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Mathematical Tripos 2003 : Electromagnetism O5, Mich. 2002

Lecture notes by A.J.Macfarlane, DAMTP

Corrections or comments by email to A.J.Macfarlane@damtp.cam.ac.uk

1 Introduction

1.1 Electric Charge

The existence of electric charge was well-known already to the ancient Greeks, from the

rubbing of amber with fur.

Experiments show that there are charges of two kinds, positive and negative. All

stable charged matter owes its charge to a preponderance of electrons, if negative, and of

protons, if positive. In fact, each electron and each proton carry a charge �e, where

e = 1:6� 10

�19

C; (C = Coulomb); (1)

a magnitude so small that total charge can be regarded as a continuous variable. Thus

we can refer to the charge density �(r) as the charge per unit volume at a point r of a

spatial distribution of charge.

Experiment shows also that, when we consider stationary particles P

1

and P

2

situated

at r

1

and r

2

with charges q

1

and q

2

, then P

1

experiences a force

F

12

=

1

4��

0

q

1

q

2

r

12

2

r

12

r

12

=

1

4��

0

q

1

q

2

r

12

2

^
r

12

; (2)

due to P

2

. This expresses the inverse-square or Coulomb law. Here

r

12

= �r

21

= r

1

� r

2

; r

12

= jr

1

� r

2

j;
^
r

12

= r

12

=r

12

; (3)

with
^
r

12

a unit vector pointing from P

2

to P

1

.

If q

1

q

2

is positive (same sign charges) then F

12

is an repulsive force; if negative (op-

posite sign charges), then it is attractive.

The factor

1

4��

0

is a dimensional quantity due to the use, discussed below in Sec. 1.7,

of SI or Syst�eme Internationale units.

Next we consider the force on charge q

1

at r

1

due to a set of charges q

j

at r

j

. This is

given by

F

1

=

q

1

4��

0

X

j 6=1

q

j

r

1j

r

1j

3

: (4)

Hence, for the force on a charge q at r due to charge of density �(r

0

) continuously dis-

tributed over a spatial volume V , we have

F(r) =

q

4��

0

Z

V

(r� r

0

)�(r

0

)d�

0

jr� r

0

j

3

: (5)

Now we de�ne the electric �eld E(r) of such a distribution of charge to be the force it

exerts on a unit charge placed at r, i.e.

E(r) =

1

4��

0

Z

V

(r� r

0

)�(r

0

)d�

0

jr� r

0

j

3

: (6)
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Similarly for a system of point charge q

j

at r

j

, and to charge of density �(r

0

) distributed

over a surface S, we have

E(r) =

1

4��

0

X

j

q

j

(r� r

j

)

jr� r

j

j

3

(7)

E(r) =

1

4��

0

Z

S

(r� r

0

)�(r

0

)

jr� r

0

j

3

dS

0

: (8)

Ex. q at the origin O gives rise to the electric �eld E(r)

E =

1

4��

0

q

r

2

^
r;

^
r =

r

r

; r = jrj; j
^
rj = 1: (9)

and q

0

at r experiences a force (due to this �eld),

F(r) = q

0

E(r) =

1

4��

0

q q

0

r

2

^
r: (10)

1.2 Electric current

The ancient greeks were well-aware too of magnetic material like lodestone, and of its

e�ects. However a modern view is that the magnetic �eld B(r) and related forces are

due to charges in motion, i.e. to electric currents. So we look next at the idea of electric

current.

There are of course very many types of electric current ow, but here we shall con�ne

ourselves to getting an intuitive picture of current ow in a copper wire.

First we recall that atoms are electrically neutral systems with central nuclei containing

Z protons and Z electrons moving around it `in orbits' governed by the laws of quantum

mechanics.

If we use a battery to apply an electric �eld to a length of copper wire or to some

crystalline material, then some of the electrons of the copper atoms are detached from

the atoms, leaving them as positively charged ions. These ions are held in position by

the mechanical forces that describe the constitution of the material, and the detached

electrons are moved like a gas, by the applied electric �eld, through the essentially �xed

ionic background. In other words the electrons constitute an electric current owing in

the wire (material).

Describe the ow of charge or current density at a point r by means of a vector j = j(r).

This gives the amount of charge which, in unit time, crosses a surface element �S with

normal n; (n

2

= 1) to be

j � n�S: (11)

Suppose we have a distribution of charge carriers, here electrons of charge q, N per

unit volme, whose average motion is a drift velocity v. As this passes a surface element

�S with normal n, the charge �q passing the surface element in time �t is the amount of

2
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charge in the oblique cylinder shown, whose height is jvj�t.

This gives

�q = Nq(v � n�S)�t

= j � n�S�t; (12)

where

j = Nqv = �v; (13)

Here � = Nq is the charge density of electrons in the wire (material).

Also the total charge per unit time passing through a surface S is called the electric

current I through S

I =

Z

S

j � ndS =

Z

S

j � dS; dS = ndS: (14)

We comment here on the generic term ux: The ux f of a vector �eld v through a

surface S is de�ned by

f =

Z

S

v � dS: (15)

Here S can either be closed bounding a spatial volume V , so that f is the ux of v out

of S = @V , as in the Gauss theorem context of sec. 1.5 below, or else open and bounded

by a curve C = @S, as in the de�nition just given, (14), of current I as the ux of current

density through S, or through C.

1.3 Magnetism

Magnetic �elds B(r) arise from bar magnets, or from electric currents in wires, coils,

etc. If a particle of charge q has position vector r and velocity v =
_
r, and moves in the

presence of electric and magnetic �elds E(r) and B(r), it is an experimental fact that it

experiences a force (the Lorentz force)

F = F

e

+ F

m

= q(E+ v^B; (16)

3
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where E = E(r) and B = B(r).

Consider the e�ect of the �eld B of the bar magnet on the wire. The current in the

wire involves particles of charge q moving along the wire with velocity v. Each one feels

a (magnetic) force qv^B which, for positive q, tends to push them downwards. One can

see such a wire move upwards in experiment.

In an experiment, the bar magnet can be replaced by a current carrying coil connected

to a battery. If the connection is in the correct sense, then the same outcome can be

observed.

One can also give the (magnetic) force per unit volume on a medium carrying N

charges q per unit volume each moving with velocity v

f = Nqv^B = j^B: (17)

1.4 Maxwell's Equations

It was the great achievement of Maxwell to unify the separate subjects electricity and

magnetism into a single consistent formalism involving a set of equations (Maxwell's

equations) capable of describing all classical electromagnetic phenomena. For charges

and currents in a non-polarisable and nonmagnetisable medium, such as the vacuum,

these are

r^E+

@B

@t

= 0 (18)

r �B = 0 (19)

r �E =

1

�

0

� (20)

r^B = �

0

(j + �

0

@E

@t

) (21)

where � and j are the charge and current densities.

These equations involve two constants �

0

and �

0

to be discussed below. The last term

of (21) features the displacement current postulated by Maxwell in order to achieve a

formalism that consistently uni�ed previous theories of electricity and magnetism.

For more general media, Maxwell's equations consist of (18{19), unchanged and

r �D = � (22)

r^H = j+

@D

@t

(23)

4
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where

D = ��

0

E; H =

1

��

0

B: (24)

The latter vectors are used to describe non-trivial electrical and magnetic properties of

media for which � and � are callled permittivity and permeability. They are observable

constants for the media. We con�ne attention here to the case of � = � = 1.

First we observe the consistency of Maxwell's equations. Since r � (r^F) = 0 for all

vector �elds F, (18-19) imply

@

@t

(r �B) =r � (�r^E) = 0: (25)

So r �B = 0 is preserved in time.

Similarly r � (:::) of (21) implies

0 = r � j + �

0

@

@t

(r �E)

0 = r � j +

@�

@t

: (26)

Here (20) has been used. Eq. (26) expresses the conservation of charge. Integrating (26)

over a �xed volume V containing total charge Q

Q =

Z

V

�d�; (27)

we derive

dQ

dt

=

Z

V

@�

@t

d� = �

Z

V

r � jd� = �

Z

@V

j � dS; (28)

which states that the rate of decrease of the charge contained in V is equal to the ux of

j into V (through the surface S = @V ). It is noted that the presence of the displacement

term in (21) is essential in this demonstration of consistency.

1.5 Integral forms of Maxwell's equations

Maxwell's equations involve divs and curls. We can therefore convert them into useful

integral forms by integrating over �xed volumes using the divergence theorem, or over

�xed surfaces using Stokes's theorem.

�

�

0

=r �E)

1

�

0

Z

V

�d� =

Z

V

r �Ed� (29)

Hence

1

�

0

Q =

Z

S=@V

E � dS: (30)

The right-hand side is the ux of E out of V . The statement (30) is Gauss's Law. It is

of practical use.

Ex. Consider a point charge q at rest at O, and let V be the sphere of radius r centred

at O. By symmetry the electric �eld must be of the form

E(r) = E(r)e

r

= E(r)n; (31)

5



C
o
p
y
ri

g
h
t 

©
 2

0
0
2
 U

n
iv

er
si

ty
 o

f 
C

am
b
ri

d
g
e.

 N
o
t 

to
 b

e 
q
u

o
te

d
 o

r 
re

p
ro

d
u
ce

d
 w

it
h
o
u

t 
p
er

m
is

si
o
n
.

so that

Z

@V

E � dS =

Z

@V

E � ndS = E(r)

Z

@V

dS; (32)

and hence

1

�

0

q = E(r) 4�r

2

E =

q

4��

0

1

r

2

e

r

: (33)

Similarly (19) implies that

Z

@V

B � dS = 0; (34)

for any closed surface S = @V . This can be interpreted as the statement that there are

no magnetic `charges' or magnetic monopoles.

Next (20) yields

Z

S

r^B � dS = �

0

Z

S

j � dS+ �

0

�

0

Z

S

@E

@t

� dS: (35)

Hence, in the case of steady current (no time dependence), Stokes's theorem implies

Z

C

B � dr = �

0

Z

S

j � dS

= �

0

( ux of j through open S bounded by C)

= �

0

I; (36)

where I =

R

S

j � dS is the total current through S (or C). This is Amp�ere's Law. It too

is useful in practice.

Ex Consider an in�nite straight wire lying along the z-axis and carrying a current I in

the positive direction.

By symmetry, expect B of the form B = B(s)e

�

using cylindrical polars (s; �; z).

Then apply Amp�ere for C any circle centred on the z-axis and lying in a horizontal plane.

On C we have

r = se

s

(�) so that, at constant s, dr = sde

s

= s

@e

s

@�

d� = se

�

d�: (37)

Then Amp�ere's law implies

B(s)s

Z

2�

0

d� = �

0

I (38)

and hence

B(s) =

�

0

I

2�s

: (39)

Finally (21) implies

Z

C

E � dr =

Z

S

r^E � dS = �

Z

S

@B

@t

� dS = �

d

dt

Z

S

B � dS; (40)

by applying Stokes's theorem to a �xed curve C = @S bounding a �xed open surface S.

If we de�ne the electromotive force (or electromotance) acting in C by

E =

Z

C

E � dr; (41)

6
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and the ux of B through (the open surface) S by

� =

Z

S

B � dS; (42)

then we get Faraday's Law of induction

E = �

d�

dt

: (43)

This will be studied later.

Having seen above that Gauss's Law implies the inverse-square law (33), it is instruc-

tive to give some attention to the converse. We consider a point charge q situated at the

origin O.

Let S

1

be a sphere of radius r centred at O. Assume

E(r) =

c

r

2

e

r

; (44)

for some c, so that n = e

r

on S

1

. Then

Z

S

1

E � dS =

c

r

2

Z

S

1

e

r

� ndS =

c

r

2

Z

S

1

dS =

c

r

2

4�r

2

= 4�c: (45)

This is the statement required by Gauss for c =

q

4��

0

.

But this has been done only for a sphere such as S

1

. However we can promote the

result

1

�

0

q =

Z

S

1

E � dS (46)

from S

1

to arbitrary S enclosing the origin and some sphere, say S

1

. For this purpose let

V be the spatial volume between S

1

and S. There is no charge in this volume so that in

V we have r �E = 0. Hence

0 =

Z

V

r �E =

Z

S+S

1

E � dS: (47)

The notation here indicates that the bounding surface of V consists of two parts S, on

which the outward normal is the obvious n, and S

1

, on which the normal outward from

V as the divergence theorem dictates, is �e

r

. Thus we have

0 =

Z

S

E � ndS +

Z

S

1

E � (�e

r

)dS; (48)

so that

Z

S

E � dS =

Z

S

1

E � dS: (49)

7
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1.6 Electromagnetic waves

Here we consider Maxwell's equations in the absence of charges and of currents, e.g. in

the vacuum.

r^E+

@B

@t

= 0 (50)

r �B = 0 (51)

r �E = 0 (52)

r^B = �

0

�

0

@E

@t

: (53)

Take r^ (:::) of (52) and use

r^ (r^E) =r(r �E)�r

2

E; (54)

where the �rst term is zero by (51), and r

2

=r �r. Then we have

�r

2

E = �r^

@B

@t

=

@

@t

(r^B) = ��

0

�

0

@

2

E

@t

2

: (55)

Thus each (Cartesian) component of E satis�es a wave equation

(r

2

�

1

c

2

@

2

@t

2

)E = 0; (56)

where the wave speed c is given by

c

2

=

1

�

0

�

0

: (57)

Check that (51) and (53) can be used similarly to show that each component of B

satis�es the same wave equation. In other words, each of E(r) and B(r) are propagated

as waves of speed c.

The values of the quantities �

0

and �

0

are �xed by experiment, and, by use of this

information (see Sec. 1.7), we �nd that

c = 3� 10

8

m=s = the speed of light: (58)

So Maxwell's equations with the crucial displacement current term, necessary for con-

sistency, can describe electromagnetic wave phenomena across its entire frequency spec-

trum: see the Table. For waves of frequency �, measured in hertz, and wavelength �,

measured in metres, c = ��. Also, in quantum theory, the energy of a quantum of given

frequency � is E = h�, where h is Planck's constant. (One hertz equals one cycle per

second).

