Prof: O. Civitarese — JTP: M. Matera — Ay. Dipl: D. Actis

Práctica 5 — Electrodinámica: Ecuaciones de Maxwell Teorema de Poynting

Problema 1. Dos esferas concéntricas de radios a y b están separadas por un material conductor de conductividad σ . Se establece una diferencia de potencial V entre las esferas. Calcule la corriente que fluye desde a hasta b y encuentre la resistencia del material.

Problema 2. En el interior de una esfera metálica de conductividad σ , existe a t=0 una carga Q localizada en el punto \mathbf{x}_0 . Determine la distribución de cargas en un tiempo posterior t. Tip: Tenga en cuenta el principio de conservación de la carga.

Problema 3. Por un alambre recto muy largo circula una corriente eléctrica que varía como $I(t) = I_0(1 - e^{-t/\tau})$. Determine los campos eléctrico y magnético en puntos arbitrarios del entorno del alambre. Asuma que $\tau \gg \frac{\varepsilon_0}{\sigma}$ de manera que el término de Maxwell puede asumirse despreciable. Tip: Descomponga el campo eléctrico en un término irrotacional y uno solenoidal.

Problema 4. Inducción mutua Una espira conductora cuadrada de lado a, se encuentra cerca del centro de un alambre conductor largo, que yace en el plano de la espira, paralelo a uno de los lados, a una distancia b. Por el alambre circula una corriente alterna de amplitud i_0 y frecuencia $f = \omega/(2\pi)$. Si la resistencia de la espira es R, determine

- los campos eléctrico y magnético inducidos por el alambre.
- la inducción mutua del sistema.
- la FEM inducida sobre la espira, y la corriente que circula por esta, y la energía disipada. ¿Quién aporta esta energía?

Problema 5. En una región del espacio se tienen los siguientes campos, en coordenadas cilíndricas:

$$\mathbf{E} = \begin{cases} -2At\rho(a^2 - \rho^2)\hat{\phi} & \rho < a \\ 0 & \rho > a \end{cases} \qquad \mathbf{B} = \begin{cases} At^2(a^2 - 2\rho^2)\hat{z} & \rho < a \\ 0 & \rho > a \end{cases}$$

- a) Verifique que se trata de un campo electromagnético y encuentre las fuentes.
- b) Hallar las densidades de energía eléctrica, magnética y electromagnética.
- c) Encuentre la expresión del vector de Poynting en todo el espacio. ¿Hacia dónde se dirige el flujo de energía?
- d) Halle la fuerza que experimentará una carga puntual q que en el instante t = a/c se encuentra en el punto $\vec{r} = (a/2)\hat{x}$ y se mueve con velocidad $\vec{v} = -(3c/4)\hat{x}$.

Problema 6. Un alambre cilíndrico recto y muy largo de sección uniforme πa^2 , de un material de conductividad σ y permeabilidad $\mu \approx \mu_0$, transporta una corriente alterna de amplitud I_0 y frecuencia f. Asumiendo que $\mathbf{J}_c = \sigma \mathbf{E}$, determinar 1) la distribución de cargas y corrientes, y los correspondientes campos eléctricos y magnéticos en función de la frecuencia. 2) las densidades de energía eléctrica y magnética. 3) El vector de Poynting.

Problema 7. En el problema 6 de la práctica 5 se discutió el caso de una espira conductora acoplada a un alambre infinito por el fenómeno de inducción mutua. En las condiciones de ese problema, determine 1) el valor medio del vector

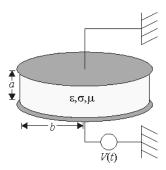
de Poynting en todo el espacio, despreciando las contribuciones a los campos provenientes de la espira, y el flujo medio por unidad de longitud. 2) Los campos eléctrico y magnético generados por la espira, en la aproximación dipolar. 3) La contribución al flujo del vector de Poynting a través de una supercifie que rodee al alambre.

Problema 8. Teorema de Poynting Suponga un pequeño imán (un dipolo magnético m) en cuyo interior hay una carga q.

- 1. Calcule las densidades de energía eléctrica y magnética en el sistema.
- 2. Determine el vector de Poynting en cada punto del espacio.
- 3. Compruebe que se verifica el teorema de Poynting en forma diferencial.

Problema 9. El espacio entre dos placas circulares conductoras y paralelas, se encuentra lleno de un material de permitividad ε , conductividad σ y permeabilidad magnética μ . El radio de las placas es b, y la distancia entre ellas es a ($a \ll b$). La placa superior está permanentemente a tierra, mientras que el centro de la inferior se encuentra a una tensión V(t).

- 1. Halle el campo eléctrico entre las placas y la corriente total que fluye entre ellas.
- 2. Calcule el campo magnético entre las placas.
- 3. Calcule la energía electromagnética almacenada en el dieléctrico.
- 4. Halle el vector de Poynting en el espacio entre las placas, así como su flujo a través de una superficie cilíndrica de radio b y altura a, concéntrica con el sistema.



Problema 10. Relaciones Constitutivas En vacío, $\vec{D} = \epsilon_0 \vec{E}$ y $\vec{B} = \mu_0 \vec{H}$. En ausencia de cargas y corrientes una posible solución de las ecuaciones de Maxwell, en término de potenciales, es $\vec{A} = \vec{A}_0 e^{i(\vec{k} \cdot \vec{x} - wt)}$ y $\phi = 0$. Dar las relaciones que deben satisfacer \vec{A}_0 , \vec{k} y ϕ .

Problema 11. Los campos \vec{D} , \vec{B} y \vec{J} expresan la respuesta de un medio macroscópico a los campos \vec{E} y \vec{H} . Las relaciones entre unos y otros se llaman relaciones constitutivas y pueden ser muy variadas. La respuesta de un medio en un punto y tiempo dados depende, en general no solo de cómo han sido los campos en tiempos anteriores en ese punto (no localidad temporal) sino también de cómo lo han sido en puntos aledaños (no localidad espacial). Concentrándonos en el caso del vector desplazamiento, una de las relaciones más simples que incluya ambas no localidades es $\vec{D}_i(\vec{x},t) = \iint d\vec{x}' dt' \epsilon_{ij}(\vec{x}-\vec{x}',t-t') \vec{E}_j(\vec{x}',t')$, siempre que el medio sea lineal y uniforme. Suponiendo que los campos poseen transformadas de Fourier espacial y temporal, hallar una expresión para $D(\vec{k},\omega)$. Qué condición tiene que satisfacer $\epsilon_{ij}(\vec{x}-\vec{x}',t-t')$ para asegurar la causalidad?

Problema 12. Suponiendo medios locales, y fijando nuestra atención en la causalidad, ésta asegura la analiticidad de $\epsilon(\omega)/\epsilon_0$ en el plano complejo $(Re\{\omega\} - Im\{\omega\})$ lo que permite relacionar $Re\{\epsilon(\omega)/\epsilon_0\}$ e $Im\{\epsilon(\omega)/\epsilon_0\}$ a través de las llamadas relaciones de Kramers-Kroning. Suponiendo que $Im\{\epsilon(\omega)/\epsilon_0\} = \delta(\omega - \omega_0)$. Hallar y graficar $Re\{\epsilon(\omega)/\epsilon_0\}$.