NaCl is diffuse.
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rest-neighbour cation site. While this model is based on the concept of
a particle localized in the potential well, the extent of the wellwidth
suggest a description of the F-centre defect particle as a solvated

electron.

In conclusion, this study, for which a simplified model has
been applied to a system where considerable quantitative data are avai-
lable, is seen to be qualitatively consistent and allows itself to be
interpreted in an intuitively appealing manner. Studies of the relaxed

18

excited F center'® and perturbation of the F band via increased pressu-

re!® or an electric field?? are other methods used to study the colour

centres that have provided further understanding of the electronic pro-
perties of the trapped electron. The SCSWP model is now being applied to
the study of more cornplicated systerns where the defect particle has in-
ternal structure and for systems where the particle trapping medium is

a non-periodic matrix.
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