Frequency spectrum

radiation � � radiation � �

 10

19

10

�11

infra-red 10

14

10

�6

X-rays 10

18

10

�10

�-wave 10

13

10

�5

ultra-violet 10

16

10

�8

mm 10

11

10

�3

visible light 10

15

10

�7

radio 10

6

10

2

8
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1.7 Units

Syst�eme Internationale or MKS units, use the Metre, Kilogram, and Second as the units

of length, mass, and time. For electromagnetism one more unit is called for, the unit of

charge, the Coulomb C. Then

F

12

=

q

1

q

2

4��

0

r

2

(59)

tells us that �

0

is measured in units C

2

N

�1

M

�2

, since force is measured in Newton's N ,

N = KMS

�2

. Experiment then leads to

�

0

=

1

36�

� 10

�9

C

2

N

�1

M

�2

: (60)

Next F = qE tells us that jEj is measured in units NC

�1

. Since current I is measured

in CS

�1

and (18) tells us that jBj is measured in units NC

�1

M

�1

S, it follows from (39)

that �

0

is measured in units NC

�2

S

2

, and experiment leads to

�

0

= 4� � 10

�7

NC

�2

S

2

: (61)

Finally we see that

1

p

�

0

�

0

= 3� 10

8

MS

�1

, giving the value (58) for the speed of light.

1.8 Discontinuity formulas

Here we collect, for easy reference but without discussion at this stage, a class of formulas

that logically belong together but whose occurrences are scattered throughout several

sections of the course material.

Let S be a surface with unit normal n which separates regions V

�

of space, with n

pointing from S into V

+

.

a). Let S carry charge density � per unit area. Let E

�

denote the electric �elds just

inside the V

�

sides of S. Then

n �Ej

+

�

=

1

�

0

� (62)

n^Ej

+

�

= 0: (63)

Eq. (62) is proved on the basis of Gauss's theorem in Sec. 2.5. Note eqs. (62) and (63)

respectively involve the components of E normal and tangential (n � n^E = 0) to the

surface S.

b). Let S carry current density s per unit length (charge crossing unit length in S in

unit time). Let B

�

denote the magnetic �elds just inside the V

�

sides of S.

n �Bj

+

�

= 0 (64)

n^Bj

+

�

= �

0

s: (65)

Eq. (64) is proved in the same way as used for (62). Eq. (65) is a consequence of

Stokes's theorem, as is (63). A special case of (65) is treated in Sec. 3.3

The correspondence between Maxwell's equations and the discontinuity formulas is

clear: drop

@

@t

terms, and replace r(:::) by n(:::)j

+

�

. Thus, from (26), we expect that

n � jj

+

�

= 0 at a surface of discontinuity, one that may carry surface density of charge.

9
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Force per unit area on S

In case (a), consider only the special case when E

�

only have normal components

n �E

�

= E

�

. Then the force per unit area on a surface S (carrying surface charge �) has

magnitude

1

2

�(E

+

+ E

�

): (66)

Proof of this result is given in Sec. 2.5.

In case (b), consider only the special case in whichB

�

only have tangential components

B

�

. Then the force per unit area on a surface S (carrying surface current s) is normal to

S, and has magnitude

1

2

s(B

+

+B

�

): (67)

We do not prove this; the most convenient method of proof lies outside the scope of this

course.

We note that each of (66) and (67) feature the arithmetic mean of the forces that one

would suppose true on either side of S on the basis of force statements like (10) and (17).

2 Electrostatics

Electrostatics is the study of time independent electromagnetic phenomena in the absence

of currents and magnetic �elds. Then Maxwell's equations are

r^E = 0 (68)

r �E =

1

�

0

�: (69)

Eq. (68) can be satis�ed by de�ning the (electrostatic) potential � by means of

E = �r�; (70)

so that (69) yields Poisson's equation

r

2

� = �

1

�

0

�: (71)

In this way the study of electrostatics is reduced to the study of a single equation {

Poisson's equation. In regions of space where there is no electric charge � = 0, this

reduces to Laplace's equation

r

2

� = 0: (72)

2.1 Electrostatic potential

The work done on point charge q (take q = 1 for convenience) in moving it from A to B

in an electric �eld E(r) is

W

AB

=

Z

b

a

F � dr =

Z

b

a

E � dr: (73)

This is independent of the actual path from A to B that is used. To see this consider a

closed curve C. Then

I

C

E � dr =

Z

S

r^E � dS = 0; (74)

10
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by Stokes's theorem. Now let C = C

1

+C

2

where C

1

goes from A to B, and C

2

goes from

B to A. Let C

3

be the curve C

2

taken in reverse sense, i.e. from A to B. Hence (74)

implies

Z

C

1

E � dr = �

Z

C

2

E � dr =

Z

C

3

E � dr: (75)

Since the paths C

1

and C

2

here are arbitrary, the result follows.

SoW

AB

depends ( as well as on E(r)) only on A and B, so that we de�ne the potential

�(r) by means of

�

Z

r

a

E � dr = �(r)� �(a): (76)

For an in�nitesimal path (replace r by r+ �r and a by r in (76))

��r �E(r) = �(r+ �r)� �(r) � �(r) + �r �r�(r)� �(r) = �r �r�(r); (77)

upon use of Taylor's theorem. Hence we get (70) again:

E = �r�: (78)

The potential �(r) is determined by (76) only to within an additive constant. To

remove this ambiguity, we may demand that �(r

0

) = 0 at some point P

0

with position

vector r

0

. Thus

�(r) = �

Z

r

r

0

E � dr =

Z

r

0

r

E � dr; (79)

and we usually take for P

0

the point at in�nity.

For the case of a point charge q at the origin, let the path in (79) be C : r(s) =

sr; 1 � s <1, so that r(s) = jr(s)j = sr and dr(s) = rds. Thus

�(r) =

Z

1

r

E � dr =

Z

1

1

q

4��

0

s r � (rds)

s

3

r

3

=

q

4��

0

r

Z

1

1

ds

s

2

=

q

4��

0

r

: (80)

It can be seen that �! 0 as r goes to in�nity, and it is easy to check that

�r� = �e

r

@�

@r

=

q

4��

0

r

2

e

r

=

q

4��

0

r

3

r = E(r); (81)

as expected. Since Poisson's equation is a linear equation for �, we can apply the super-

position principle to `elementary charges' �(r

0

)d�

0

, and infer from (81) that the potential

due to a distribution of charge of density �(r

0

) is given by

�(r) =

1

4��

0

Z

V

�(r

0

)d�

0

jr� r

0

j

: (82)

Since

r

1

jr� aj

= �

r� a

jr� aj

3

; (83)

we get

�r�(r) =

1

4��

0

Z

V

(�r

1

jr� r

0

j

)�(r

0

)d�

0

=) =

1

4��

0

Z

V

(r� r

0

)�(r

0

)d�

0

jr� r

0

j

3

= E(r); (84)

consistently with (6) of chapter 1.

11
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The superposition principle

The superposition principle applied above to the derivation of (82) is of importance.

Since the �elds and potentials we deal with here obey linear equations { Maxwell's equa-

tions { any superposition of known solutions of them is again a solution. Eq. (82) is the

(continuous) superposition of solutions of Poisson's equation corresponding to `elementary

charges' �(r

0

)d�

0

at points r

0

. Eqs. (7) and (8) of Sec. 1.1 also illustrate the principle.

Other examples of the principle at work will occur frequently. The chance of applying it

to the solution of problems should be kept in mind: it often saves time and e�ort, and

sometimes o�ers the only route to success.

Field lines and equipotentials

We mention a way of gaining some insight into the nature of the electric �eld sur-

rounding a system of charges.

One draws the �eld lines of E for the system. A �eld line here is a line at each of

whose points E is tangent to the line.

Also one draws on the same diagram the equipotentials of the system. These are

surfaces � =constant. As E = �r�, and r� is everywhere normal to such surfaces, it

follows that the �eld lines cut the equipotentials at right angles.

2.2 Gauss's theorem and the calculation of electric �elds

In Sec. 1.5 we proved Gauss's theorem

1

�

0

Q =

Z

S

E � dS; (85)

where

Q =

Z

V

�d�; (86)

is the total charge contained in the spatial volume V , @V = S. We now employ it to in

calculation of electric �elds of simple systems of charge.

a) The point charge q at the origin has been treated in Sec 1.1.

b) Line charge lying along the z-axis with uniform (line) density of charge � (Coulombs)

per unit length. Let S be the closed surface of a right circular cylinder of unit length

coaxial with the line charge. By symmetry, it is clear that E is radial, so E �n = 0 on the

ends of S. In fact E(r) = E(s)e

s

where s and e

s

are the radial coordinate of cylindrical

polars and its associated unit vector. Thus Gauss gives

E 2�s =

1

�

0

�; E(s) =

�

2��

0

1

s

e

s

: (87)

12
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This corresponds to a potential given by

2��

0

� = �� log

s

s

0

: (88)

In this example, �(s) does not go to zero as s ! 1, so we were forced to demand that

� = 0 for some �xed but arbitrary value s

0

of s.

Check that (88) is correct via

�r� = �e

s

@�

@s

(89)

c) Plane sheet P occupying the xy-plane, carrying uniform charge density � per unit

area.

Here we use the `Gaussian pillbox': a cylinder of cross-sectional area A, with axis

k = (0; 0; 1), half above and half below the xy-plane. By symmetry E is perpendicular to

P . Above P we have E = Ek and below E = �Ek for some E. This time E � dS is zero

on the curved sides of the pill-box, and Gauss gives

EA� (�E)A =

� A

�

0

; E =

1

2�

0

�: (90)

d) Parallel plane sheets in the planes z = 0 and z = a, carrying uniform distributions

of charge respectively of charge with surface densities �� (Coulombs) per unit area. Using

the result of c) twice and the principle of superposition, we �nd that

E =

�

�

0

k; k = (0; 0; 1); (91)

in the spatial region between the plates and zero outside.

e) Spherical shell, centre at O, radius r

0

, uniform charge density � per unit area,

and thus total charge Q = 4�r

0

2

�. By symmetry, as for a point charge at O, we have

E = E(r)e

r

.

To apply Gauss's theorem, take spheres of radius r, concentric with the shell. Let

these have surfaces S

1

and S

2

, in the cases (i) r > r

0

and (ii) r < r

0

In case (i):

Z

S

1

E � dS =

Z

S

1

E(r)e

r

� e

r

dS =

1

�

0

Q

4�r

2

E(r) =

1

�

0

Q; E(r) =

�

�

0

r

0

2

r

2

: (92)

13
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For case (ii), we have E(r) = 0, since there is no charge in the volume V

2

.

It is to be noted that the result (87) is the same (for r > r

0

) as applies to a point

charge Q situated at the origin.

Check that E = E � e

r

the normal component of E has discontinuity

1

�

0

� (93)

at r = r

0

.

f) Sphere of radius R carrying uniform charge of density � (Coulombs) per unit volume,

and thus total charge Q =

4�

3

R

3

�.

For r > R by superposition of shells and the result of e), we learn that the potential

is the same as it would be if we had a point charge Q at the origin.

E(r) = E

1

(r)e

r

; E

1

(r) =

Q

4��

0

1

r

2

: (94)

For r < R, applying Gauss to a sphere S

2

centre the origin of radius r, only the charge

inside S

2

is relevant, and we have

E(r) = E

2

(r)e

r

; E

2

(r) 4�r

2

=

1

�

0

�

4�

3

r

3

; (95)

so that inside the charge distribution

E

2

(r) =

Qr

4��

0

R

3

: (96)

We have obtained (96) by direct application of Gauss, but we could otherwise have found

it from e) by a suitable application of the superposition principle.

Note that E(r), the normal (and here only) component of E, is continuous at r = R.

We can use E = �r� = �e

r

@�

@r

to determine the potentials �

1

outside, and �

2

inside,

the charge distribution.

�

@�

1

@r

=

Q

4��

0

1

r

2

) �

1

=

Q

4��

0

1

r

+ A

�

@�

2

@r

=

Qr

4��

0

R

3

) �

2

= �

Qr

2

8��

0

R

3

+B: (97)

Here A and B are constants of integration. Demanding that � ! 0 as r ! 1, we look

at �

1

and require A = 0. To �nd B, we use the fact that � is continuous at r = R. This

leads to

�

2

=

Q

8��

0

R

3

(3R

2

� r

2

): (98)

g) The discontinuity law at a surface carrying surface charge.

Suppose a surface S with normal n carrying charge of uniform charge density � per

unit area, separates regions 1 and 2 of empty space, with n pointing into 2. Let E

1

and

E

2

be the electric �elds in regions 1 and 2.

Use Gauss with a Gaussian pillbox of very small height, and cross sectional area A,

with the end with normal n just inside 2 and the other end with normal �n, just inside 1.

14
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In fact we take the height so small that the curved sides of the box contribute negligibly

to the surface integral of the theorem. Then

[n �E

2

+ (�n) �E

1

]A =

�A

�

0

; n �Ej

+

�

=

1

�

0

�; (99)

as stated in Sec. 1.8.

See that examples c), d), e), and f) conform to this, there being no surface charge

present in f).

2.3 Dipoles and the multipole expansion of the potential

Consider asystem of two point charges �q, �q at O and +q at d. The superposition

principle implies that

4��

0

�(r) = q(�

1

r

+

1

jr� dj

): (100)

For all examples like the present, by far the easiest method of expansion involves the

vector statement of Taylor's theorem:

f(r+ h) = f(r) + h �rf(r) +

1

2

(h �r)

2

f(r) + : : : : (101)

Here

1

jr� dj

=

1

r

� d �r

1

r

+

1

2

(d �r)

2

1

r

+ : : : : (102)

So for d = jdj small we have

4��

0

� = �qd �r

1

r

: (103)

The electric dipole arises by taking the limits q ! 1; d ! 0 in such a way that qd

remains constant, at a �nite value qd = p. Then p = qd de�nes the dipole moment of the

electrical dipole, and

4��

0

� = �p �r

1

r

=

p � r

r

3

=

p � e

r

r

2

: (104)

We can go further to the linear quadrupole with charges �q at �d and 2q at the

origin, so that the system has zero total charge and also zero dipole moment. (It looks

like a pair of dipoles pointing in oppposite directions.)

