
Programas	y	lenguajes	formales	

Programas	
	

Secuencia	de	instrucciones	para	ejecutar	una	tarea	

Elementos	basicos	del	programa:	
	
input	
Get	data	from	the	keyboard,	a	file,	or	some	other	device.	
	
output	
Display	data	on	the	screen	or	send	data	to	a	file	or	other	device.	
	
math	
Perform	basic	mathematical	operations	like	addition	and	multiplication.	
	
conditional	execution	
Check	for	certain	conditions	and	execute	the	appropriate	sequence	of	
statements.	
	
repetition	
Perform	some	action	repeatedly,	usually	with	some	variation.	
	
	
	

	
Two	kinds	of	programs	process	high-level	languages	into	low-level	
languages:	interpreters	and	compilers.	An	interpreter	reads	a	high-
level	program	and	executes	it,	meaning	that	it	does	what	the	
program	says.	It	processes	the	program	a	little	at	a	time,	alternately	
reading	lines	and	performing	computations.	
	
	
	
	
	 A	compiler	reads	the	program	and	translates	it	completely	before	the	
program	starts	running.	In	this	case,	the	high-level	program	is	called	
the	source	code,	and	the	translated	program	is	called	the	object	code	
or	the	executable.	Once	a	program	is	compiled,	you	can	execute	it	
repeatedly	without	further	translation.	

		
	
	

Inerpretes	y	compiladores	

Debbuging	

	
Programming	is	a	complex	process,	and	because	it	is	done	
by	human	beings,	it	often	leads	to	errors.	For	whimsical	
reasons,	programming	errors	are	called	bugs	and	the	
process	of	tracking	them	down	and	correcting	them	is	
called	debugging.	
	
Three	kinds	of	errors	can	occur	in	a	program:	syntax	
errors,	runtime	errors,	and	semantic	errors.	It	is	useful	to	
distinguish	between	them	in	order	to	track	them	down	
more	quickly. 		

Syntax	errors	
	
	
A	program	can	be	executed	only	if	it	is	syntactically	correct;	
otherwise,	the	process	fails	and	returns	an	error	message.	
	
	Syntax	refers	to	the	structure	of	a	program	and	the	rules	
about	that	structure.		
	
For	example,	in	English,	a	sentence	must	begin	with	a	
capital	letter	and	end	with	a	period.	this	sentence	contains	
a	syntax	error.	So	does	this	one	

Runtime	errors	
	
	
The	second	type	of	error	is	a	runtime	error,	so	called	because	the	
error	does	not	appear	until	you	run	the	program.	These	errors	
are	also	called	exceptions	because	they	usually	indicate	that	
something	exceptional	(and	bad)	has	happened. 		

Semantic	errors	
	
	
The	third	type	of	error	is	the	semantic	error.	If	there	is	a	
semantic	error	in	your	program,	it	will	run	successfully,	in	the	
sense	that	the	computer	will	not	generate	any	error	
messages,	but	it	will	not	do	the	right	thing.	It	will	do	
something	else.	
	
	Specifically,	it	will	do	what	you	told	it	to	do.	
	
The	problem	is	that	the	program	you	wrote	is	not	the	
program	you	wanted	to	write.	The	meaning	of	the	program	
(its	semantics)	is	wrong.	Identifying	semantic	errors	can	be	
tricky	because	it	requires	you	to	work	backward	by	looking	at	
the	output	of	the	program	and	trying	to	figure	out	what	it	is	
doing. 		

Experimental	debugging	
	
One	of	the	most	important	skills	you	will	acquire	is	debugging.	Although	it	
can	be	frustrating,	debugging	is	one	of	the	most	intellectually	rich,	
challenging,	and	interesting	parts	of	programming.	
	
In	some	ways,	debugging	is	like	detective	work.	You	are	confronted	with	
clues,	and	you	have	to	infer	the	processes	and	events	that	led	to	the	
results	you	see.	
	
Debugging	is	also	like	an	experimental	science.	Once	you	have	an	idea	
what	is	going	wrong,	you	modify	your	program	and	try	again.	If	your	
hypothesis	was	correct,	then	you	can	predict	the	result	of	the	
modification,	and	you	take	a	step	closer	to	a	working	program.	If	your	
hypothesis	was	wrong,	you	have	to	come	up	with	a	new	one	
	
For	some	people,	programming	and	debugging	are	the	same	thing.	That	is,	
programming	is	the	process	of	gradually	debugging	a	program	until	it	does	
what	you	want.	The	idea	is	that	you	should	start	with	a	program	that	does	
something	and	make	small	modifications,	debugging	them	as	you	go,	so	
that	you	always	have	a	working	program. 		

Formal	and	natural	languages	
	
Natural	languages	are	the	languages	that	people	speak,	such	
as	English,	Spanish,	and	French.	They	were	not	designed	by	
people	(although	people	try	to	impose	some	order	on	them);	
they	evolved	naturally.	
	
Formal	languages	are	languages	that	are	designed	by	people	
for	specific	applications.	For	example,	the	notation	that	
mathematicians	use	is	a	formal	language	that	is	particularly	
good	at	denoting	relationships	among	numbers	and	symbols.	
Chemists	use	a	formal	language	to	represent	the	chemical	
structure	of	molecules.	And	most	importantly:	
	
Programming	languages	are	formal	languages	that	have	
been	designed	to	express	computations. 		

Formal	languages	tend	to	have	strict	rules	about	syntax.		
	
For	example,		

	 	 	 	 	 	3+3=6		
is	a	syntactically	correct	mathematical	statement,		
But	

	 	 	 	 	 		3=+6$		
is	not.		
	

	 	 	 	 			 				H2O		
	
is	a	syntactically	correct	chemical	name,	but		

	 	 	 	 	 	2Zz		
is	not.	

Syntax	rules	come	in	two	flavors,	pertaining	to	tokens	and	
structure.		
	
