Prof: O. Civitarese — JTP: M. Matera — Ay. Dipl: D. Actis

Práctica 2 — Electrostática – Técnicas Especiales

Separación de variables, Método de las Imágenes. Funciones de Green.

Problema 1. Determine el potencial en el interior de un cubo de lado a en los siguientes casos

- 1. Una de sus caras está conectada a un potencial de 1V y el resto están conectadas a tierra.
- 2. Un par de caras opuestas está conectado a un potencial de 1V y el resto de las caras está conectado a tierra.
- 3. Dos caras que comparten una arista están conectadas a potenciales de 1V y -1V respectivamente, y el resto están conectadas a tierra.
- 4. Cada una de las caras está conectada a un potencial distinto respecto de tierra.

Problema 2. Método de las imágenes II . Considere una esfera conductora maciza de radio $a=10 \, \mathrm{cm}$, aislada y de carga nula. Frente a ella, se ubica un hilo recto de espesor despreciable, densidad lineal de carga $\lambda=1 \mu \mathrm{C}$ y longitud mucho mayor a a, de manera que su distancia mínima al centro de la esfera es $b=20 \, \mathrm{cm}$. a) Determine el potencial electrostático en todo el espacio b) Dé una expresión para la densidad de carga inducida.

Problema 3. Método de las Imágenes III Una esfera conductora de radio a se encuentra en presencia de un campo eléctrico uniforme $\mathbf{E} = E_0 \hat{\mathbf{z}}$. Encuentre, por el método de las imágenes, el potencial en todo el espacio y la densidad de carga inducida en la esfera.

Problema 4. Una esfera conductora de radio R se encuentra en presencia de una carga puntual q colocada a una distancia r_q de su centro con $r_q > R$. Hallar el potencial exterior y la fuerza que actúa sobre la carga q para los siguientes casos, como función del radio de la esfera:

- 1. La esfera está conectada a tierra.
- 2. La esfera está aislada y posee una carga Q
- 3. La esfera está conectada a un potencial V respecto a tierra.

A partir de estos resultados, determine la Función de Green asociada al problema.

Problema 5. Utilizando propiedades de las funciones analíticas, a) determine el potencial en el interior de una cinta rectangular (bidimensional) semi-infinita de ancho A=5cm, si el borde finito se encuentra a potencial $V_0=9$ V, y los otros lados se encuentran a V=0. b) Utilize ese resultado para calcular el potencial en el interior de un sector circular de radio R y abertura α , cuyo lado curvo se encuentra a potencial $V_0=9$ V y sus otros bordes a potencial V=0.

Problema 6. Propiedades de las soluciones de la Ec. de Laplace Muestre que si $-\nabla^2 \psi(x) = 0$

a) (Propiedad del promedio) para es cualquier esfera \mathcal{S} ,

$$\phi(x_0) = \frac{\int_{\mathcal{S}} \phi(\vec{r}) dS}{\int_{\mathcal{S}} dS} = \langle \phi(\vec{r}) \rangle_{\mathcal{S}}$$

donde $x_0 = \frac{\int \vec{r} dS}{\int dS}$ es el punto en el centro de la esfera.

b) Propiedad extremal Si $\phi(\vec{x})$ satisface cierta condición de borde $\phi(\vec{x})|_{\mathcal{S}} = g(\vec{x})$ sobre cierta superficie cerrada \mathcal{S} , entonces $\phi(\vec{x})$ minimiza la funcional

$$E[\psi] = \frac{\epsilon_0}{2} \int |\nabla \psi(\vec{x})|^2 dx$$

sobre todas las funciones regulares $\psi(\vec{x})$ que cumplen la misma condición de borde.

Problema 7. Considere un prisma de largo L=5m, cuya sección es un triángulo equilátero de área 1cm^2 . Construya una solución aproximada de la ecuación de Laplace en su interior asumiendo que sobre una de sus caras se encuentran a potenciales $V_1=0$ V $V_2=1$ V y $V_3=-1$ V

Problema 8. Propiedades de la función de Green Muestre que la función de Green satisface que para condiciones homogeneas (de Dirichlet, Neumann o mixtas), es una función simétrica de sus argumentos.

Problema 9. Una esfera aislante de radio r tiene densidad de carga superficial σ en su hemisferio superior, y $-\sigma$ en su hemisferio inferior. Determine el campo electrostático generado en todo el espacio.

Problema 10. Un disco conductor de radio a y espesor despreciable se encuentra conectado a una diferencia de potencial de 9V respecto a tierra. a) Determine el potencial electrostático y la correspondiente distribución de cargas. Tip: Utilice el método de separación de variables en coordenadas esferoides obladas. b) Compare este resultado con la aproximación de asumir que la densidad de carga sobre el disco es constate.