4��

0

q

� =

2

r

�

1

jr+ dj

�

1

jr� dj

=

2

r

� [

1

r

+ d �r

1

r

+

1

2

(d �r)

2

1

r

]� [

1

r

� d �r

1

r

+

1

2

(d �r)

2

1

r

]

= �(d �r)

2

1

r

: (105)

Note that this approach gets the cancellation of terms to happen ahead of their evaluation.

Employ spherical polars and take d = dk = (0; 0; 1) in the z-direction. Then (104)

reads as

4��

0

� =

p cos �

r

2

: (106)
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Otherwise ( but towards the same end) in Cartesians, we have p �r = p

@

@z

, and, for

the dipole and the linear quadrupole, we have

4��

0

� = �p

@

@z

1

r

= �p(�

1

r

2

z

r

) =

pz

r

3

(=

p cos �

r

2

) (107)

4��

0

� = �q(d �r)

2

1

r

= �qd

2

@

2

@z

2

1

r

= �qd

2

@

@z

(�

z

r

3

)

= qd

2

(

1

r

3

�

3z

2

r

5

): (108)

Using spherical polars as above, with z = r cos �, we have, for the linear quadrupole

4��

0

� = qd

2

1� 3 cos

2

�

r

3

: (109)

We note that as r ! 1 , the potentials of the point charge, the dipole, and the linear

quadrupole go to zero like

1

r

;

1

r

2

and

1

r

3

.

We next consider a general �nite charge distribution of density �(r

0

). Taking an origin

near to or within it, we want to see how its potential behaves at large distances r. We

will follow the same procedure as above, using Taylor's theorem (101). We �nd

�(r) =

1

4��

0

Z

V

�(r

0

)d�

0

jr� r

0

j

=

1

4��

0

Z

V

�

1

r

� r

0

�r

1

r

+

1

2

(r

0

�r)

2

1

r

: : :

�

�(r

0

)d�

0

: (110)

The leading term of 4��

0

� (going like

1

r

) is the total charge term, namely

Q

r

; Q =

Z

V

�(r

0

)d�

0

; (111)

unless Q = 0. In the latter case the leading term (going like

1

r

2

) is the dipole term

�

�

Z

V

r

0

�(r

0

)d�

0

�

�r

1

r

= �P �r

1

r

; (112)

where the dipole moment of the distribution is

P =

Z

V

r

0

�(r

0

)d�

0

: (113)

If Q = 0 and P = 0, the leading term is a quadrupole term

1

8��

0

Z

V

r

j

0

r

k

0

�(r

0

)d�

0

T

jk

; (114)
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where the quadrupole tensor T

jk

is given by

T

jk

= @

j

@

k

1

r

= @

j

(�

r

k

r

3

) = �

1

r

3

�

jk

+

3r

j

r

k

r

5

: (115)

In the case of (108), only a 33-tensor component is present.

In fact, the linear axisymmetric quadrupole of (108) is not the most general quadrupole

possible.

The above discussion can be generalised to cover multipoles of higher orders with

potentials going to zero like higher powers of

1

r

, and this can be described well under the

heading: Solutions of Laplace's equations

In spherical polars (r; �; �), the general solution of Laplace's equations with spherical

symmetry (with no dependence on � and �) is

� = a+

b

r

: (116)

Next we have solutions, like the dipole potential, / cos �,

� = �Er cos � +

c

r

2

cos �: (117)

What E does the �rst term give? In cylindrical polars (s; �; z), the general solution of

Laplace's equations with cylindrical symmetry is

� = a+ b ln s: (118)

2.4 Potential Theory

We have seen that electrostatics is governed by the single equation, Poisson's equation

(71). From the theory of partial di�erential equations then we quote a result.

Consider a charge distribution �(r) speci�ed throughout a �xed spatial volume and

suitable boundary conditions (BC) on S = @V . Poisson's equation has a unique solution

for

(i) (Dirichlet BC): �(r) speci�ed for all r 2 S,

(ii) (Neumann BC):

@�

@n

= n �r�(r) = �n �E(r) speci�ed for all r 2 S.

The latter correspond to specifying the density of charge on S.

We shall assume the existence of solutions, prove their uniqueness, and consider meth-

ods of solution.

To prove the uniqueness in case (i), we need a lemma: Let  and � be scalar �elds.

Then the divergence theorem implies

Z

V

r � (�r )d� =

Z

V

[(r�) � (r ) + �r

2

 ]d�

=

Z

S=@V

n � (�r )dS: (119)

We assume � is given throughout V , and the potential is speci�ed by the function �

0

on S. Suppose that are two functions �

1

and �

2

which each satisfy Poisson's equation for

the given �, and are each equal to �

0

on S.
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Apply the lemma with  = � = �

1

� �

2

. Since r

2

 = 0 within V , and � =  = 0 on

S, we get, from (119),

Z

V

jr j

2

d� = 0; (120)

in V . It follows that r = 0 and that  = c in V , c constant. But  = 0 on S, so we

have c = 0. Hence  = 0, and �

1

= �

2

, uniqueness.

Case (ii) can be handled similarly, with the end result that �

1

= �

2

to within an

undetermined constant.

Next we consider the example of (i) with V all space and S a surface at in�nity. We

assume �(r

0

) given for all r

0

2 V , but actually non-zero only for a �nite sized subset

^

V � V , `near' the origin. The BC is then � = 0 on S. The work of Sec. 2.3 indicates

that this makes sense.

We believe we know a solution:

�(r) =

1

4��

0

Z

V

�(r

0

)d�

0

jr� r

0

j

: (121)

This is well-de�ned, and can be shown to satisfy Poisson's equation (71), and we now

know that it is unique. Since r

2

1

jr�r

0

j

= 0 provided that r 6= r

0

, (121) obeys Laplace's

equation at points r where there is no charge. For points r 2

^

V , an explicit proof that

(121) satis�es Poisson's equation is non-trivial. Although the proof is a traditional part

of potential theory, based on Green's theorem and identities, we omit it, arguing that it

is enough to know we have a solution, from our method of construction of it.

2.5 Perfect conductors

In electrostatics, we deal only with the idealised case of perfect conductors in which

electrons are free to move without resistance.

Consider then a perfect conductor C with surface S, with perfectly non-conducting

empty space (the vacuum) outside.

We shall see in Sec. 3.1 that inside C we must have E = 0, and hence � = 0. Thus

it follows that all charges must reside on the surface S of C. Further E = En on S, else

charges would be able to move along S. Thus S is an equipotential of constant �, since

E = �r� is normal to it. Also, because E = 0 inside S, � is constant throughout there,

with a value equal to the surface equipotential value. Finally the charge � per unit area

on S follows from g) of Sec. 1.2. This gives

1

�

0

� = n �Ej

+

�

= n �E = E (122)

This follows E = 0 inside (the minus side).

The Force on a charged conductor

Consider a surface element of S of C of area A, small enough to be considered plane

with n = (0; 0; 1) and for E to be constant on it. Suppose the surface charge to be
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contained in a thin layer of thickness d

At z, r �E =

dE

dz

=

1

�

0

�, the charge on a plane element at z of thickness dz is � dz A,

and it feels a force

dF = E�dzA = E(�

0

dE

dz

)dzA =

1

2

�

0

A

dE

2

dz

dz: (123)

So the force per unit area of the surface layer of C is

F =

Z

d

0

dF =

�

0

2

E

2

=

1

2�

0

�

2

: (124)

From (124), it is obvious that a more general result obtains in the context (cf. Sec.

1.8) of a surface S of electric charge density � per unit area, with �elds E

�

= E

�

n normal

to it, just on the �n side of S. Eq. (124) implies

F =

�

0

2

(E

+

2

� E

�

2

) =

1

2

�(E

+

+ E

�

): (125)

This is the arithmetic mean of the `charge (per unit area) times �eld' expressions for the

force (per unit area) on the two sides of S. Eq. (125) is quoted above as eq. (66) of Sec.

1.8.

2.6 Solution using image charges

We illustrate the method by doing examples.

a) Point charge q at d = (0; 0; d) in presence of a perfect conductor C, lying the plane

z = 0, which is held at potential � = 0. To �nd the solution of Laplace's equation in

V : z � 0.

V is the physical region of the problem, the region in which the solution is sought,

subject to the boundary conditions on its surface S, which consists of the plane z = 0

and the surface at in�nity in z � 0. These are � = 0 on S.

Consider replacing C by an image charge �q not in the physical region but at �d.

Then the potential due to the given charge and the image charge is

4��

0

� =

q

jr� dj

�

q

jr+ dj

(126)

=

q

p

x

2

+ y

2

+ (z � d)

2

�

q

p

x

2

+ y

2

+ (z + d)

2

:

This potential satis�es Laplace's equation in V , and is zero on S. It follows from the

uniqueness theorem that this potential satis�es the problem initially posed.
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Despite the fact that the image charge is not a physical charge in the physical region

of the problem, if one were to calculate, from (126) the total charge on C one would �nd

the answer �q. Moreover, if one were to calculate the force felt by the point charge q due

to the conductor, one would �nd it equals the Coulomb force due to the image charge,

namely an attractive force of magnitude

1

4��

0

q

2

4d

2

: (127)

We con�ne ourselves to the easier calculation. The charge density on C is � = �

0

E where

E = �

@�

@z

�

�

�

�

z=0

=

�2qd

4��

0

(x

2

+ y

2

+ d

2

)

�3=2

: (128)

Hence the total charge on C is

�

2qd

4�

Z

(x

2

+ y

2

+ d

2

)

�3=2

dx dy = �qd

Z

1

0

s(s

2

+ d

2

)

�3=2

ds = �q: (129)

Here plane polars have been used, with the polar angle integration providing a factor 2�.

The integral should be checked.

a) Spherical conductor centre O and radius r = a, plus a point charge q at (0; 0; b),

b > a. The physical region of the problem is V , all space outside the conductor. S consists

of the conductor plus the surface at in�nity. The boundary conditions are � = 0 on S.

We replace the conductor by an image charge outside the physical region of the prob-

lem, using an image charge �

aq

b

at (0; 0;

a

2

b

). The potential of the point charges is

4��

0

� = q(r

2

+ b

2

� 2br cos �)

�1=2

�

aq

b

(r

2

+

a

4

b

2

� 2

a

2

r

b

cos �)

�1=2

: (130)

This potential satis�es Laplace in V and the boundary conditions on S, and so, by unique-

ness, is the solution of the problem posed. [Note that for r = a the second denominator

factors is

a

2

b

2

times the �rst, so that � = 0 on r = a holds for all �.]

Again we could use the solution to the problem to calculate the total charge on C and

the total force felt by the original point charge due to the conductor. The �rst answer is

�

aq

b

, and the second calculation yields an attractive force of magnitude

1

4��

0

abq

2

(b

2

� a

2

)

2

; (131)

just as the Coulomb force due to the image charge would suggest.
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It is more interesting instead to consider the solution of some variants of the original

problem. Suppose the boundary condition on C is changed so that we require it to be

maintained at potential �

0

. To accommodate this, it is su�cient to add to the previous

image a suitable point charge Q at O, also outside the physical region of the problem.

This gives a contribution

Q

r

to the right side of (130), and potential as now required on

C if Q = 4��

0

a�

0

.

Finally, as a second variant, we require of C only that it carry zero charge. Clearly

this requires a point charge Q at O such that Q�

aq

b

= 0, so that we �nd that C is now

at potential

q

4��

0

b

.

2.7 Electrostatic energy

The potential energy (PE) of a point charge q at r in an electric �eld of potential �(r) is

the work that must be done on q to bring it from in�nity (where � = 0) to r

PE = q�(r) = �

Z

r

1

F � dr; F = qE: (132)

Consider a system of point charges q

i

; i = 1; 2; : : : ; n, bringing them from in�nity to

their �nal positions in order, doing work

on q

1

; W

1

= 0

on q

2

; W

2

=

q

2

4��

0

q

1

r

12

on q

3

; W

3

=

q

3

4��

0

(

q

1

r

13

+

q

2

r

23

)

on q

i

; W

i

=

q

i

4��

0

X

j<i

q

j

r

ji

W =

n

X

i=1

W

i

=

1

2

n

X

i=1

X

j 6=i

1

4��

0

q

i

q

j

r

ji

: (133)

Here r

ji

= r

i

� r

j

; r

ji

= jr

ji

j, and

P

n

i=1

P

j<i

=

1

2

P

n

i=1

P

j 6=i

. Thus W by construction

gives the electrostatic energy of the system.

But the potential at q

i

due to all the other charges is

�

i

=

1

4��

0

X

j 6=i

q

j

r

ij

; (134)

so that

W =

1

2

n

X

i=1

q

i

�

i

: (135)

The corresponding result for a continuous distribution of charge of charge density �(r)

in volume V then is

W =

1

2

Z

V

�(r)�(r)d�

=

1

2

1

4��

0

Z

V

Z

V

�(r)�(r

0

)

jr� r

0

j

d� d�

0

: (136)
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If there are conductors C

i

with charges Q

i

at potentials �

i

then they contribute to W

1

2

X

i

Z

S

i

�

i

�

i

dS

i

=

1

2

X

i

�

i

Z

S

i

�

i

dS

i

=

1

2

X

i

�

i

Q

i

: (137)

(Recall that the potential is constant on a conductor).

Field energy in electrostatics

Given a charge distribution �(r

0

) distributed over a �nite volume

^

V and a set of

conductors all in some �nite region of space in which an origin is taken. Let V be all

space bounded by a sphere S at in�nity, but excluding the interiors of the conductors.