	
Tokens	are	the	basic	elements	of	the	language,	such	as	
words,	numbers,	and	chemical	elements.		
	
One	of	the	problems	with	3=+6$	is	that	$	is	not	a	legal	
token	in	mathematics	
	
Similarly,	2Zz	is	not	legal	because	there	is	no	element	with	
the	abbreviation	Zz. 		

The	second	type	of	syntax	error	pertains	to	the	structure	of	a	
statement					that	is,	the	way	the	tokens	are	arranged.	T	
	
he	statement		

	 	 	 	 	 	 	3=+6$	I	
	
s	structurally	illegal	because	you	can't	place	a	plus	sign	
immediately	after	an	equal	sign.		
	
Similarly,	molecular	formulas	have	to	have	subscripts	after	the	
element	name,	not	before.	

Parsing	

When	you	read	a	sentence	in	English	or	a	statement	in	a	
formal	language,	you	have	to	figure	out	what	the	structure	of	
the	sentence	is.		

	 	 	 	This	process	is	called	parsing.	
	
For	example,	when	you	hear	the	sentence,	
	"The	other	shoe	fell,”	
	you	understand	that	"the	other	shoe"	is	the	subject	and	"fell"	
is	the	predicate.		
	
Once	you	have	parsed	a	sentence,	you	can	figure	out	what	it	
means,	or	the	semantics	of	the	sentence.	Assuming	that	you	
know	what	a	shoe	is	and	what	it	means	to	fall,	you	will	
understand	the	general	implication	of	this	sentence. 		

Although	formal	and	natural	languages	have	many	features	in	common					
tokens,	structure,	syntax,	and	semantics					there	are	many	differences:	
	
ambiguity	
Natural	languages	are	full	of	ambiguity,	which	people	deal	with	by	using	
contextual	clues	and	other	information.	Formal	languages	are	designed	to	be	
nearly	or	completely	unambiguous,	which	means	that	any	statement	has	
exactly	one	meaning,	regardless	of	context.	
	
redundancy	
In	order	to	make	up	for	ambiguity	and	reduce	misunderstandings,	natural	
languages	employ	lots	of	redundancy.	As	a	result,	they	are	often	verbose.	
Formal	languages	are	less	redundant	and	more	concise.	
	
literalness	
	
Natural	languages	are	full	of	idiom	and	metaphor.	If	I	say,	"The	other	shoe	fell,"	
there	is	probably	no	shoe	and	nothing	falling.	Formal	languages	mean	exactly	
what	they	say. 		

Reading	a	program	

First,	remember	that	formal	languages	are	much	more	dense	
than	natural	languages,	so	it	takes	longer	to	read	them.	
	
	Also,	the	structure	is	very	important,	so	it	is	usually	not	a	
good	idea	to	read	from	top	to	bottom,	left	to	right.	Instead,	
learn	to	parse	the	program	in	your	head,	identifying	the	
tokens	and	interpreting	the	structure	
	
Finally,	the	details	matter.	Little	things	like	spelling	errors	and	
bad	punctuation,	which	you	can	get	away	with	in	natural	
languages,	can	make	a	big	difference	in	a	formal	language.	

Variables,	expresiones	y	enunciados	

	Values	and	types	
	
A	value	is	one	of	the	fundamental	things					like	a	letter	or	a	number					
that	a	program	manipulates.		
	
Values	belong	to	different	types:	2	is	an	integer,	and	'Hello,	World!'	is	
a	string,	so-called	because	it	contains	a	"string"	of	letters.	You	(and	
the	interpreter)	can	identify	strings	because	they	are	enclosed	in	
quotation	marks.	
	

The	print	statement	also	works	for	integers.	
>>> print 4
4
If	you	are	not	sure	what	type	a	value	has,	the	interpreter	can	tell	you.	
>>>	type('Hello,	World!')		
<type ' str' >
>>> type(17) 	

<type ' int' >

Not	surprisingly,	strings	belong	to	the	type	str	and	integers	
belong	to	the	type	int.	Less	obviously,	numbers	with	a	decimal	
point	belong	to	a	type	called	float,	because	these	numbers	are	
represented	in	a	format	called	floating-point.	
	

>>> type(3.2)
<type	'float'>		
	

What	about	values	like	'17'	and	'3.2'?	They	look	like	numbers,	
but	they	are	in	quotation	marks	like	strings.	
	
>>> type(’17’)
<type ' str' >
>>> type(’3.2’')
<type ' str' >
They're	strings.	

When	you	type	a	large	integer,	you	might	be	
tempted	to	use	commas	between	groups	of	three	
digits,	as	in	1,000,000.	This	is	not	a	legal	integer	in	
Python,	but	it	is	a	legal	expression:	
	
>>>	print	1,000,000		
1	0	0		
	
Well,	that's	not	what	we	expected	at	all!	Python	
interprets	1,000,000	as	a	comma-separated	list	of	
three	integers,	which	it	prints	consecutively.	This	is	
the	first	example	we	have	seen	of	a	semantic	error:	
the	code	runs	without	producing	an	error	message,	
but	it	doesn't	do	the	"right"	thing. 		

Variables	
	
One	of	the	most	powerful	features	of	a	programming	language	is	the	ability	to	
manipulate	variables.	A	variable	is	a	name	that	refers	to	a	value.	
	
The	assignment	statement	creates	new	variables	and	gives	them	values:	
>>>	message	=	"What's	up,	Doc?"		
>>> n = 17
>>> pi = 3.14159
	
This	example	makes	three	assignments.	The	first	assigns	the	string	"What's	up,	
Doc?"	to	a	new	variable	named	message.	The	second	gives	the	integer	17	to	n,	
and	the	third	gives	the	floating-point	number	3.14159	to	pi.	
	
Notice	that	the	first	statement	uses	double	quotes	to	enclose	the	string.	In	
general,	single	and	double	quotes	do	the	same	thing,	but	if	the	string	contains	
a	single	quote	(or	an	apostrophe,	which	is	the	same	character),	you	have	to	
use	double	quotes	to	enclose	it. 		

