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A variant on the infinite spherical well is the finite spherical well, with

potential

V (r) =

{
−V0 r < a

0 r > a
(1)

This problem is superficially like that of the finite square well in one
dimension, but there is a crucial difference, which is that the variable r starts
at 0 rather than −a, so we can’t use the argument that the wave function
is even or odd. However, we have worked out a similar one-dimensional
problem with the hybrid square well, and we can adapt that solution to this
problem.

The wave function must be found in the two regions separately, and then
boundary conditions used to determine the energies.

For r < a, the radial equation is (with l = 0)

− h̄2

2m
d2u

dr2 −V0u = Eu (2)

d2u

dr2 = −2m
h̄2 (V0 +E)u (3)

≡ −µ2u (4)

where

µ=

√
2m(V0 +E)

h̄2 (5)

This has the general solution
1
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u(r) = C sinµr+D cosµr (6)
As with the infinite square well, we note that the actual radial function

is u(r)/r, so we must eliminate the cosine term to keep the radial function
finite at r = 0. Therefore

u(r) = C sinµr (7)
For r > a, the equation is

d2u

dr2 = k2u (8)

where

k ≡
√
−2mE

h̄2 (9)

Note that for a bound state, E is negative, so k is real. This equation has
a general solution

u(r) = Aekr+Be−kr (10)

and in order for the function to remain finite at infinity, we must set A = 0
so we have:

u(r) =Be−kr (11)
Now for the boundary conditions. We have only one boundary, at r =

a, so as with the square well in the one-dimensional case, we require the
function and its first derivative to be continuous at the boundary. These
conditions give us

C sinµa = Be−ka (12)
µC cosµa = −kBe−ka (13)

Eliminating the exponential by dividing these two equations gives us a
condition similar to that in the square well case:

− µ
k
= tanµa (14)

We can look for solutions graphically. As before we introduce two vari-
ables
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z ≡ µa (15)

z0 ≡
a

h̄

√
2mV0 (16)

Then ka=
√
z2

0− z2 and the equation to solve is

tanz =
−1√

z2
0/z

2−1
(17)

The number of solutions depends on the value chosen for z0. The plot
shows the situation for z0 = 8.

The green curve is −1√
z2

0/z
2−1

and the red curve is tanz. In this case we can

see there are 3 intersections, so here there are 3 bound states. The precise
values of the energies can be found by solving the equation numerically
using software such as Maple’s fsolve command.

The asymptote of −1√
z2

0/z
2−1

is at z= z0 so since the first asymptote for the

tangent is at z = π/2, clearly if z0 < π/2 the two curves will not intersect.
The following plot shows the situation for z0 = 1:
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The condition z0 < π/2 translates into

V0a
2 <

h̄2π2

8m
(18)

Incidentally, the intersection at z = 0 isn’t a physical solution, since it
implies E =−V0, which in turn means d2u/dr2 = 0 and µ= 0, giving u=
Cr+D, R= u/r = C+D/r. To avoid infinity at the origin, we must have
B = 0, and to satisfy continuity of the wave function and its derivative at
r = a (see above) gives C =Be−ka for the wave function and −kBe−ka =
0 for its derivative. The latter condition means B = 0 and hence C = 0,
meaning the wave function is zero everywhere and not normalizable.