Then

W =

1

2

Z

V

��d� +

1

2

X

i

Q

i

�

i

: (138)

Use

�� = �

0

�r �E

= �

0

[r � (�E)� E �r�]

= �

0

r � (�E) + �

0

E

2

: (139)

Then W is given by

1

2

�

0

[

Z

V

E

2

d� +

Z

S

�E � dS+

X

i

Z

C

i

�E � dS

i

] +

1

2

X

i

Q

i

�

i

: (140)

We justify (see Sec. 6.1) setting the second term of (140) to zero. In the third term of

(140), the divergence theorem dictates that dS

i

= �ndS

i

points into C

i

, and we have

��

0

Z

C

i

�n �EdS

i

= ��

0

�

i

Z

C

i

n �EdS

i

= ��

i

Z

C

i

�

i

dS

i

= ��

i

Q

i

: (141)

It follows that the third and the fourth terms of (140) cancel. And so, for the energy of

the electrostatic �eld, we have the important result

W =

1

2

�

0

Z

V

E

2

d�: (142)

We note this involves an integral over all of V , including the regions unoccupied by

charge, whereas the �rst term of (138) is really an integral over the region

^

V � V occupied

by charge.

2.8 Capacitors and capacitance

A pair of conductors carrying charges �Q constitute a capacitor (or a condenser). Since

their potentials are proportional to Q, the same applies to their potential di�erence V =

�

1

� �

2

.

Therefore we de�ne the capacitance C of the capacitor by

V =

1

C

Q: (143)
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It turns out always to be a constant that depends on the con�guration of the two con-

ductors.

a) Parallel-plate capacitor.

The �eld lines are mainly straight lines perepndicular to the plates. We assume the

distance a between the plates is small on a scale set by the area A of the plates. Thus we

may neglect so called edge e�ects, which cause the lines near to the edges of the plates to

bulge out from between the plates.

From d) of Sec. 2.2, we know that E = Ek; E =

�

�

0

between the plates, with E = 0

elsewhere. Here k = (0; 0; 1). Hence

�

d�

dz

= E ) � = �Ez + c: (144)

If � = �

1

at z = 0, then c = �

1

, and then � = �

2

at z = a gives

�

2

= �Ea + �

1

; and V = �

1

� �

2

= aE =

a�

�

0

=

aQ

�

0

A

: (145)

So

C =

A�

0

a

: (146)

The energy of the capacitor is given now by (135), so that

W =

1

2

X

i

q

i

�

i

=

1

2

QV =

1

2

Q

2

C

: (147)

But the energy can also be calculated from the �eld energy expression (142), which gives

W =

�

0

2

Z

E

2

d� =

A�

0

2

Z

a

0

(

�

�

0

)

2

dz =

�

2

Aa

2�

0

=

1

2

Q

2

C

: (148)

b) Concentric spheres S

1

and S

2

of radii a and b > a, carrying charges Q and �Q.

Take � = 0 at r = b and � = V at r = a. From previous studies we know that for

r 2 fa � r � bg (outside S

1

and inside S

2

) we have

4��

0

E = �4��

0

@�

@r

=

Q

r

2

; (149)

and

4��

0

� =

Q

r

�

Q

b

: (150)
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Hence

4��

0

V = Q(

1

a

�

1

b

) (151)

and

C =

4��

0

a b

(b� a)

: (152)

3 Steady electric currents and magnetism

3.1 Steady current ow

Here we study steady current ow in conducting material. This is governed by Maxwell's

equations without

@

@t

terms, so that we have

r^B = �

0

j; r^E = 0; (153)

together with the experimental law, valid for simple sonductors, but not, for example, for

non-isotropic materials such as crystalline material,

j = �E; (154)

where � is the conductivity of the material.

(Both conductivity and surface charge are normally denoted by the same symbol �.

We seldom have contexts in which both arise.)

Note that (153) implies

r � j = 0: (155)

This agrees the continuity equation, eq. (26) of chapter one, as

@�

@t

= 0 applies here. Eq.

(154) also implies

r �E = 0; (156)

and hence also � = 0 within the material. This makes sense in contexts such as current

owing in copper wires in which electrons ow through a background of positively charge

ions, so that it is reasonable to suppose that � = 0 for the total charge density of the

material, electrons plus ions.

We have a remark here promised in Sec. 2.5 which talks about perfect conductors for

which the conductivity � goes to in�nity. In order for �nite currents (jjj �nite) to ow in

such material, it is necessary that jEj and hence � go to zero.

In this section, we are concerned only with current ow. In later sections of this

chapter, we study the magnetic �elds that arise from the (time-independent) ow of

electric currents.

Consider steady current ow in regions of conducting material, outside of batteries.

This is governed by the equations

r �E = 0; r^E = 0; (157)

together with the experimental law (154).

If we set E = �r� then the ow is governed by the single equation, Laplace's equation,

plus (154). We might ask: can we obtain an understanding of the elementary form

V = IR (158)
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of Ohm's law, relating the potential di�erence across the ends of a conductor to the current

that ows within it?

We do this here for a simple example; there are two others in Problem Set 2.

Uniform current enters the plate of uniform thickness � shown in the diagram. In

cylindrical polars, (with polar angle called � since � is reserved here for the potential), we

have the solution

� = �c�; c constant; (159)

of Laplace's equation, so that the potential di�erence (PD) between AB and CD is V = c�.

Hence

E = �

1

s

@�

@�

e

�

=

c

s

e

�

; (160)

and the lines of E and of j are arcs of circles centred on O, as shown. Also

j = �E =

�c

s

e

�

=

�V

�s

e

�

(161)

so that the total current entering at AB (which of course equals the current leaving at

CD) is

I =

Z

AB

j � dS =

�V �

�

Z

s

2

s

1

1

s

ds =

�V �

�

ln

s

2

s

1

; (162)

where we used dS = e

�

ds� , and (161). This is indeed of the form (158) of Ohm's law,

with

R =

�

�� ln(s

2

=s

1

)

: (163)

So resistance is inversely proportional to conductivity �, and, like capacitance, depends

on the geometry of the current ow set-up.

Generation of heat by steady current ow

Consider the tube of ow shown, i.e. the cylinder whose sides are lines of E and j

and whose ends are equipotentials. Current of density j enters at the end A where the

potential is �

A

and leaves at B where the potential is �

B

< �

A

. The potential di�erence

is

V = �

A

� �

B

= ��r �r� = �r E: (164)

In unit time charge j�S enters the tube at A in unit time and leaves at B. The work done

on this charge moving it through the potential di�erence V in unit time is

(j�S)V = (j�S)(E�r) = jE(�S �r) = (j �E)��: (165)
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This work done corresponds to the conversion of electrical energy into heat, i.e. to the

loss of electrical energy. The energy loss per unit time in volume � , with surface S is

W =

Z

�

j �Ed� = �

Z

�

j �r�d�: (166)

We use

j �r� =r � (�j)� �(r � j); (167)

where the second term is zero owing to (155), and the �rst term allows us to apply the

divergence theorem to (166). We obtain

W = �

Z

S

�n � jdS; (168)

where n is the unit normal on S pointing out of � .

Consider a conductor with current entering it and leaving it at ends S

1

and S

2

, which

are equipotentials of potentials �

1

and �

2

. Then, remembering that the n of (168) for S

1

is the negative of n

1

in the diagram, we have from (168)

W = (�

1

� �

2

)I; I =

Z

S

1

n

1

� jdS =

Z

S

2

n

2

� jdS

= V I; (169)

where V is the potential di�erence between the ends. Using the elementary form (158)

of Ohm's law, we have shown that the energy generation per unit time in a conductor of

resistance R through which ows a current I is

W = RI

2

: (170)

This is a formula familiar from elementary studies for the energy dissipated in unit time

as heat.

3.2 Magnetostatics

This deals with steady currents and the associated (time independent) magnetic �elds. It

is governed by the equations

r^B = �

0

j; ()r � j = 0) (171)

r �B = 0: (172)

Eq. (172) is automatically satis�ed when the vector potential A is introduced via

B =r^A; (173)

since

r � (r^A) = @

i

�

ijk

@

j

A

k

=r^r �A = 0: (174)

For given B however (173) does not determine A uniquely, because we can transform

the vector potential according to

A

0

= A+r�; (175)
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where � is an arbitrary scalar �eld. Since

r^A

0

=r^A+r^r� =r^A = B; (176)

the transformed vector potential serves our needs just as well as does A.

In fact we can make use of (175) to impose a simplifying condition on the vector

potentials we use in practice. Suppose we have found some A which yields the required B

via (173), and is such that r �A =  , where  is a scalar �eld, calculable, as is obvious,

from A. We shall pass by means of (175) to a vector potential A

0

such that

r �A

0

= 0: (177)

This can always be done, since (177) implies

0 = r �A+r

2

�

= � +r

2

�; (178)

which is an equation of Poisson type for which a (particular integral) solution for � in

terms of  can always be found.

In what follows, we therefore assume that we can deal with vector potentials A which

obey

r �A = 0: (179)

[ Some language: Eq. (175) is called a gauge transformation, the condition (179) is

called a gauge condition, and the physical theory is said to be gauge-invariant, because it

depends only on B.]

Return now to (171). Since

r^ (r^A) =r(r �A)�r

2

A; (180)

(171) reduces, with the aid crucially of our gauge condition (179), to

r

2

A = ��

0

j: (181)

In Cartesian coordinates this reads as

r

2

A

k

= ��

0

j

k

(k = 1; 2; 3); (182)

which, for each k, is of Poisson type, so that as in electrostatics, we can write down the

solution

A

k

(r) =

�

0

4�

Z

V

j

k

(r

0

)

jr� r

0

j

d�

0

A(r) =

�

0

4�

Z

V

j(r

0

)

jr� r

0

j

d�

0

: (183)

Since it is not obvious that the expression (183) for A satis�es (179), we must prove

that in fact it does. When this is done, it follows that

B(r) =r^A =

�

0

4�

Z

V

j(r

0

)^ (r� r

0

)

jr� r

0

j

3

d�

0

; (184)
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satis�es (171). In calculating B, note that r^ acts only on the r variable, found only in

the denominator factor of expression (183) for A, and then eq. (16) of Sec. 2.1 is all that

is needed to produce (184).

Consider a current of density j owing in an element �r of a very thin wire of cross-

sectional area A. Then j�V = j (A�r) = (jA) �r = I�r. Neglecting the thickness of the

wire, we can write, for the vector-potential and the magnetic �eld due to a wire which

carries a current I and takes the form of a simple curve C, the expressions

A(r) =

�

0

I

4�

Z

C

dr

0

jr� r

0

j

(185)

B(r) = �

�

0

I

4�

Z

C

(r� r

0

)^dr

0

jr� r

0

j

3

: (186)

The results (184) and (186) for B are each often referred to the Biot-Savart law.

Before turning to the calculation of magnetic �elds produced by simple current distri-

butions, we have two minor tasks to attend to.

Proof that (183) satis�es (179).

r �A =

�

0

4�

Z

V

r �

�

j(r

0

)

jr� r

0

j

�

d�

0

(r acts on r and not on r

0

)

=

�

0

4�

Z

V

j(r

0

) �r

1

jr� r

0

j

d�

0

= �

�

0

4�

Z

V

j(r

0

) �r

0

1

jr� r

0

j

d�

0

= �

�

0

4�

Z

V

�

r

0

�

�

1

jr� r

0

j

j(r

0

)

�

�

1

jr� r

0

j

r

0

� j(r

0

)

�

d�

0

= �

�

0

4�

Z

S

1

jr� r

0

j

n

0

� j(r

0

)dS

0

: (187)

Here V is all space, but if we suppose that a physical current distribution occupies a �nite

volume

^

V � V near the origin, then j(r

0

) = 0 on S and the proof is complete.

Note the use of a now well-known identity for r � (�F) in the third line, r

0

� j(r

0

) = 0

in the fourth line, and �nally the ubiquitous divergence theorem.

[A warning: care withr

2

F for a vector �eld F may be needed. There is no problem

in Cartesians, and hence probably not in the material of this course:

(r

2

F)

k

= (@

j

@

j

)F

k

(188)

where r

2

= @

j

@

j

is the usual expression used in Laplace's equation. In other coordinate

systems, where the unit basis vectors are themselves coordinate dependent, (r

2

F)

�

, the

component of the vector r

2

F along the unit vector e

�

, is no longer given by (r

2

)F

�

.

The correct result however follows from use of r

2

F = �r^ (r^F) +r(r � F) where

each of the two terms on the right is calculable by two well-de�ned steps in any system

of orthogonal curvilinear co-ordinates. ]

3.3 Magnetic �elds of simple current distributions

To calculate these one may use Amp�ere's law, the Biot-Savart law or perhaps �rst calculate

A from (183) or (185).
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a) In�nite straight wire carrying current I

Take the z-axis along the wire, take O in the xy-plane throught the point P, and

calculate B at P, r =

~

OP using Biot-Savart. Using cylindrical polars, (s; �; z), we have

r = se

s

; r

0

= z

0

k; dr

0

= dz

0

k; jr� r

0

j = (s

2

+ z

02

)

1=2

: (189)

Now �(r� r

0

)^dr

0

= s dz

0

e

�

so that we have proved that B is everywhere in the direction

of e

�

. Hence, from (186)

B =

�

0

I

4�

Z

1

�1

s dz

0

(s

2

+ z

02

)

3=2

e

�

=

�

0

I

4�s

Z

�=2

��=2

cos� d� e

�

; (z

0

= s tan�)

=

�

0

I

2�s

e

�

: (190)

We got the same answer in Sec. 1.4, arguing there that B = B(s)e

�

by `symmetry

considerations'.

b) Long solenoid

This is a continuous wire carrying current I wound round a very long right circular

cylinder, so long that end e�ects can be ignored. Assume there are N turns of wire per

unit length, with N large, wound in a spiral of very small pitch, so that we can regard

the cylindrical surface as carrying a surface current. Use cylindrical polars (r; �; z), with

z-axis at the axis of the cylinder. Then s = NIe

�

gives the current density, i.e. the

current per unit length, measuring the charge crossing unit length in unit time. Note that

we called the radial coordinate of cylindrical polars r here because the symbol s

denotes the magnitude of the surface current.