A	common	way	to	represent	variables	on	paper	is	to	write	
the	name	with	an	arrow	pointing	to	the	variable's	value.	
This	kind	of	figure	is	called	a	state	diagram	because	it	
shows	what	state	each	of	the	variables	is	in	(think	of	it	as	
the	variable's	state	of	mind).	This	diagram	shows	the	
result	of	the	assignment	statements:	

		

The	print	statement	also	works	with	variables.	
>>>	print	message		
What's	up,	Doc?		
>>> print n
17		
>>> print pi
3.14159		
In	each	case	the	result	is	the	value	of	the	variable.	
Variables	also	have	types;	again,	we	can	ask	the	interpreter	
what	they	are.	
>>>	type(message)		
<type ' str' >
>>> type(n)
<type ' int' >
>>> type(pi)
<type	'float'>		
The	type	of	a	variable	is	the	type	of	the	value	it	refers	to. 		

Variable	names	and	keywords	
	
Programmers	generally	choose	names	for	their	variables	that	are	meaningful					
they	document	what	the	variable	is	used	for.	
	
Variable	names	can	be	arbitrarily	long.	They	can	contain	both	letters	and	
numbers,	but	they	have	to	begin	with	a	letter.	
	
	Although	it	is	legal	to	use	uppercase	letters,	by	convention	we	don't.	If	you	do,	
remember	that	case	matters.	Bruce	and	bruce	are	different	variables.	
	
The	underscore	character	(_)	can	appear	in	a	name.	It	is	often	used	in	names	
with	multiple	words,	such	as	my_name	or	price_of_tea_in_china.	
	

If	you	give	a	variable	an	illegal	name,	you	get	a	syntax	error:	
>>>	76trombones	=	'big	parade'		
SyntaxError:	invalid	syntax		
>>>	more$	=	1000000		
SyntaxError:	invalid	syntax		
>>>	class	=	'Computer	Science	101'		
SyntaxError:	invalid	syntax		
76trombones	is	illegal	because	it	does	not	begin	with	a	letter.	
more$	is	illegal	because	it	contains	an	illegal	character,	the	
dollar	sign.	But	what's	wrong	with	class?	
It	turns	out	that	class	is	one	of	the	Python	keywords.	Keywords	
define	the	language's	rules	and	structure,	and	they	cannot	be	
used	as	variable	names.	

		

Python	has	twenty-nine	keywords:	
	
and							def							exec						if								not							return		
assert				del							finally			import				or								try		
break					elif						for							in								pass						while		
class					else						from						is								print					yield		
continue		except				global				lambda				raise		

Statements	
A	statement	is	an	instruction	that	the	Python	interpreter	can	execute.	We	
have	seen	two	kinds	of	statements:	print	and	assignment.	
When	you	type	a	statement	on	the	command	line,	Python	executes	it	and	
displays	the	result,	if	there	is	one.	The	result	of	a	print	statement	is	a	value.	
Assignment	statements	don't	produce	a	result.	
A	script	usually	contains	a	sequence	of	statements.	If	there	is	more	than	one	
statement,	the	results	appear	one	at	a	time	as	the	statements	execute.	
For	example,	the	script	
print	1		
x = 2
print	x		
produces	the	output	
1		
2		
Again,	the	assignment	statement	produces	no	output. 		

Evaluating	expressions	
	
An	expression	is	a	combination	of	values,	variables,	and	
operators.	If	you	type	an	expression	on	the	command	line,	the	
interpreter	evaluates	it	and	displays	the	result:	
>>> 1 + 1
2		
Although	expressions	contain	values,	variables,	and	operators,	
not	every	expression	contains	all	of	these	elements.	A	value	all	
by	itself	is	considered	an	expression,	and	so	is	a	variable.	
>>> 17
17		
>>> x
2	 		

Confusingly,	evaluating	an	expression	is	not	quite	the	same	
thing	as	printing	a	value.	
	
>>>	message	=	'Hello,	World!'		
>>>	message		
'Hello,	World!'		
>>>	print	message		
Hello,	World!		
	
When	the	Python	interpreter	displays	the	value	of	an	
expression,	it	uses	the	same	format	you	would	use	to	enter	a	
value.	In	the	case	of	strings,	that	means	that	it	includes	the	
quotation	marks.	But	if	you	use	a	print	statement,	Python	
displays	the	contents	of	the	string	without	the	quotation	
marks.		

In	a	script,	an	expression	all	by	itself	is	a	legal	statement,	but	it	
doesn't	do	anything.	The	script	
17		
3.2		
'Hello,	World!'		
1 + 1
produces	no	output	at	all		

Operators	and	operands	
	
Operators	are	special	symbols	that	represent	computations	
like	addition	and	multiplication.		
	

The	values	the	operator	uses	are	called	operands.	
	

The	following	are	all	legal	Python	expressions	whose	meaning	
is	more	or	less	clear:	
	

	 	20+32			hour-1			hour*60+minute			
	 	minute/60				5**2			(5+9)*(15-7)		

The	symbols	+,	-,	and	/,	and	the	use	of	parenthesis	for	
grouping,	mean	in	Python	what	they	mean	in	mathematics.	
The	asterisk	(*)	is	the	symbol	for	multiplication,	and	**	is	the	
symbol	for	exponentiation.	
When	a	variable	name	appears	in	the	place	of	an	operand,	it	
is	replaced	with	its	value	before	the	operation	is	performed.

		

Addition,	subtraction,	multiplication,	and	exponentiation	all	do	
what	you	expect,	but	you	might	be	surprised	by	division.		
	

The	following	operation	has	an	unexpected	result:	
	

>>> minute = 59
>>> minute/60 	(python	2)
0
	

The	value	of	minute	is	59,	and	in	conventional	arithmetic	59	
divided	by	60	is	0.98333,	not	0.		
The	reason	for	the	discrepancy	is	that	Python	is	performing	
integer	division.	
When	both	of	the	operands	are	integers,	the	result	must	also	
be	an	integer,	and	by	convention,	integer	division	always	
rounds	down,	even	in	cases	like	this	where	the	next	integer	is	
very	close.		

Order	of	operations	
	
When	more	than	one	operator	appears	in	an	expression,	the	order	of	evaluation	
depends	on	the	rules	of	precedence.	Python	follows	the	same	precedence	rules	
for	its	mathematical	operators	that	mathematics	does.	The	acronym	PEMDAS	is	a	
useful	way	to	remember	the	order	of	operations:	
	

Parentheses	have	the	highest	precedence	and	can	be	used	to	force	an	expression	
to	evaluate	in	the	order	you	want.	Since	expressions	in	parentheses	are	evaluated	
first,	2	*	(3-1)	is	4,	and	(1+1)**(5-2)	is	8.	You	can	also	use	parentheses	to	make	an	
expression	easier	to	read,	as	in	(minute	*	100)	/	60,	even	though	it	doesn't	change	
the	result.	
	

Exponentiation	has	the	next	highest	precedence,	so	2**1+1	is	3	and	not	4,	and	
3*1**3	is	3	and	not	27.	
	

Multiplication	and	Division	have	the	same	precedence,	which	is	higher	than		
	

Addition	and	Subtraction,	which	also	have	the	same	
precedence.	So	2*3-1	yields	5	rather	than	4,	and	2/3-1	is	-1,	not	
1	(remember	that	in	integer	division,	2/3=0).	
	
	
Operators	with	the	same	precedence	are	evaluated	from	left	to	
right.	So	in	the	expression	minute*100/60,	the	multiplication	
happens	first,	yielding	5900/60,	which	in	turn	yields	98.	If	the	
operations	had	been	evaluated	from	right	to	left,	the	result	
would	have	been	59*1,	which	is	59,	which	is	wrong. 		

Operations	on	strings	
	
In	general,	you	cannot	perform	mathematical	operations	on	
strings,	even	if	the	strings	look	like	numbers.		
	
The	following	are	illegal	(assuming	that	message	has	type	string):	
	
message-1 ’Hello’/123 message*’Hello’ ’15’+2 	

Interestingly,	the	+	operator	does	work	with	strings,	although	it	
does	not	do	exactly	what	you	might	expect.	For	strings,	the	+	
operator	represents	concatenation,	which	means	joining	the	two	
operands	by	linking	them	end-to-end.	For	example:	
	

fruit	=	'banana'		
bakedGood	=	'	nut	bread'		
print	fruit	+	bakedGood		
>>banana	nut	bread	

The	*	operator	also	works	on	strings;	it	performs	repetition.	For	
example,	
	

	'Fun'*3	is		
'FunFunFun'.		
	

One	of	the	operands	has	to	be	a	string;	the	other	has	to	be	an	
integer.	
	
On	one	hand,	this	interpretation	of	+	and	*	makes	sense	by	
analogy	with	addition	and	multiplication.	Just	as	4*3	is	
equivalent	to	4+4+4,	we	expect	'Fun'*3	to	be	the	same	as	
'Fun'+'Fun'+'Fun',	and	it	is.		
	
On	the	other	hand,	there	is	a	significant	way	in	which	string	
concatenation	and	repetition	are	different	from	integer	
addition	and	multiplication.		

Composition	
	
So	far,	we	have	looked	at	the	elements	of	a	program					variables,	
expressions,	and	statements					in	isolation,	without	talking	about	
how	to	combine	them.	
	
One	of	the	most	useful	features	of	programming	languages	is	
their	ability	to	take	small	building	blocks	and	compose	them.	For	
example,	we	know	how	to	add	numbers	and	we	know	how	to	
print;	it	turns	out	we	can	do	both	at	the	same	time:	
	

>>> print 17 + 3
20		
	

In	reality,	the	addition	has	to	happen	before	the	printing,	so	the	
actions	aren't	actually	happening	at	the	same	time.	The	point	is	
that	any	expression	involving	numbers,	strings,	and	variables	can	
be	used	inside	a	print	statement.		

You've	already	seen	an	example	of	this:	
	
print	'Number	of	minutes	since	midnight:	',	hour*60+minute		
	
You	can	also	put	arbitrary	expressions	on	the	right-hand	side	
of	an	assignment	statement:	
	
Percentage = (minute * 100) / 60
	
This	ability	may	not	seem	impressive	now,	but	you	will	see	
other	examples	where	composition	makes	it	possible	to	
express	complex	computations	neatly	and	concisely. 		

Comments	
	
As	programs	get	bigger	and	more	complicated,	they	get	more	
difficult	to	read.	Formal	languages	are	dense,	and	it	is	often	
difficult	to	look	at	a	piece	of	code	and	figure	out	what	it	is	doing,	
or	why.	
	
For	this	reason,	it	is	a	good	idea	to	add	notes	to	your	programs	to	
explain	in	natural	language	what	the	program	is	doing.	These	
notes	are	called	comments,	and	they	are	marked	with	the	#	
symbol:	
	
#	compute	the	percentage	of	the	hour	that	has	elapsed		
Percentage =	(minute * 100)/ 60 	

In	this	case,	the	comment	appears	on	a	line	by	itself.		

You	can	also	put	comments	at	the	end	of	a	line:	
	
percentage	=	(minute	*	100)	/	60					#	caution:	integer	division		
	
Everything	from	the	#	to	the	end	of	the	line	is	ignored					it	has	no	
effect	on	the	program.	The	message	is	intended	for	the	
programmer	or	for	future	programmers	who	might	use	this	code.	
In	this	case,	it	reminds	the	reader	about	the	ever-surprising	
behavior	of	integer	division. 		