B is clearly independent of both z and �. We take B of the form (see later)

B = B

z

(r)k; k = (0; 0; 1): (191)

Check that r^B = 0, true where there is no (volume) density of current, implies

@B

z

@r

= 0; so that B

z

= constant: (192)

Outside the cylinder this constant is zero, because jBj = 0 for in�nite r. To �nd jBj

inside the cylinder use the rectangular contour C shown in the diagram. Only the vertical
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line inside the solenoid contributes to

H

dr �B, so that Amp�ere leads to

B

z

z = �

0

NIz; B

z

= �

0

NI; B = �

0

NIk: (193)

The answers here obtained illustrate the discontinuity law, stated previously as eq.

(65) of Sec. 1.8,

n^Bj

+

�

= �

0

s; (194)

at a surface of discontinuity carrying a surface current density s per unit length. We have

n^Bj

+

= 0, and

n^Bj

�

= (�)e

r

^ (�

0

NIk) = �

0

NIe

�

= �

0

s: (195)

The result (194) is to be noted for use in chapter 5.

c) Long cylindrical conductor

Consider current, owing in a long right circular cylinder and distributed uniformly

over its circular cross-section, of area A = �a

2

, so that

j = jk; �a

2

j = I; k = (0; 0; 1): (196)

Assume that magnetic �elds can be calculated within the conducting material by the

same formulas as apply in the vacuum or free-space. This is a good approximation for

good conductors, which do have similar magnetic properties to free-space.

Use cylindrical polars (s; �; z) with z-axis along the axis of the conductor. By sym-

metry B = B(s)e

�

, and we apply Amp�ere to horizontal circles centred on the z-axis for

(i) s > a and s < a.

outside 2�sB = �

0

I; B =

�

0

I

2�s

(197)

intside 2�sB = �

0

�s

2

j; B =

�

0

Is

2�a

2

=

�

0

js

2

: (198)

Note that outside the conductor the magnetic �eld is the same as for a very thin wire,

as in example a).

Note also that here there is no surface current, and hence we expect

n^Bj

+

�

= 0: (199)

Here n^B = e

s

^B(s)e

�

= B(s)k and continuity of the tangential component of B at

s = a follows (197) and (198).

3.4 Large distance expansion of the vector potential

Let V be all-space with surface S `at in�nity'. Dealing with a distribution of current

density con�ned to a �nite volume

^

V � V situated `near' the origin, we could in

A(r) =

�

0

4�

Z

V

j(r

0

)d�

0

jr� r

0

j

(200)

replace V by

^

V .

We are here interested in the leading approximation to (200) for large r, and so, far

from

^

V .
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Let c be an arbitrary constant vector, and treat c �A, using

1

jr� r

0

j

=

1

r

� r

0

�r

1

r

(201)

for large r.

Look �rst at the term

�

0

4�

1

r

Z

V

c � j

0

d�

0

: (202)

This term is zero:

Proof. Dropping the primes for the evaluation of the integral in (202), we start out from

Z

V

r � (� j)d� =

Z

S

� (n � j)dS = 0; � = c � r (203)

since j = 0 on S. But we also have, for the same integral,

Z

V

r � (� j)d� =

Z

V

[(r�) � j + �r � j] d�: (204)

But

r� =r(c � r) = c; and r � j = 0: (205)

So, using (204) and then (203), we have

Z

V

c � jd� =

Z

V

r � (� j)d� = 0; (206)

as was to be proved.

As will become clear we are approaching a result of major importance for understand-

ing the physical origins of magnetism. So detailed proofs are needed wherein the aim

should be to understand the vector calculus detail, given the starting points of the proofs,

although these are certainly not intuitively obvious.

To �nd the leading term of A(r) it is necessary to consider

�

�

0

4�

(r

1

r

) �

Z

V

r

0

[c � j(r

0

)] d�

0

: (207)

To treat this, write (without primes where possible without causing misunderstanding)

r(c � j) =

1

2

[r(c � j) + j(c � r)] +

1

2

[r(c � j)� j(c � r)] : (208)

We show below that the �rst square bracketed piece gives zero contribution to (207). The

second one equals

c^ (r^ j): (209)

It follows that the leading contribution to c �A is

�

0

4�

r

r

3

� c^

1

2

Z

V

r

0

^ j(r

0

)d�

0

=

�

0

4�

1

r

3

r � c^m =

�

0

4�

1

r

3

c �m^r; (210)

where we have de�ned the magnetic moment of the distribution by

m =

1

2

Z

V

r

0

^ j(r

0

)d�

0

; (211)
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from which the primes may be dropped. We no longer need the arbitrary constant vector

c in completing the identi�cation, using (210), of the leading contribution, for large r, to

the vector potential A(r). This is

A(r) =

�

0

4�

1

r

3

m ^r; (212)

which goes to zero like

1

r

2

for large r.

It remains to prove that the �rst square bracket of (208) gives zero contribution. The

proof is similar in spirit to the one that showed the

1

r

term of A vanishes.

Proof: Using a second arbitrary constant vector b, set out from

Z

V

r � (�j)d�; where now � = (b � r)(c � r); (213)

an integral which obviously vanishes by the divergence theorem, since j is zero on S. But

r � (�j) = (r�) � j + �(r � j); (214)

and the second term is zero. Also

r� = b(c � r) + (b � r)c; (215)

so that

0 =

Z

V

r � (�j)d� =

Z

V

[(c � r)(b � j) + (b � r)(c � j)]d�: (216)

Detaching b which has served its purpose, we have

0 =

Z

V

[(c � r)j+ r(c � j)] d�: (217)

Thus shows that the contribution in question is zero as was desired.

3.5 Dipole view of m

We indicate in this section that there is some analogy between the magnetic moment m

of (211) and the electric dipole of dipole moment p of electroststatics.

Given the vector potential (212), we now calculate the magnetic �eld B. First evaluate

r^ (

m^r

r

3

) = �r^ (m^r

1

r

) = �r^ (m^v); (218)

with a temporary abbreviation v =r

1

r

. We use

[r^(m^v)]

k

= �

kij

@

i

�

jpq

m

p

v

q

= (�

kp

�

iq

� �

kq

�

ip

)@

i

m

p

v

q

= @

i

m

k

v

i

� @

i

m

i

v

k

= m

k

r � v �m �rv

k

= [mr

2

1

r

� (m �r)r

1

r

]

k

: (219)

Since we are dealing with non-zero r, we can certainly use r

2

1

r

= 0, so that

B(r) =

�

0

4�

(m �r)r

1

r

=

�

0

4�

r(m �r)

1

r

= �r

�

�

�

0

4�

(m �r)

1

r

�

; (220)
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in a form that is immediately suggestive.

At points where there is no charge density j = 0, the magnetic �eld B obeys

r^B = 0: (221)

At such points, we can introduce a magnetic scalar potential 
 via

B = �r
: (222)

As r �B = 0, we have, as in electrostatics,

r

2


 = 0; (223)

Laplace's equation, of which we know various solutions. The one of relevance here is the

analogue of the one for the potential of the electric dipole of moment p given as (36) of

Sec. 2.3, namely


 = �

�

0

4�

m �r

1

r

: (224)

From (220), it follows that it yields exactly the �eld B in focus here.

We have found the limited analogy of the magnetic dipole momentm that determines

the leading large r behaviour of the vector potentialA(r) of a current distribution localised

near the origin of space, and the electric dipole. Since it is the leading contribution to

A(r), this underlines the fact that magnetism has no analogue of the point charge: as

far as is known at present magnetic monopoles do not exist. The next section provides a

physical realisation of m.

3.6 The current loop

Here we look at the vector potential A (185) of a current loop, i.e. a wire of negligible

cross-section shaped in the form of a closed contour C, carrying a current I.

Chose an origin near the loop and seek the vector potential of its magnetic �eld, at

distances large on a scale set by the physical dimensions of the loop. (Or, consider A(r)

due to a small loop.)

Let S be a surface such that @S = C. Let c be an arbitrary constant vector, and work

on c �A

c �A =

�

0

I

4�

I

C

1

jr� r

0

j

c � dr

0

=

�

0

I

4�

Z

S

n

0

�r

0

^(

1

jr� r

0

j

c) dS

0

(Stokes)

=

�

0

I

4�

�

Z

S

dS

0

^r

0

1

jr� r

0

j

�

� c: (225)

Hence

A(r) =

�

0

I

4�

Z

S

dS

0

^r

0

1

jr� r

0

j

=

�

0

I

4�

Z

S

dS

0

^

�

r� r

0

jr� r

0

j

3

�

: (226)

Now, in striking contrast to what we needed to do in Sec. 3.4, we get the leading approx-

imation to A(r) simply by dropping r

0

from the integrand of (226). So we have

A(r) =

�

0

4�

1

r

3

�

I

Z

S

dS

0

�

^r =

�

0

4�

1

r

3

m^r: (227)
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This coincides with (212). In the case of special interest of a plane current loop of area

S = Sn, the de�nition of m implicit in (227) is

m = ISn: (228)

We have obtained a result crucial to the understanding of magnetism at all levels: a

small current loop gives, via (228), a physical realisation of a magnetic moment.

[ A brief informal aside

If one considers atoms which possess spin about some axis, one can see roughly that

the motion of their electrons approximate to current loops with moments parallel to this

axis. If the spin axes of all the atoms, in some material made up of such atoms, can

be made to line up parallel, then the material acquires a macroscopic magnetic moment.

This o�ers a little insight into the origin of permanent or (ferro-)magnetism. ]

3.7 Forces and couples

From (17) of Sec. 1.3, we �nd that the force, felt by an element of volume �V of medium

in which the current density is j(r), because of a given magnetic �eld B(r) is

�F(r) = [j(r)�V ] ^B(r) or

= I�r ^B(r): (229)

for an element �r of thin conducting wire carrying current I.

For a loop C

1

, carrying current I

1

, in a given �eld B, the total force and couple felt

are

F =

I

C

1

I

1

dr

1

^B(r

1

) (230)

G =

I

C

1

r

1

^ [I

1

dr

1

^B(r

1

)] : (231)

If B

2

(r) is the �eld due to a current loop C

2

carrying current I

2

B

2

(r) =

�

0

4�

I

C

2

I

2

dr

2

^ (r� r

2

)

jr� r

2

j

3

; (232)

then the force F

12

, exerted on loop C

1

by (the magnetic �eld due to the current in) the

loop C

2

, is

F

12

=

I

C

1

I

1

dr

1

^B

2

(r

1

) =

�

0

4�

I

1

I

2

I

C

1

I

C

2

dr

1

^ (dr

2

^

r

1

� r

2

jr

1

� r

2

j

3

): (233)

We should ask if there is agreement here with Newton's third law; it is not obvious

from (233). Writing R

12

= r

1

� r

2

, we have

dr

1

^ (dr

2

^R

12

) = (dr

1

�R

12

)dr

2

� (dr

1

� dr

2

)R

12

: (234)

The �rst term of (234) gives zero contribution to F

12

, using Stokes's theorem. Inside

H

C

2

dr

2

(: : :) to be taken second we have

I

C

1

dr

1

�

R

12

R

12

3

= �

I

C

1

dr

1

�r

1

1

R

12

= �

Z

S

1

n

1

�r

1

^r

1

1

R

12

dS

1

= 0: (235)
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Hence

F

12

= �

�

0

4�

I

1

I

2

I

C

1

I

C

2

(dr

1

� dr

2

)

R

12

R

12

3

= �F

21

: (236)

It can be shown that the force and couple exerted on a small current loop of moment

m = ISn due to a uniform magnetic �eld B are

F = 0; G =m ^B: (237)

This can be compared with the results for an electric dipole of moment p in a uniform

electric �eld E.

F = 0; G = p ^E: (238)

This gives a little more substance to the analogy mentioned earlier.

Example: parallel wires

Suppose C

1;2

are in�nite wires carrying currents I

1;2

, the former along the x-axis, the

latter parallel to it and through (0; 0; a). Use Cartesian coordinates.

Consider the element I

1

dr

1

= I

1

dxi at the origin. The force exerted on it by C

2

is

dF

1

= I

1

dxi^B

2

(0); B

2

(0) =

�

0

I

2

2�a

j

=

�

0

2�a

I

1

I

2

kdx: (239)

This uses the result (190) derived in example a) of Sec. 3.3. It follows that the force per

unit length felt by C

1

due to C

2

is

F =

�

0

2�a

I

1

I

2

k: (240)

This is a force of attraction.

3.8 The pinch e�ect

Consider a cylindrical conductor of radius a carrying a current I of uniform current density

j = jk; I = �a

2

j, and situated in a vacuum.

Take the axis of the cylinder as the z-axis, as in example c) of Sec. 3.3 Then (198)

tells us that the �eld inside the cylinder is

B = Be

�

; B =

1

2

�

0

js: (241)
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The force per unit volume of the conducting medium is

F = j ^B =

1

2

�

0

j

2

s(�)e

s

: (242)

The force per unit volume outside the conductor is zero because j = 0 there.

If the conducting medium is a plasma (gaseous conductor) then it is held in hydrostatic

equilibrium by means of forces of magnetic nature.

If the pressure in the plasma is p = p(s) then in equilibrium

�rp+ F = 0; �

dp

ds

�

1

2

�

0

j

2

s = 0; (243)

so that

p = c�

1

4

�

0

j

2

s

2

: (244)

Outside the conductor there is no magnetic force so the pressure is constant, equal to its

value at s =1, i.e. zero. So p = 0 at s = a. Hence

p =

1

4

�

0

j

2

(a

2

� s

2

): (245)

4 Electromagnetic induction

Recall the paragraph from Sec. 1.5, repeated here: The Maxwell equation

r^E+

@B

@t

= 0 (246)

implies

Z

C

E � dr =

Z

S

r^E � dS = �

Z

S

@B

@t

� dS = �

d

dt

Z

S

B � dS; (247)

by applying Stokes's theorem to a �xed curve C = @S bounding a �xed open surface S.

If we de�ne the electromotive force (or electromotance) acting in C by

E =

Z

C

E � dr; (248)

and the ux of B through (the open) surface S by

� =

Z

S

B � dS; (249)

then we get Faraday's Law of induction

E = �

d�

dt

: (250)

This will be studied now.

In chapter two we studied electric �elds E such that

r^E = 0;

Z

C

E � dr = 0; (251)
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called conservative, since there exists the electrostatic potential � such that E = �r�. In

chapter two it was assumed implicitly that there were no magnetic �elds in the discussion,

but it could equally have been assumed that we were dealing with non-conducting material

(e.g. the vacuum or free space) and time-independent magnetic �elds, since the latter

would then be entirely uncoupled from the electrostatics.

Here we study time-dependent magnetic �elds and the the non-conservative electric

�elds that accompany them. The latter may give rise to non-zero electromotive forces (or

electromotances, or EMFs for short), and hence cause current ow.

We �rst make this study in the (pre-Maxwellian) approximation to the full Maxwell

theory, in which

r^E+

@B

@t

= 0; r^B = �

0

j: (252)

In other words, we omit the (so-called) displacement current, seen in Sec. 1.5 to be an

essential ingredient of a consistent theory. In Sec. 5.5, we develop a criterion, in the

context of (alternating) current ow in material of high conductivity, under which it is

reasonable to neglect the displacement curent.

We look �rst at simple situations wherein it can be seen how time-dependent magnetic

�elds can produce non-zero EMFs and cause current ow.

4.1 Simple examples

If we talk about a bar magnet, we mean a piece of material in which the atomic spins, es-

sentially small current loops, are all lined up, to produce a macroscopic magnetic moment,

as in the left hand diagram.

A bar magnet moved relative to a �xed circuit, with a galvanometer, causes a current

to ow in the circuit, as motion of the galvanometer needle indicates. There is current

ow i� there bar magnet moves.

Suppose the bar magnet in this context is replaced by a second circuit, with a battery,

and a current owing, and with a movable part. I� there is motion of the latter relative

to the �rst circuit, then will the galvanometer record a current ow. (The magnetic �eld
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of the current in the second circuit does the business just as well as did the bar magnet.)

The permanent magnet set-up in the diagram produces magnetic �elds in the curved

slots in which the loop of a circuit can rotate. If the loop is made to rotate steadily, then

an alternating current ows in the circuit. This is the principle of the (AC) generator.

The same set-up can be used to illustrate the principle of the electric motor. Across

each slot there is a north and a south pole. Suppose the coil is lying with one side in each

slot. When a current is passed through the coil, it ows in opposite directions on the two

sides, so these feel equal and opposite forces. In other words a couple is being applied to

the coil. If the shaft of the coil is free to rotate, the system can be coupled to pulleys or

gears and do work.

4.2 Faraday's law of induction

Let C be either

(a) a �xed closed geometrical curve, or

(b) a physical, possibly moving circuit.

Let S be a surface bounded by C = @S.

De�ne the ux, of a possibly time-dependent magnetic �eld B, through S by

� =

Z

S

B � dS: (253)

Then Faraday's experimental law, valid in both the contexts (a) and (b), with an

appropriate de�nition in each case of the EMF E in C, is

E = �

d�

dt

: (254)

In case (a)

E =

Z

C

E � dr =

Z

S

r^E � dS (255)

and

d�

dt

=

d

dt

Z

S

B � dS =

Z

S

@B

@t

� dS: (256)
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Consistency of (254 {256) is now assured by means of the Maxwell equation (246), assumed

true in general.

For case (b), consider the case of a physical circuit moving rigidly with velocity v,

v � c, in a time-dependent magnetic �eld B.

The force on a particle of charge q moving with velocity v in the magnetic �eld B,

and therefore also in its accompanying electric �eld E, is given by eq. (16) of Sec. 1.3:

F = q(E+ v^B): (257)

Hence we de�ne the electromotance or EMF in C as

E =

1

q

I

C

F � dr =

I

C

(E+ v^B) � dr: (258)

We must show that, in context (b), (254) and (258) are compatable with the Maxwell

equation (246).

To achieve this, we set out from an expression for

d�

dt

d�

dt

= lim

�t!0

�

1

�t

�

Z

S

0

B(r

0

; t+ �t) � dS

0

�

Z

S

B(r; t) � dS

��

: (259)

Then we apply the divergence theorem at time (t+ �t) to the spatial volume V bounded

by S, S

0

and the curved surface � swept out by the circuit C as it moved from position

S at time t to position S

0

at (t + �t).

0 =

Z

V

r �Bd�

=

Z

S

0

B(r

0

; t+ �t) � dS

0

�

Z

S

B(r; t+ �t) � dS+

I

C

B(r; t+ �t) � (dr^v�t): (260)

Here, as the right-hand diagram purports to justify, we have used

dS � dr^v�t; (261)

on �. Since the third term of (260) is proportional to �t and hence already small, we

neglect the �t in the argument of B in it, having already neglected the variation of B

across �.

The second integral in (260) has the Taylor expansion

Z

S

B(r; t) � dS+ �t

Z

S

@B(r; t)

@t

� dS: (262)
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These remarks allow us to write (260) as

0 =

Z

S

0

B(r

0

; t+�t) �dS

0

�

Z

S

B(r; t) �dS��t

Z

S

@B(r; t)

@t

�dS+�t

I

C

dr �v^B(r; t): (263)

Dividing by �t, we see the �rst two terms in (263) allow us to bring in

d�

dt

using (259).

So we get

0 =

d�

dt

�

Z

S

@B(r; t)

@t

� dS+

I

C

dr � v^B(r; t): (264)

The �rst term here is related by (254) to E, which is de�ned in the present context by

(258). Hence

0 =

I

C

E � dr+

Z

S

@B(r; t)

@t

� dS; (265)

the v-dependent terms having cancelled, so that consistency is assured by the Maxwell

equation (246), just as in case (a).

The signi�cance of the minus sign in the de�nition (250) of the EMF remains to be

addressed, under the heading Lenz's law.

4.3 The Faraday experiment

In the set-up shown the crossbar LM can slide with negligible friction parallel to ON .

The uniform time independent magnetic �eld B = (0; 0; B) points upwards from the

plane of the page. We neglect the resistance of the wire QMNOLP. Then the circuit C=

(battery)OLMN has resistance

R; (266)

i.e. LM has resistance R. Also, for large B and R, we neglect magnetic �elds arising

from any current owing in the system. The initial conditions are

x = x

0

; _x = 0; I = I

0

=

E

0

R

at t = 0: (267)

The Biot-Savart law tells us that the force �F acting on the element �r = �yj =

�y(0; 1; 0) of LM is given by

�F = I�r^B = I�y Bj^k = I�y Bi: (268)
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So the total force on LM is

F = IaBi: (269)

By Newton's second law, we have

m�x = IaB: (270)

We cannot assume that I is independent of t, so that we are not yet ready to try to solve

(270).

When LM is at x, the ux of B through C = @S is

� =

Z

S

B � dS = constant + B(ax); (271)

so that the EMF induced in C in the circuit is

E = �

d�

dt

= �Ba _x: (272)

It follows now that the total EMF in the circuit at time t is

E

0

+ E = E

0

� Ba _x; (273)

and that

E

0

� Ba _x = IR: (274)

Eqs. (270) and (274) enable the time dependence of I and _x to be calculated. In view of

our neglect of various e�ects, we have a reasonably simple di�erential equation for x(t)

m�xR = aB(E

0

�Ba _x); (275)

indeed soluble quite nicely for small t. This solution exhibits what is expected in general,

that the induced EMF opposes the battery EMF, and the current in C is reduced. These

are two aspects of Lenz's law.

Lenz's law is a special case of more general belief: le Châtelier's principle. This can

be stated as follows: a physical system in a steady state reacts by opposing any change

imposed on it from outside.

We neglected the magnetic �eld due to the current induced in C, which opposes

the battery produced I

0

. But the �eld due to the induced current in LM e.g. points

downwards on the plane of the diagram, and opposes B. This too exempli�es a Lenz

view: ux change of one sign produces currents which create ux of the the opposite sign.

4.4 Coil rotating in a �xed magnetic �eld

Let C be a closed rectangular curve PQRS of area A. Very thin conducting wire is

wrapped N times around the curve C with free ends connected to some external circuit.

Suppose C can rotate rigidly about a �xed axis j = (0; 1; 0) with angular velocity !
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in the presence of a uniform time-independent magnetic �eld B = (0; 0; B).

When the normal to the coil makes an angle � = !t to B as shown, so that n =

cos �k + sin �i, then the ux of B through the coil is

Z

B � dS = NB � nA = NB cos �A: (276)

Hence the EMF induced in the circuit is

E = �

d�

dt

= NBA! sin!t: (277)

If the coil has resistance R, then the current induced in the coil is

I =

NBA!

R

sin!t: (278)

The couple exerted on the circuit by the magnetic �eld then is

G = N

I

C

r^ (Idr^B: (279)

It can be shown, see Sec. 6.3, by doing vector calculus manipulations, that

G = �IANB sin �j =m^B: (280)

This, in the spirit of Lenz's law, tends to counter the torque that applies the angular

velocity to the coil.

It is not a nice calculation, but the integral (279) can be evaluated directly, con�rming

the result given.

4.5 Inductance

Consider �xed circuits C

k

; k = 1; 2; : : : ; carrying currents I

k

dependent on time, e.g.

alternating currents.

The total EMF E

k

induced in C

k

is E

k

= �

d�

k

dt

, where �

k

=

P

l

�

kl

and �

kl

is the

ux through C

k

due to the magnetic �eld B

l

(r) of the current I

l

in C

l

.

�

kl

=

Z

S

k

B

l

(r

k

) � dS

k

=

I

C

k

A

l

(r

k

) � dr

k

by Stokes
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=

I

C

k

dr

k

�

�

�

0

4�

I

C

l

I

l

dr

l

jr

k

� r

l

j

�

= I

l

�

I

C

k

I

C

l

�

0

4�

dr

k

� dr

l

jr

k

� r

l

j

�

= I

l

M

kl

: (281)

The last two lines of (281) de�ne the geometrical coe�cient

M

kl

=M

lk

=

@�

kl

@I

l

; (282)

called the mutual inductance of the circuits C

k

and C

l

. Hence

�

k

=

X

l

M

kl

I

l

; E

k

= �

X

l

M

kl

_

I

l

: (283)

For one circuit C which carries current I, one can evaluate the ux �(I) of its own

magnetic �eld through it, and then obtain the (self-)inductance L =

�

I

of C, and the

EMF induced in C

�L

_

I; (284)

which acts in addition to the EMF due to batteries in C.

The inductance of a long solenoid

Recall the treatment and results obtained under example b) of Sec. 3.3. The solenoid

has N turns of wire per unit length and length l very large so that end e�ects can be

neglected. It carries current I. It is cylindrical with axis k = (0; 0; 1), and cross-sectional

area A. The magnetic �eld due to the current ow is (see also Sec. 6.2)

B = �

0

NIk (285)

inside the solenoid and zero outside. The ux of B through one turn of the solenoid is

�

0

NIA (286)

and through all Nl turns is

� = �

0

N

2

lIA: (287)

As expected this is proportional to I and de�nes the (self)-inductance of the coil to be

L = �

0

N

2

lA = �

0

N

2

V; (288)

where V = Al is the volume of the solenoid. We shall use this for energy considerations

in Sec. 4.7

4.6 Magnetic energy

Consider a circuit with battery E

0

, and induced EMF E given by (284). Then Ohm's law

tells us that

E

0

= IR +

d�

dt

: (289)

Then, as in sec. 3.1, the work �W done by the battery in time �t is given by

�W = E

0

I�t = RI

2

�t+ I��: (290)
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The �rst term is Ohmic heat generation, the second a magnetic energy term, to be treated.

For simplicity consider a system of �xed circuits C

k

of negligible resistance. Then

�W =

X

k

I

k

��

k

=

X

kl

M

kl

I

k

�I

l

=

1

2

X

kl

M

kl

�(I

k

I

l

): (291)

Assuming that, at t = 0, the current and hence the magnetic energy are zero, we get

W =

1

2

X

kl

M

kl

I

k

I

l

=

1

2

X

k

I

k

�

k

: (292)

For a single circuit

W =

1

2

LI

2

: (293)

For two circuits

W =

1

2

�

L

1

I

1

2

+ L

2

I

2

2

+ 2MI

1

I

2

�

=

1

2

"

L

1

�

I

1

+

M I

2

L

1

�

2

+ I

2

2

�

L

2

�

M

2

L

1

�

#

: (294)

Now W � 0 for all I

1

; I

2

. Hence, chosing them so that I

1

L

1

+ I

2

M = 0 , we infer that

L

1

L

2

�M

2

� 0: (295)

4.7 Energy of the magnetic �eld

To evaluate (292), we have, using the second line of (281),

�

k

=

X

l

�

kl

=

X

l

I

C

k

A

l

(r

k

) � dr

k

) =

I

C

k

A(r

k

) � dr

k

; (296)

where the total vector potential of all the circuits has been introduced

A(r) =

X

l

A

l

(r): (297)

Hence

W =

1

2

X

k

I

k

�

k

=

1

2

(

X

k

I

C

k

)A(r

k

) � (I

k

dr

k

): (298)

From this, we may infer the result for a continuous distribution of current of density j

occupying a �nite volume

^

V of space near the origin:

W =

1

2

Z

V

j �Ad�; (299)

where the integral has been extended trivially to cover all space. Hence

W =

1

2�

0

Z

V

A �r^Bd�

=

1

2�

0

Z

V

[�r � (A^B) +B �r^A] d�: (300)
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The divergence theorem can be applied to the �rst term on the right of (300). This gives

a surface integral over a surface S at in�nity whose contribution goes to zero with the

distance r from the origin, see Sec. 6.1. The de�nition of the vector potential is then used

on the second term of (300), giving rise to the �nal answer

W =

1

2�

0

Z

V

B

2

d�: (301)

The long solenoid of Sec. 4.5

We can calculate the energy stored in the solenoid in two ways. First, (293) of Sec.

4.6 gives us

W =

1

2

LI

2

=

1

2

�

0

N

2

I

2

V: (302)

Second, we use the magnetic �eld energy expression (301) and

B = �

0

NIk (303)

to get

W =

1

2�

0

Z

V

B

2

d� =

1

2�

0

(�

0

NI)

2

Z

V

d� =

1

2

�

0

N

2

I

2

V; (304)

again.