Funciones	

Function	calls	
	
You	have	already	seen	one	example	of	a	function	call:	
>>> type("32")
<type ' str' > 	

The	name	of	the	function	is	type,	and	it	displays	the	type	of	a	value	
or	variable.	The	value	or	variable,	which	is	called	the	argument	of	
the	function,	has	to	be	enclosed	in	parentheses.	It	is	common	to	say	
that	a	function	"takes"	an	argument	and	"returns"	a	result.	The	
result	is	called	the	return	value.	
	

Instead	of	printing	the	return	value,	we	could	assign	it	to	a	variable:	
	

>>> betty = type("32")
>>>	print	betty		
<type ' str' >

Type	conversion	
	

Python	provides	a	collection	of	built-in	functions	that	convert	
values	from	one	type	to	another.	The	int	function	takes	any	value	
and	converts	it	to	an	integer,	if	possible,	or	complains	otherwise:	
>>> int("32”)
32		
>>>int(“Hello”)
ValueError:	invalid	literal	for	int():	Hello		
	
int	can	also	convert	floating-point	values	to	integers,	but	
remember	that	it	truncates	the	fractional	part:	
>>> int(3.99999)
3 	
>>>	int(-2.3)
-2	
 	

Finally,	the	str	function	converts	to	type	string:	
>>> str(32)
'32'
>>>	str(3.14149)
'3.14149'

It	may	seem	odd	that	Python	distinguishes	the	integer	value	
1	from	the	floating-point	value	1.0.	They	may	represent	the	
same	number,	but	they	belong	to	different	types.	The	
reason	is	that	they	are	represented	differently	inside	the	
computer.	

The	float	function	converts	integers	and	strings	to	floating-
point	numbers:	
>>> float(32)
32.0		
>>>	float("3.14159’)
3.14159		

Type	coercion	
	

Now	that	we	can	convert	between	types,	we	have	another	way	to	deal	
with	integer	division.	Returning	to	the	example	from	the	previous	
chapter,	suppose	we	want	to	calculate	the	fraction	of	an	hour	that	has	
elapsed.	The	most	obvious	expression,	minute	/	60,	does	integer	
arithmetic,	so	the	result	is	always	0,	even	at	59	minutes	past	the	hour.	
	

One	solution	is	to	convert	minute	to	floating-point	and	do	floating-point	
division:	
>>> minute = 59
>>>float(minute)/ 60
0.983333333333		
	
Alternatively,	we	can	take	advantage	of	the	rules	for	automatic	type	
conversion,	which	is	called	type	coercion.	

	For	the	mathematical	operators,	if	either	operand	is	a	float,	the	
other	is	automatically	converted	to	a	float:	
	
>>> minute = 59
>>> minute / 60.0
0.983333333333		
	
By	making	the	denominator	a	float,	we	force	Python	to	do	
floating-point	division. 		

Math	functions	
	
In	mathematics,	you	have	probably	seen	functions	like	sin	and	
log,	and	you	have	learned	to	evaluate	expressions	like	sin(pi/2)	
and	log(1/x).	First,	you	evaluate	the	expression	in	parentheses	
(the	argument).	For	example,	pi/2	is	approximately	1.571,	and	1/
x	is	0.1	(if	x	happens	to	be	10.0).	
	

Then,	you	evaluate	the	function	itself,	either	by	looking	it	up	in	a	
table	or	by	performing	various	computations.	
	

	The	sin	of	1.571	is	1,	and	the	log	of	0.1	is	-1	(assuming	that	log	
indicates	the	logarithm	base	10).	
	
This	process	can	be	applied	repeatedly	to	evaluate	more	
complicated	expressions	like	log(1/sin(pi/2)).. 		

First,	you	evaluate	the	argument	of	the	innermost	function,	
then	evaluate	the	function,	and	so	on.	
	

Python	has	a	math	module	that	provides	most	of	the	familiar	
mathematical	functions.	A	module	is	a	file	that	contains	a	
collection	of	related	functions	grouped	together	
	
Before	we	can	use	the	functions	from	a	module,	we	have	
to	import	them:	
	

>>>	import	math		

To	call	one	of	the	functions,	we	have	to	specify	the	name	of	the	
module	and	the	name	of	the	function,	separated	by	a	dot,	also	
known	as	a	period.	This	format	is	called	dot	notation.	
	

>>> decibel=math.log10(17.0)	
>>>	angle	=	1.5	
>>>	height	=	math.sin(angle)		

Composition	
	
Just	as	with	mathematical	functions,	Python	functions	can	be	
composed,	meaning	that	you	use	one	expression	as	part	of	
another.		
For	example,	you	can	use	any	expression	as	an	argument	to	a	
function:	
>>>	x	=	math.cos(angle	+	math.pi/2)		
	
This	statement	takes	the	value	of	pi,	divides	it	by	2,	and	adds	
the	result	to	the	value	of	angle.	The	sum	is	then	passed	as	an	
argument	to	the	cos	function.	
	
You	can	also	take	the	result	of	one	function	and	pass	it	as	an	
argument	to	another:	
>>>	 x=math.exp(math.log(10.0)

Adding	new	functions
		

In	the	context	of	programming,	a	function	is	a	named	sequence	
of	statements	that	performs	a	desired	operation.	This	operation	
is	specified	in	a	function	definition.	The	functions	we	have	been	
using	so	far	have	been	defined	for	us,	and	these	definitions	have	
been	hidden.	This	is	a	good	thing,	because	it	allows	us	to	use	the	
functions	without	worrying	about	the	details	of	their	definitions.	
	
The	syntax	for	a	function	definition	is:	
	

def	NAME(LIST	OF	PARAMETERS):		
		STATEMENTS		
	
You	can	make	up	any	names	you	want	for	the	functions	you	
create,	except	that	you	can't	use	a	name	that	is	a	Python	
keyword.	The	list	of	parameters	specifies	what	information,	if	
any,	you	have	to	provide	in	order	to	use	the	new	function. 		