5 Maxwell's equations

5.1 A historical paradox

In magnetostatics, the equation

r^B = �

0

j; (305)

implies r � j = 0. As � = 0 in magnetostatics, this is compatable with the continuity

equation r � j+

@�

@t

= 0. However application of the integral form of (305)

I

C

B � dr = �

0

Z

S

j � dS; (306)

naively to the following situation produced a contradiction, one that Maxwell resolved by

generalising (305).

The direction of I has been changed relative to that displayed in the original diagram

The `capacitor' paradox arises by applying (306) to the two surfaces S

1

and S

2

that

are bounded by the same curve C. There is a unique answer for the left-side of (306), but

the right-side gives di�erent answers �

0

I for S

1

and 0 for S

2

.
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Maxwell proposed that (305) be changed by addition to a term that made it compat-

able with r � j+

@�

@t

= 0. This gives rise (in free space or the vacuum) to

r^B = �

0

(j+ �

0

@E

@t

); (307)

as was shown in Sec. 1.4 to be su�cient to achieve consistency.

How does the use of (307) provide resolution of the paradox? There is an electric �eld

only between the plates, so that on S

1

, lying outside the plates, we still have

I

C

B � dr = �

0

Z

S

1

j � dS = �

0

I: (308)

Between the plates, assuming that E is uniform, we have E =

�

�

0

k, and hence

1

�

0

I

C

B � dr =

Z

S

2

j � dS+ �

0

Z

S

2

@E

@t

� dS = 0 + �

0

d

dt

Z

S

2

E � dS

=

d

dt

(�A) =

dQ

dt

= I; (309)

as expected. Here � is the charge density and A is the plate area.

See Sec. 5.8, where it is not assumed that E is uniform.

5.2 Maxwell's equations in terms of potentials

Maxwell's equations, given previously in Sec. 1.4, for charges and currents in a non-

polarisable and non-magnetisable medium, such as the vacuum, are

r^E+

@B

@t

= 0 (310)

r �B = 0 (311)

r �E =

1

�

0

� (312)

r^B = �

0

(j + �

0

@E

@t

) (313)

where � and j are the charge and current densities.

In view of (311) there is no need to change the de�nition already used of the vector

potential A, namely

B =r^A; (314)

but the freedom present in this de�nition will be reconsidered.

To de�ne the electric potential, we combine (310) and (314) getting

r^E+

@

@t

r^A = 0; and r^ (E+

@A

@t

) = 0: (315)

Thus we de�ne the electric potential via

E = �

@A

@t

�r�: (316)
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The de�nitions (314) and (316) of �elds in terms of potentials possess `gauge invari-

ance'. Verify that the gauge transformation

A

0

= A+r�; �

0

= ��

@�

@t

; (317)

yields potential that give the same electric �eld E and magnetic �eld B as did A and �.

We shall take advantage of this to simplify the equations for A and � that follow from

Maxwell's equations.

Using (316) we see (312) implies

�r

2

��

@

@t

(r �A) =

�

�

0

: (318)

Using (316) and (314), we �nd that (313) leads to

r^ (r^A) = �

0

j+ �

0

�

0

(�

@

2

A

@t

2

�r

@�

@t

); and (319)

�r

2

A+ �

0

�

0

@

2

A

@t

2

= �

0

j�r(r �A+ �

0

�

0

@�

@t

): (320)

Here we used

r^ (r^A) =r(r �A)�r

2

A: (321)

Now we use the arbitrariness present in the de�ntions of A and � to impose the `gauge

condition' (called the Lorentz condition)

r �A+ �

0

�

0

@�

@t

= 0: (322)

Hence

(�

0

�

0

@

2

@t

2

�r

2

)� =

�

�

0

(323)

(�

0

�

0

@

2

@t

2

�r

2

)A = �

0

j; �

0

�

0

=

1

c

2

: (324)

Thus we have found that � and the components of A obey wave equations linked only

through the Lorentz condition.

In the absence of spatial distributions of charge, these equations are in fact wave

equations with wave speed c given by c

�2

= �

0

�

0

. Maxwell conjectured that c is the speed

of light in advance of possessing data that con�rms it. In Sec. 1.6 it was shown that, in

the same context, the components of E and B obey the same wave equation. The same

conclusion follows (323) and (324), for � = 0; j = 0.

5.3 Energy and energy transport

Recall the �eld energy formulas

W

el

=

�

0

2

Z

V

E

2

d�; W

mag

=

1

2�

0

Z

V

B

2

d�; (325)
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and the expression for the rate of Ohmic heat loss i.e. the rate of dissipation of electro-

magnetic energy as heat

Z

j �Ed�: (326)

The Maxwell equation (313) implies

1

�

0

E �r^B = E � j+ �

0

E �

@E

@t

: (327)

Now

E �r^B = �r � (E^B) +B �r^E and

= �r � (E^B)�B �

@B

@t

: (328)

Hence

��

0

E �

@E

@t

�

1

�

0

B �

@B

@t

= j �E+

1

�

0

r �E^B

�

d

dt

�

�

0

2

Z

V

E

2

d� +

1

2�

0

Z

V

B

2

d�

�

=

Z

V

j �Ed� +

1

�

0

Z

S

n �E^BdS: (329)

For the last term the divergence theorem has been applied to a �xed volume V of space

bounded by a surface S. The left side here is the rate of decrease of the total �eld energy

W = W

el

+W

mag

. The �rst term on the right side of (329) represents the rate of loss of

energy as Ohmic heat, while the second term there is the rate of energy transport out of

V through the surface S.

For the latter, de�ne the Poynting vector S

S =

1

�

0

E^B: (330)

The ux of S through a closed surface S, with outward unit normal n, is

Z

S

S � ndS: (331)

This is the ux of electromagnetic energy being transported through S out of V .

Eq. (329) thus gives a generally applicable account of energy changes in a conducting

medium.

5.4 Plane wave solutions of Maxwell's equations

We here deal with the vacuum or free-space, i.e. � = 0; j = 0. We begin as simply as

possible by seeking a solution describing a wave propagating in the z-direction with �elds

that do not depend on x or y.

Looking at r �E = 0, we �nd that E

z

is constant. Looking for solutions of wave type,

we put E

z

= 0. Next we chose axes so that

E = (E; 0; 0): (332)

Since the components of E each satisfy a wave equation, this gives us

@

2

E

@z

2

=

1

c

2

@

2

E

@t

2

: (333)
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The solution of such a wave equation can be written as

E(z; t) = f(z � ct) + g(z + ct): (334)

The f and g terms here describe waves moving respectively in the positive and negative

z-directions with speed c. In particular, we can consider a monochromatic wave, one with

a �xed angular frequency !, in which

E = E

0

exp i!(

z

c

� t) = E

0

exp i(kz � !t) (335)

where we have de�ned the wave-number k by

k =

!

c

=

2�

�

; : (336)

Here �� =

!

2�

� = c relates the wavelength � and frequency of the wave in a standard

way to other wave variables. Finally, note that the use of complex exponentials is very

convenient, but the physical �elds must always be identi�ed by taking real parts.

What about the magnetic �elds? Looking at r �B = 0, we �nd that B

z

is constant,

and take it to be zero. It is natural to assume that B is of the form

B = B

0

exp i(kz � !t): (337)

Then in r^E the only no-zero entry is

@E

x

@z

so that we have B

0

= (0; B

0

; 0), and hence,

from

r^E+

@B

@t

= 0 (338)

we get

ikE

0

� i!B

0

= 0; B

0

=

E

0

c

: (339)

So our wave solution of Maxwell's equations is

E = (E

0

; 0; 0) exp i(kz � !t); B =

1

c

(0; E

0

; 0) exp i(kz � !t): (340)

It should be checked that (340) satis�es also (the zero current density version of) the

fourth Maxwell equation (313), although our use of the fact that each component of E

satis�es a wave equation guarantees it.

We could have chosen our coordinate axis in the xy-plane initially so that E = (0; E; 0),

and reached, as above, the solution

E = (0; E

0

; 0) exp i(kz � !t); B = (�

1

c

E

0

; 0; 0) exp i(kz � !t): (341)

The solutions (340) and (341) are linearly independent, and the general monochromatic

wave obtained as a linear superposition of them, has �elds E and B that are transverse

to the direction of propagation of the wave. Also E �B = 0.

The solutions (340) and (341) are said to be linearly polarised, with polarisation

vectors i = (1; 0; 0) and j = (0; 1; 0), giving the directions of their electric �elds.

The transport of energy by the wave (340) obtained above, requires the real parts

E = (E

0

; 0; 0) cos(kz � !t); B = (0;

1

c

E

0

; 0) cos(kz � !t); (342)
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so that

S =

1

�

0

E

0

2

c

cos

2

(kz � !t) (0; 0; 1): (343)

Thus the ux of energy transported across unit area normal to the direction of propagation

of the wave (say at z = 0) is

jSj =

1

�

0

E

0

2

c

cos

2

!t: (344)

Averaging over one period,

2�

!

, of the wave motion, we get for the average rate of energy

transport

hjSji =

R

T

0

jSj(t)dt

R

T

0

dt

=

1

2�

0

E

0

2

c

: (345)

The same result holds for the wave (341).

Circularly polarised waves

Take a solution that is (340) minus i times (341), with E

0

real. This has physical �elds

E = Re(E

0

;�iE

0

; 0) exp i(kz � !t); B = Re

1

c

(iE

0

; E

0

; 0) exp i(kz � !t) or (346)

E = E

0

(cos(kz � !t); sin(kz � !t); 0) ; B =

E

0

c

(� sin(kz � !t); cos(kz � !t); 0)

E = E

0

e

s

(kz � !t) ; B =

E

0

c

e

�

(kz � !t; (347)

where e

s

(�) and e

�

(�) are the unit vectors of cylindrical polar coordinates (s; �; z) with the

z-axis in the direction of propagation of the wave. The wave (347) is said to be (positively)

circularly polarised. A wave of negative circular polarisation linearly independent of this

can be constructed, using (340) plus i-times (341) with E

0

real. It is immediate to write

down the corresponding �elds.

If we consider a wave with �elds (of constant E

0

and B

0

)

E(r) = E

0

exp i(k � r� !t); B(r) = B

0

exp i(k � r� !t); (348)

where k the wave-vector, with jkj = k, gives the direction of propagation of the wave,

(i.e. here k 6= e

z

and the wave number k 6= 1). Then r � E = 0 implies E

0

� k = 0,

and likewise r �B = 0 implies B

0

� k = 0, so that both these �elds are transverse to the

direction of propagation. Also (338) implies

ik^E

0

� i!B

0

= 0; (349)

which gives B

0

in terms of E

0

. Further the remaining Maxwell equation r^B =

1

c

2

@E

@t

implies

ik^B

0

= �i

1

c

2

!E

0

; (350)

compatably with (349) i�

k

2

=

!

2

c

2

; giving k =

!

c

: (351)

We have merely reproduced our previous wave in an arbitrary Cartesian basis.
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5.5 Maxwell's equations in a conducting medium

a) Decay of charge in a good conductor

Previously, in Sec. 4.1, we used the approximation to full Maxwell theory, which

neglects (was historically unaware of) the displacement current, and is governed by the

equations

r^B = �

0

j; r^E+

@E

@t

= 0; (352)

so that r � j = 0 and � = 0. Now we consider the full theory with

r^B = �

0

j+ �

0

@E

@t

; (353)

together with the experimental law

j = �E; (354)

and the continuity equation (cf. eq. (26) of Sec. 1.4).

r � j +

@�

@t

= 0: (355)

Throughout Sec. 5.5, � is the conductivity of the medium. Thus we have

1

�

0

r^B = �E+ �

0

@E

@t

and hence

0 = �r �E+ �

0

@

@t

r �E

= �

�

�

0

+

@�

@t

: (356)

We de�ne the so-called relaxation time

� =

�

0

�

: (357)

For copper or silver � � 10

�18

s. So, if � = �

0

at time t = 0, then we have

� = �

0

exp(�

t

�

); (358)

so that any charge density present at any time, for whatever reason, very quickly goes

to zero in material of high conductivity. Inside the material of a perfect conductor (�

in�nite), we recover our previous statement � = 0.

b) Criterion for neglect of displacement current in AC problems

If E(r; t) = E(r)e

�i!t

, then the ratio the magnitudes of the displacement current �

0

@E

@t

and the physical current j is given by

j�

0

@E

@t

j=jjj =

�

0

!

�

= !�: (359)

So neglect the displacement current requires !� � 1, and is justi�ed for current ow in

copper up to optical frequencies (10

15

hertz).

c) Waves in conducting medium: see Sec. 5.7
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5.6 Reection at the surface of a perfect conductor

We consider a monochromatic wave (340) propagating in the z-direction from the half-

space z < 0, towards perfectly conducting material in z > 0, whose surface is the plane

z = 0. In fact the solution of Maxwell's equations plus the boundary conditions (BC)

on z = 0 will comprise not only an incident wave but also (at least) a suitably matched

reected wave. The �elds of the former will have argument (kz�!t), where kc = !, while

those of the latter (moving in the negative z-direction) are (�kz � !t). All �elds in the

problem have the same t-dependence / e

�i!t

.

We know that the �elds E and B are zero inside perfectly conducting media, it there-

fore follows the BC are: tangential E and normal B are zero at z = 0. For the wave (340)

this just means that E

x

= 0 at z = 0. Thus for the electric �elds of the incident and

reected parts of our total wave solution of Maxwell's equations, we take

E

inc

= (E

0

; 0; 0) exp i(kz � !t); E

ref

= (�E

0

; 0; 0) exp i(�kz � !t); (360)

since their superposition

E = E

inc

+ E

ref

; (361)

by construction gives E

x

= 0 at z = 0. The corresponding magnetic �elds are B =

B

inc

+B

ref

with

B

inc

=

1

c

(0; E

0

; 0) exp i(kz � !t); B

ref

=

1

c

(0; E

0

; 0) exp i(�kz � !t): (362)

We see from this that B does have a non-zero tangential component at z = 0, namely

B = 2

1

c

(0; E

0

; 0) e

�i!t

: (363)

But this just tells us that a surface current s necessarily accompanies the �elds E and B

in a consistent solution of Maxwell's equations and boundary conditions.

Recalling the formula (65) of chapter one for s

n^Bj

+

�

= �

0

s; (364)

we obtain

�

0

s = n^Bj

�

= 2

1

c

E

0

e

�i!t

(1; 0; 0): (365)

5.7 Plane waves incident on conducting material

In Sec. 5.6, we solved the problem of an incident and a reected wave in the half-space

z < 0 of free-space in the presence of a perfectly conducting medium C in z > 0 with

plane surface z = 0. It is known that E = 0 within C and it follows the Maxwell equation

(310) that B = 0 there too.

If however the medium in z > 0 is of high but not in�nite conductivity �, is it possible

that there can be propagation of �elds into z > 0? We consider this now.

If the conducting material of C is of �nite conductivity �, we use the equations

r^B = �

0

(j+ �

0

@E

@t

); r^E+

@B

@t

= 0; j = �E: (366)

These give

�r^(r^E) = �

0

�

@E

@t

+ �

0

�

0

@

2

E

@t

2

; (367)
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an equation for E in C.

We consider a wave with transverse electric �eld propagating in the z-direction in C,

with no �eld dependence on x and y. Hence, if we use

�r^(r^E) =r

2

E�r(r �E); (368)

we can drop the second term because we here have r � E = 0. Thus, taking E to have

time dependence / e

�i!t

, (367) gives

@

2

E

x

@z

2

= (�i�

0

�! � �

0

�

0

!

2

)E

x

: (369)

Try a solution of the form E

x

= E

0

e

pz

. This solves (369) if

p

2

= �i�

0

�! � �

0

�

0

!

2

: (370)

To handle this (which is awkward) we set p = � + i�, eliminate � and solve a quadratic

for �

2

getting

2�

2

= �

0

�

0

!

2

�

�1�

r

1 + (

�

�

0

!

)

2

�

; (371)

and get � from

� = �

�

0

�!

2�

: (372)

We take the plus sign in (371) to make �

2

> 0 and hence � real. Now for a very good

conductor, the work of Sec. 5.5 b) tells us that

(!� =)

�

0

!

�

� 1; or

�

�

0

!

� 1: (373)

It follows that the ones in (371) can be neglected, so that

2�

2

= �

0

!�; (374)

and hence

� = �

r

�

0

!�

2

= ��: (375)

So the transverse electric �eld is

E

x

= E

0

exp

�

�

r

�

0

!�

2

(1� i)z

�

: (376)

In the case we are envisaging of a plane wave entering z > 0 at z = 0 where jE

z

j = E

0

,

we clearly take the minus sign. So, in C, we have the electric �eld

E = (E

0

; 0; 0) exp

�

�

r

�

0

!�

2

(1� i)z

�

e

i!t

: (377)

We can see that the magnitude of the this �eld changes by a factor

1

e

�

1

3

between

z = 0 and z = d such that

d

r

�

0

!�

2

= 1: (378)

The distance

d =

p

2=(�

0

!�) (379)

is called the skin depth, being a measure of how far �elds penetrate into the interior of a

very good conductor. For copper at ! = 10

10

Hz, where one hertz is one cycle per second,

d � 10

�6

m, so that the �elds hardly penetrate at all into C. But to the extent that they

do, there is dissipation of electromagnetic energy as heat. Also jEj ! 0 as � ! 1 in

z > 0.
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5.8 Towards wave guides

First consider briey wave propagation in the z-direction, still with �elds independent of

x and y, between perfectly conducting plates z = 0 and z = a.

The BC are again tangential E and normal B zero at z = 0 and z = a, i.e. E

x

=

E

y

= B

z

= 0 there . Again we use �elds with time-dependence / e

�i!t

. Again we chose

axes such that E = (E

x

; 0; 0). Try

E

x

= E

0

sin kze

�i!t

; (380)

which is zero at z = 0 for all k and zero at z = a, i�

k = k

n

; k

n

=

n�

a

; n = 1; 2; : : : : (381)

Further E

x

must satisfy the wave equation. This requires ! = !

n

= ck

n

for n = 1; 2; : : :

The magnetic �elds can easily be calculated, and the currents in the conducting sur-

faces.

Next consider wave propagation in the z-direction, say, between the conducting plates,

y = 0; y = b. This will involve transverse electric and magnetic �elds with dependence on

y as well as on z. See example 6 of problem set four.

So we reach the case of propagation of waves in a wave-guide: for example, wave

propagation in the z-direction inside a tube of rectangular cross-section with perfectly

conducting planes x = 0; x = a; y = 0; y = b. But this is beyond the syllabus. See

Feynmann's chapter on wave-guides, and perhaps also the related topic of radiation in a

cavity of free-space in perfectly conducting material.

5.9 The historical paradox revisited

We return to the topic of Sec. 5.1, to provide a treatment which does not make the

(crude) assumption that the the electric �eld E beteween the plates is uniform. Assume

the plates are circular of radius a, and neglect edge e�ects. Use cylindrical polars (s; �; z).

We shall treat the case in which

E = E

z

(s)k exp(�i!t); B = B

�

(s)e

�

exp(�i!t): (382)

The Maxwell equation r^E +

@B

@t

= 0 has only got a non-trivial e

�

component, which

gives

�

@E

z

@s

+ (�i!)B

�

= 0: (383)

The Maxwell equation

r^B = �

0

j+ �

0

�

0

@E

@t

; (384)

between the plates, where j = 0, has only got a non-trivial z component

1

s

@

@s

(sB

�

) = �i

!

c

2

E

z

(�

0

�

0

= c

�2

): (385)

Substituting for B

�

from (383) into (385), we �nd

1

s

@

@s

(s

@E

z

@s

) +

!

2

c

2

E

z

= 0: (386)
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We set k =

!

c

, and recognize (386) as the equation satis�ed by the Bessel function J

0

(ks).

Hence, we write

E

z

= �J

0

(ks); B

�

= i

1

!

@E

z

@s

= i

�

!

@J

0

(ks)

@s

; (387)

where � is a constant.

The surface charge density on the the lower plate is

� = �

0

k �Ej

+

�

= �

0

�J

0

(ks) exp(�i!t); 0 � s � a: (388)

We now show that the integral form of (384) can be applied consistently to

H

C

B � dr

whether or not the surface S; @C = S, chosen passes between the plates or not. Let C be

the circumference of the lower plate, S

2

the lower plate itself, and S

1

a surface bounded by

C but lying entirely outside the region between the plates and so pierced by the current

I. As before, for S

1

,

H

C

B � dr = �

0

I. For S

2

, on the other hand, we have

�

0

I = �

0

dQ

dt

= �

0

d

dt

Z

S

2

�dS

= 2��

0

d

dt

Z

a

0

s�ds

= 2��

0

(�i!) exp(�i!t)

Z

a

0

s�

0

�J

0

(ks)ds

= �2�i

1

!

!

2

c

2

exp(�i!t)

Z

a

0

s�J

0

(ks)ds

= 2�i

�

!

exp(�i!t)

Z

a

0

(�k

2

sJ

0

(ks))ds

= 2�i

�

!

exp(�i!t)

Z

a

0

@

@s

(s

@J

0

(ks)

@s

)ds

= 2�i

�

!

exp(�i!t)a

@J

0

(ks)

@s

j

s=a

= 2�aB

�

(a) exp(�i!t) =

I

C

B � dr; (389)

as required. The third line here uses (388), the fourth �

0

�

0

= c

�2

, the �fth k = !=c, the

sixth Bessel's equation, the seventh (387) for B

�

.

6 Added Notes

6.1 Note 1

Refer to Sec. 2.8 and Field energy in electrostatics, and the vanishing of

Z

S

�n �EdS; (390)

in the context of a �nite distribution of electric charge density sitting near the origin. To

justify this, let S be a sphere of radius R and consider the limit as R ! 1. From Sec.

2.3, we know that � goes at least as fast as

1

R

, jEj at least as fast as

1

R

2

, and dS goes like

R

2

as R!1. The overall behaviour of (390) is thus like

1

R

, justifying putting it to zero

in the limit.
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Refer to Sec. 4.7 and Energy of the magnetic �eld , and

Z

S

n �A^B dS; (391)

in the context of a �nite distribution of electric current density sitting near the origin.

Again let let S be a sphere of radius R and consider the limit as R ! 1. The integral

vanishes because, from the work of Sec. 3.4, jAj; jBj go to zero as R!1 at least as fast

as

1

R

2

;

1

R

3

, and dS goes like R

2

.

6.2 Note 2

Refer to Sec. 3.3b) and The long solenoid. The result that the magnetic �eld B =

B

z

(r)k; k = (0; 0; 1) needs careful justi�cation. It is indeed clear by symmetry that jBj

and the components of B are independent of the coordinates �; z of cylindrical polars

(r; �; z), and that B = B

0

; B

0

constant on the axis. This allows us to suggest a result of

the form

B = B

r

(r)e

r

+B

z

(r)k: (392)

This certainly describes a �eld B(r) that `looks the same' whatever the values of � and

z. To make progress, we use r �B = 0. This tells us that

@

@r

(r B

r

(r)) = 0; (393)

so that B

r

(r) = c=r; c constant. Clearly we must have c = 0 inside the solenoid, and since

n �B is continuous at the surface of the solenoid, the same is true outside it. The rest of

the discussion (191) of Sec.3.3 then follows.

Suppose, perversely(?), one wanted to justify the exclusion of a contribution to (392)

of the form B

�

(r)e

�

. We can do so by applying Amp�ere's law to a circle, centred on the

axis and lying in a horizontal plane, since there is no current through such a circle.

6.3 Note 3

Refer to Sec. 3.7, Force and couples, and supply the proof that the couple exerted by

a uniform magnetic �eld B on a plane current loop, of area A, unit normal n, carrying

current I, is given by

G =m^B; m = IAn: (394)

Letting c be an arbitrary constant vector, we have

c �G = c �

I

C

r^ (Idr^B) = I

I

C

c � (r �B dr� r � dr B)

= I

I

C

[c � (r �Bdr)� (c �B)(r � dr)] : (395)

We now apply Stokes's theorem to each of the terms of (395). For the second term we

have

I

C

r � dr =

Z

S

n � (r^r)dS = 0: (396)

For the �rst term

I

I

C

(r �B c) � dr = I

Z

S

n �r^ (r �B c) dS = I

Z

S

n �B^c dS = I(

Z

S

dS)^B � c: (397)
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Here we have used the elementary result r(r �B) = B, for constant B. We may �nally

detach c from (397), and get the required result

G = I(

Z

S

dS)^B = (IAn)^B =m^B: (398)

6.4 Note 4

Refer to Sec. 4.5 and the Self-Inductance L of a current loop. The de�nition of L that

follows from the general de�nition of M

kl

in (281) of sec. 4.5, reads as

L =

I

C

�

I

C

dr

1

jr

1

� r

2

j

�

� dr

2

: (399)

Here the two integrals are independent line integrals over the curve C that deines the

current loop in question, and the jr

1

� r

2

j is the distance between arbitrary points of the

independent integrations. A diagram, as was shown in lectures, clari�es this.

It is necesaary to point out that (399) diverges. Since an in�nite value for L or for

the ux through C makes no sense, it is plain that, for the purposes of calculating the

self-inductance of a current loop, the idealised view that the wire is of negligible thickness

is not tenable. One has to replace the concept of a very thin wire by a wire of �nite

cross-section with current distributed over it, in which it is to be expected that a �nite

answer will emerge.

6.5 Note 5

Consider a standard AC circuit shown formally with a battery of electromotance (EMF)

E, a resistance R, a capacitance C and an inductance L. For E = E

0

cos!t, with real

E; !, one writes E = E

0

exp i!t, solves for the current I = I

0

exp i!t, �nally taking the

real part to get the physical solution.

Working in each case from �rst principles, i.e. Maxwell's equations, we have learned

that the potential di�erence drops across the three circuit elements are IR;

Q

C

; L

_

I,

where I =

_

Q. Then Ohm's law gives the well known result

E = RI +

Q

C

+ L

_

I; (400)

and the corresponding second order di�erential equation

_

E = R

_

I +

1

C

I + L

�

I: (401)

Setting I = E=Z, which de�nes the (complex) impedance of the circuit, we �nd

Z = R + i(!L�

1

!C

): (402)

Discussion of such circuits, of networks and of Kirchho�'s laws, is not on the course

syllabus of O5.
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6.6 Note 6

In the lectures there was time for some extra comment for Sec. 5.6 Reection at the

surface of a perfect conductor.

The �elds

E = E

inc

+E

ref

= 2iE

0

sin kz exp(�i!t)

B = B

inc

+B

ref

= 2

E

0

c

cos kz exp(�i!t) (403)

describe a standing wave. Also

E

phys

= Re E = 2E

0

sin kz sin!t

B

phys

= Re B = 2

E

0

c

cos kz cos!t: (404)

Hence the Poynting vector S =

1

�

0

E

phys

^B

phys

is proportional to cos!t sin!t, so that,

taking the average over one period 2�=!, we have

hjSji = 0; (405)

as expected for a standing wave. In fact, the incident and reected waves transport energy

in the �z directions at the same rate, given by (345).

Finally, we calculate the force F per unit area (the pressure) on the surface z = 0 of

the perfect conductor in z > 0. We use (67) of Sec. 1.8

F = jFj =

1

2

s(B

+

+B

�

); (406)

where s is the magnitude of the physical surface current and B

�

are the magnitudes of

the physical magnetic �elds on the � sides of z = 0. We have

s =

2E

0

�

0

c

cos!t; B

+

= 0; B

�

=

2E

0

c

cos!t; (407)

using (365) and (363). Hence, taking the average over one period 2�=!, we �nd

hF i =

E

2

0

�

0

c

2

= �

0

E

2

0

; (408)

which can be checked to be of the correct dimension.
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