The	first	couple	of	functions	we	are	going	to	write	have	no	
parameters,	so	the	syntax	looks	like	this:	
	
def	newLine():		
		print		
	
This	function	is	named	newLine.	The	empty	parentheses	
indicate	that	it	has	no	parameters.	It	contains	only	a	single	
statement,	which	outputs	a	newline	character.	
	
	

The	syntax	for	calling	the	new	function	is	the	same	as	the	syntax	for	
built-in	functions:	
print	"First	Line."		
newLine()		
print	"Second	Line."		
The	output	of	this	program	is:	
	

First	line.		
	
Second	line.		
	

Notice	the	extra	space	between	the	two	lines.	What	if	we	wanted	
more	space	between	the	lines?	We	could	call	the	same	function	
repeatedly:	
	

print	"First	Line."		
newLine()		
newLine()		
newLine()		
print	"Second	Line."	 		

Or	we	could	write	a	new	function	named	threeLines	that	prints	
three	new	lines:	
	
def	threeLines():		
		newLine()		
		newLine()		
		newLine()		
	
print	"First	Line."		
threeLines()		
print	"Second	Line."	 		

You	should	notice	a	few	things	about	this	program:	
You	can	call	the	same	procedure	repeatedly.	In	fact,	it	is	
quite	common	and	useful	to	do	so.	
You	can	have	one	function	call	another	function;	in	this	
case	threeLines	calls	newLine. 		

So	far,	it	may	not	be	clear	why	it	is	worth	the	trouble	to	
create	all	of	these	new	functions.	Actually,	there	are	a	lot	of	
reasons,	but	this	example	demonstrates	two:	
	
•  Creating	a	new	function	gives	you	an	opportunity	to	

name	a	group	of	statements.	Functions	can	simplify	a	
program	by	hiding	a	complex	computation	behind	a	
single	command	and	by	using	English	words	in	place	of	
arcane	code.	

	
•  Creating	a	new	function	can	make	a	program	smaller	by	

eliminating	repetitive	code.	For	example,	a	short	way	to	
print	nine	consecutive	new	lines	is	to	call	threeLines	
three	times. 		

Definitions	and	use	
	

Pulling	together	the	code	fragments,	the	whole	program	looks	like	
this:	
	

def	newLine():		
		print		
	

def	threeLines():		
		newLine()		
		newLine()		
		newLine()		
	

print	"First	Line."		
threeLines()		
print	"Second	Line."		

This	program	contains	two	function	
definitions:	newLine	and	threeLines.	
Function	definitions	get	executed	just	like	
other	statements,	but	the	effect	is	to	
create	the	new	function.	The	statements	
inside	the	function	do	not	get	executed	
until	the	function	is	called,	and	the	
function	definition	generates	no	output.	
	
As	you	might	expect,	you	have	to	create	a	
function	before	you	can	execute	it.	In	
other	words,	the	function	definition	has	to	
be	executed	before	the	first	time	it	is	
called. 		

Parameters	and	arguments	
	
Some	of	the	built-in	functions	you	have	used	require	arguments,	
the	values	that	control	how	the	function	does	its	job.	For	
example,	if	you	want	to	find	the	sine	of	a	number,	you	have	to	
indicate	what	the	number	is.	Thus,	sin	takes	a	numeric	value	as	
an	argument.	
	
Some	functions	take	more	than	one	argument.	For	example,	pow	
takes	two	arguments,	the	base	and	the	exponent.	Inside	the	
function,	the	values	that	are	passed	get	assigned	to	variables	
called	parameters. 		

Here	is	an	example	of	a	user-defined	function	that	has	a	
parameter:	
	

def	printTwice(bruce):		
		print	bruce,	bruce		
	

This	function	takes	a	single	argument	and	assigns	it	to	a	
parameter	named	bruce.	The	value	of	the	parameter	(at	this	
point	we	have	no	idea	what	it	will	be)	is	printed	twice,	followed	
by	a	newline.	The	name	bruce	was	chosen	to	suggest	that	the	
name	you	give	a	parameter	is	up	to	you,	but	in	general,	you	want	
to	choose	something	more	illustrative	than	bruce.	
	

The	function	printTwice	works	for	any	type	that	can	be	
printed:	
>>>	printTwice('Spam')		
Spam	Spam		
	

>>>	printTwice(5)		
5	5		
	

>>>	printTwice(3.14159)	
	

3.14159	3.14159	 		

In	the	first	function	call,	
the	argument	is	a	string.	
In	the	second,	it's	an	
integer.	In	the	third,	it's	a	
float.	

The	same	rules	of	composition	that	apply	to	built-in	functions	
also	apply	to	user-defined	functions,	so	we	can	use	any	kind	of	
expression	as	an	argument	for	printTwice:	
	

>>>	printTwice('Spam'*4)		
SpamSpamSpamSpam	SpamSpamSpamSpam		
	

>>>	printTwice(math.cos(math.pi))		
-1.0 -1.0

We	can	also	use	a	variable	as	an	argument:	
	
>>>	michael	=	'Eric,	the	half	a	bee.'		
>>>	printTwice(michael)		
Eric,	the	half	a	bee.	Eric,	the	half	a	bee.		
	
Notice	something	very	important	here.	
	The	name	of	the	variable	we	pass	as	an	argument	(michael)	
has	nothing	to	do	with	the	name	of	the	parameter	(bruce).	It	
doesn't	matter	what	the	value	was	called	back	home	(in	the	
caller);	here	in	printTwice,	we	call	everybody	bruce.		

Variables	and	parameters	are	local	
	
When	you	create	a	local	variable	inside	a	function,	it	only	exists	
inside	the	function,	and	you	cannot	use	it	outside.	For	example:	
	
def	catTwice(part1,	part2):		
		cat	=	part1	+	part2		
		printTwice(cat)		
	
This	function	takes	two	arguments,	concatenates	them,	and	then	
prints	the	result	twice.	We	can	call	the	function	with	two	strings:	
	
>>>	chant1	=	“An	apple	a	day"		
>>>	chant2	=	”	keeps	the	doctor	away	"		
>>>	catTwice(chant1,	chant2)		
An	apple	a	day	keeps	the	doctor	away	An	apple	a	day	keeps	the	
doctor	away		
	

When	catTwice	terminates,	the	variable	cat	is	destroyed.	If	
we	try	to	print	it,	we	get	an	error:	
	
>>>	print	cat		
NameError:	cat		
	
Parameters	are	also	local.	For	example,	outside	the	
function	printTwice,	there	is	no	such	thing	as	bruce.	If	you	
try	to	use	it,	Python	will	complain. 		

Conditionals	and	recursion	

The	modulus	operator	
	
The	modulus	operator	works	on	integers	(and	integer	
expressions)	and	yields	the	remainder	when	the	first	
operand	is	divided	by	the	second.	In	Python,	the	modulus	
operator	is	a	percent	sign	(%).	The	syntax	is	the	same	as	
for	other	operators:	
	
>>>	quotient	=	7	/	3		
>>>	print	quotient		
2		
>>> remainder = 7 % 3
>>>	print	remainder		
1		
	
So	7	divided	by	3	is	2	with	1	left	over. 		

The	modulus	operator	turns	out	to	be	surprisingly	useful.	For	
example,	you	can	check	whether	one	number	is	divisible	by	
another					if	x	%	y	is	zero,	then	x	is	divisible	by	y.	
	
Also,	you	can	extract	the	right-most	digit	or	digits	from	a	
number.	For	example,	x	%	10	yields	the	right-most	digit	of	x	(in	
base	10).	Similarly	x	%	100	yields	the	last	two	digits.		

Boolean	expressions	
	
A	boolean	expression	is	an	expression	that	is	either	true	or	
false.		
One	way	to	write	a	boolean	expression	is	to	use	the	operator	
==,	which	compares	two	values	and	produces	a	boolean	
value:	
	

>>> 5==5
True		
	

>>>	5	==	6
False	
	

In	the	first	statement,	the	two	operands	are	equal,	so	the	
value	of	the	expression	is	True;	in	the	second	statement,	5	is	
not	equal	to	6,	so	we	get	False.	True	and	False	are	special	
values	that	are	built	into	Python.		

The	==	operator	is	one	of	the	comparison	operators;	the	
others	are:	
	
						x	!=	y															#	x	is	not	equal	to	y		
						x	>	y																#	x	is	greater	than	y		
						x	<	y																#	x	is	less	than	y		
						x	>=	y															#	x	is	greater	than	or	equal	to	y		
						x	<=	y															#	x	is	less	than	or	equal	to	y		
	
Although	these	operations	are	probably	familiar	to	you,	the	
Python	symbols	are	different	from	the	mathematical	
symbols.	A	common	error	is	to	use	a	single	equal	sign	(=)	
instead	of	a	double	equal	sign	(==).	Remember	that	=	is	an	
assignment	operator	and	==	is	a	comparison	operator.	Also,	
there	is	no	such	thing	as	=<	or	=>. 		

Logical	operators	
	
There	are	three	logical	operators:	and,	or,	and	not.	The	semantics	
(meaning)	of	these	operators	is	similar	to	their	meaning	in	English.	
For	example,	x	>	0	and	x	<	10	is	true	only	if	x	is	greater	than	0	and	
less	than	10.	
	
n%2	==	0	or	n%3	==	0	is	true	if	either	of	the	conditions	is	true,	that	
is,	if	the	number	is	divisible	by	2	or	3.	
	
Finally,	the	not	operator	negates	a	boolean	expression,		
so	not(x	>	y)	is	true	if	(x	>	y)	is	false,	that	is,	if	x	is	less	than	or	equal	
to	y.	

Strictly	speaking,	the	operands	of	the	logical	operators	
should	be	boolean	expressions,	but	Python	is	not	very	
strict.	Any	nonzero	number	is	interpreted	as	"true.”	
	
>>> x=5	
>>>	x	and	1	
1		
>>	y	=	0
>>>		y	and	1		
0		
	
In	general,	this	sort	of	thing	is	not	considered	good	style.	If	
you	want	to	compare	a	value	to	zero,	you	should	do	it	
explicitly. 		

Conditional	execution	
	
In	order	to	write	useful	programs,	we	almost	always	need	
the	ability	to	check	conditions	and	change	the	behavior	of	
the	program	accordingly.	Conditional	statements	give	us	
this	ability.		
The	simplest	form	is	the	if	statement:	
	
If	x>	0:
 	print	"x	is	positive"		
	
The	boolean	expression	after	the	if	statement	is	called	the	
condition.	If	it	is	true,	then	the	indented	statement	gets	
executed.	If	not,	nothing	happens. 		

Like	other	compound	statements,	the	if	statement	is	made	up	
of	a	header	and	a	block	of	statements:	
	
HEADER:		
		FIRST	STATEMENT		
		...		
		LAST	STATEMENT		
	
•  The	header	begins	on	a	new	line	and	ends	with	a	colon	(:).		

•  The	indented	statements	that	follow	are	called	a	block.		

•  The	first	unindented	statement	marks	the	end	of	the	block.		

•  A	statement	block	inside	a	compound	statement	is	called	the	
body	of	the	statement. 		

Alternative	execution	
A	second	form	of	the	if	statement	is	alternative	execution,	in	
which	there	are	two	possibilities	and	the	condition	determines	
which	one	gets	executed.	The	syntax	looks	like	this:	
	

if	x%2	==	0:	
		print	x,	“is	even”	
else:		
		print	x,	"is	odd"		
	

If	the	remainder	when	x	is	divided	by	2	is	0,	then	we	know	that	x	
is	even,	and	the	program	displays	a	message	to	that	effect.	If	the	
condition	is	false,	the	second	set	of	statements	is	executed.	
Since	the	condition	must	be	true	or	false,	exactly	one	of	the	
alternatives	will	be	executed.	The	alternatives	are	called	
branches,	because	they	are	branches	in	the	flow	of	execution.		

Chained	conditionals	
Sometimes	there	are	more	than	two	possibilities	and	we	need	
more	than	two	branches.	One	way	to	express	a	computation	like	
that	is	a	chained	conditional:	
	
if	x	<	y:		
		print	x,	"is	less	than",	y		
elif	x	>	y:		
		print	x,	"is	greater	than",	y		
else:		
		print	x,	"and",	y,	"are	equal"		
	
elif	is	an	abbreviation	of	"else	if."		
	
Again,	exactly	one	branch	will	be	executed.		

There	is	no	limit	of	the	number	of	elif	statements,	but	
the	last	branch	has	to	be	an	else	statement:	
	
if	choice	==	'A':		
		functionA()		
elif	choice	==	'B':		
		functionB()		
elif	choice	==	'C':		
		functionC()		
else:		
		print	"Invalid	choice."	 		

Each	condition	is	checked	in	order.	If	the	first	is	false,	the	
next	is	checked,	and	so	on.	If	one	of	them	is	true,	the	
corresponding	branch	executes,	and	the	statement	ends.	
Even	if	more	than	one	condition	is	true,	only	the	first	true	
branch	executes.	

Nested	conditionals	
One	conditional	can	also	be	nested	within	another.	We	could	
have	written	the	trichotomy	example	as	follows:	
if x == y:
		print	x,	"and",	y,	"are	equal"		
else:		
		if	x	<	y:		
				print	x,	"is	less	than",	y		
		else:		
				print	x,	"is	greater	than",	y		
The	outer	conditional	contains	two	branches.	The	first	branch	
contains	a	simple	output	statement.	The	second	branch	contains	
another	if	statement,	which	has	two	branches	of	its	own.	Those	
two	branches	are	both	output	statements,	although	they	could	
have	been	conditional	statements	as	well.	
Although	the	indentation	of	the	statements	makes	the	structure	
apparent,	nested	conditionals	become	difficult	to	read	very	
quickly.	In	general,	it	is	a	good	idea	to	avoid	them	when	you	can.

		

Logical	operators	often	provide	a	way	to	simplify	nested	
conditional	statements.	For	example,	we	can	rewrite	the	
following	code	using	a	single	conditional:	
	

if	0 <	x:
		if	x	<	10:		
				print	"x	is	a	positive	single	digit."		
	

The	print	statement	is	executed	only	if	we	make	it	past	both	the	
conditionals,	so	we	can	use	the	and	operator:	
	

if	0	<	x	and	x	<	10:		
		print	"x	is	a	positive	single	digit."		
	

These	kinds	of	conditions	are	common,	so	Python	provides	an	
alternative	syntax	that	is	similar	to	mathematical	notation:	
	
if 0	<	x	<	10:
		print	"x	is	a	positive	single	digit.”		

The	return	statement	
The	return	statement	allows	you	to	terminate	the	execution	
of	a	function	before	you	reach	the	end.	One	reason	to	use	it	is	
if	you	detect	an	error	condition:	
import	math		
	
def	printLogarithm(x):		
		if	x	<=	0:		
				print	"Positive	numbers	only,	please."		
				return		
	
		result	=	math.log(x)		
		print	"The	log	of	x	is",	result	 		

Recursion	
We	mentioned	that	it	is	legal	for	one	function	to	call	another,	and	
you	have	seen	several	examples	of	that.	We	neglected	to	mention	
that	it	is	also	legal	for	a	function	to	call	itself.	It	may	not	be	obvious	
why	that	is	a	good	thing,	but	it	turns	out	to	be	one	of	the	most	
magical	and	interesting	things	a	program	can	do.	For	example,	look	
at	the	following	function:	
def	countdown(n):		
		if	n	==	0:		
				print	"Blastoff!"		
		else:		
				print	n		
				countdown(n-1)		
countdown	expects	the	parameter,	n,	to	be	a	positive	integer.	If	n	
is	0,	it	outputs	the	word,	"Blastoff!"	Otherwise,	it	outputs	n	and	
then	calls	a	function	named	countdown					itself					passing	n-1	as	an	
argument.		

What	happens	if	we	call	this	function	like	this:	
	
>>>	countdown(3)		
	

The	execution	of	countdown	begins	with	n=3,	and	since	n	is	not	0,	it	outputs	the	
value	3,	and	then	calls	itself...	
	

	 	 	The	execution	of	countdown	begins	with	n=2,	and	since	n	is	not	0,	it	
	 	 	outputs	the	value	2,	and	then	calls	itself...	

	

	 	 	 	 	The	execution	of	countdown	begins	with	n=1,	and	since	n	
	 	 	 	 	is	not	0,	it	outputs	the	value	1,	and	then	calls	itself…	

	

	 	 	 	 	 	 	 	The	execution	of	countdown	begins	with	
	 	 	 	 	 	 	 	n=0,	and	since	n	is	0,	it	outputs	the	word,	
	 	 	 	 	 	 	 	"Blastoff!"	and	then	returns.	

	

	 	 	 	 	The	countdown	that	got	n=1	returns.	
	

	 	 	The	countdown	that	got	n=2	returns.	
	

The	countdown	that	got	n=3	returns.	
	
And	then	you're	back	in	__main__	(what	a	trip).		

the	total	output	
looks	like	this:	
3		
2		
1		
Blastoff!	 		

As	a	second	example,	look	again	at	the	functions	newLine	and	
threeLines:	
	

def	newline():		
		print		
	

def	threeLines():		
		newLine()		
		newLine()		
		newLine()		
	
Although	these	work,	they	would	not	be	much	help	if	we	wanted	
to	output	2	newlines,	or	106.	A	better	alternative	would	be	this:	
	
def	nLines(n):		
		if	n	>	0:		
				print		
				nLines(n-1)	 		

