
Organizacion	interna	de	una	computadora	



Execute	programs	stored	in	the	main	memory	
by	fetching	their	instructions,	examining	them,	
and	then	executing	them	one	after	another		

Collection	of	parallel	wires	for	transmitting	address,	data,	and	control	signals	

Sl
ow

	



•  The	most	important	register	is	the	Program	
Counter	(PC),	which	points	to	the	next	
instruction	to	be	fetched	for	execution	

•  	Also	important	is	the	Instruction	Register	(IR),	
which	holds	the	instruction	currently	being	
executed.		

Fetch	instructions	from	main	memory	and	
determine	type	
Perform	operations	such	as	addition	needed	to	
carry	out	the	instructions	
High-speed	memory	used	to	store	
temporary	results	and	certain	control	
information	

‘Words’’	are	the	units	of	data	moved	
between	memory	and	registers	



Data	Path	

Most	instructions	
can	be	divided	
into	one	of	two	
categories:	
register-memory	
or	register-
register.		
	



Instruction	Execution	
	
The	CPU	executes	each	instruction	in	a	series	of	small	steps.	
Roughly	speaking,	the	steps	are	as	follows:	

1.  Fetch	the	next	instruction	from	memory	into	the	
instruction	register.	

2.  	Change	the	program	counter	to	point	to	the	following	
instruction.		

3.  Determine	the	type	of	instruction	just	fetched.	
4.  If	the	instruction	uses	a	word	in	memory,	determine	

where	it	is.	Fetch	the	word,	if	needed,	into	a	CPU	register.	
5.  Execute	the	instruction.	
6.  Go	to	step	1	to	begin	executing	the	following	instruction.	



A	program	need	not	be	executed	by	a	‘‘hardware’’	CPU.			
	
Instead,	a	program	can	be	carried	out	by	having	another	
program	fetch,	examine,	and	execute	its	instructions	called	an	
interpreter.	
	 An	interpreter	breaks	the	instructions	of	its	target	

machine	into	small	steps.	As	a	consequence,	the	
machine	on	which	the	interpreter	runs	can	be	much	
simpler	and	less	expensive	than	a	hardware	processor	
for	the	target	machine	would	be.	
	
		The	saving	comes	essentially	from	the	fact	that	hardware	is	

being	replaced	by	software	(the	interpreter)	and	it	costs	
more	to	replicate	hardware	than	software.		



After	having	specified	the	machine	language,	L,	for	a	new	
computer,	the	design	team	can	decide	whether	they	want	to	
build	a	hardware	processor	to	execute	programs	in	L	directly	or	
whether	they	want	to	write	an	interpreter	to	interpret	
programs	in	L	instead.		
	
Certain	hybrid	constructions	are	also	possible,	with	some	
hardware	execution	as	well	as	some	software	interpretation.		
	
The	more	complex	instructions	were	better	because	the	
execution	of	indivi-	dual	operations	could	sometimes	be	
overlapped	or	otherwise	executed	in	parallel	using	different	
hardware.	For	expensive,	high-performance	computers,	the	
cost	of	this	extra	hardware	could	be	readily	justified.	Thus	
expensive,	high-performance	computers	came	to	have	many	
more	instructions	than	lower-cost	ones.		
	



Simple	computers	with	interpreted	instructions	also	had	
other	benefits.	Among	the	most	important	were	
	
1.  The	ability	to	fix	incorrectly	implemented	instructions	in	

the	field,	or	even	make	up	for	design	deficiencies	in	the	
basic	hardware.	
	

2.  	The	opportunity	to	add	new	instructions	at	minimal	
cost,	even	after	delivery	of	the	machine.	
	

3.  Structured	design	that	permitted	efficient	
development,	testing,	and	documenting	of	complex	
instructions.	



Intel	has	been	able	to	employ	the	same	ideas	even	in	a	CISC	
architecture.	Starting	with	the	486,	the	Intel	CPUs	contain	a	
RISC	core	that	executes	the	simplest	(and	typically	most	
common)	instructions	in	a	single	data	path	cycle,	while	
interpreting	the	more	complicated	instructions	in	the	usual	
CISC	way.	

Reduced	Instruction	Set	Computer	(RISC)	
	vs.		

Complex	Instruction	Set	Computer	(CISC)	

In	RISC:	A	small	number	of	simple	instructions	that	
execute	in	one	cycle.			Even	if	a	RISC	machine	takes	four	
or	five	instructions	to	do	what	a	CISC	machine	does	in	one	
instruction,	if	the	RISC	instructions	are	10	times	as	fast	
(because	they	are	not	interpreted),	RISC	wins.		



Design	Principles	for	Modern	Computers	

All	Instructions	Are	Directly	Executed	by	Hardware	
	
All	common	instructions	are	directly	executed	by	the	hardware.		
	
Maximize	the	Rate	at	Which	Instructions	Are	Issued	
	
Start	as	many	instructions	per	second	as	possible.		
	
Instructions	Should	be	Easy	to	Decode	
	
Making	instructions	regular,	fixed	length,	with	a	small	number	of	fields.	The	fewer	different	
formats	for	instructions,	the	better.	
	
Only	Loads	and	Stores	Should	Reference	Memory	
	
Access	to	memory	can	take	a	long	time,	and	the	delay	is	unpredictable.			All	other	instructions	
should	operate	only	on	registers.	
	
Provide	Plenty	of	Registers	
	
Since	accessing	memory	is	relatively	slow,	many	registers	need	to	be	provided.	
	



	
Instruction-Level	Parallelism	
	
Making	the	chips	run	faster	by	increasing	their	clock	speed	has	a	
limit	to	what	is	possible.	
Consequently,	most	computer	architects	look	to	parallelism.	
	
Parallelism	comes	in	two	general	forms,		
	
	
Instruction-level	parallelism		
	
	
	
	
Processor-level	parallelism.	
	
		

Parallelism	is	exploited	within	
individual	instructions	to	get	
more	instructions/sec	out	of	the	
machine	

Multiple	CPUs	work	together	on	
the	same	problem.	



Pipelining	

Fetching	of	instructions	
from	memory	is	a	major	
bottleneck	in	instruction	
execution	speed	

	Fetch	instructions	from	memory	in	
advance,	so	they	would	be	there	when	
they	were	needed.	These	instructions	are	
stored	in	a	set	of	registers	called	the	
prefetch	buffer.	



Superscalar	Architectures	
	
Here	a	single	instruction	fetch	unit	fetches	pairs	of	instructions	together	and	
puts	each	one	into	its	own	pipeline,	complete	with	its	own	ALU	for	parallel	
operation.		
	
	
	
	
	
	
	
	
	
	
To	be	able	to	run	in	parallel,	the	two	instructions	must	not	conflict	over	
resource	usage	(e.g.,	registers),	and	neither	must	depend	on	the	result	of	the	
other.	As	with	a	single	pipeline,	either	the	compiler	must	guarantee	this	
situation	to	hold	(i.e.,	the	hardware	does	not	check	and	gives	incorrect	results	
if	the	instructions	are	not	compatible),	or	conflicts	are	detected	and	
eliminated	during	execution	using	extra	hardware.		(Pentium)	



Implicit	in	the	idea	of	a	superscalar	processor	is	that	the	S3	stage	can	issue	
instructions	considerably	faster	than	the	S4	stage	is	able	to	execute	them.	

The	basic	idea	is	to	have	just	a	single	pipeline	but	give	it	multiple	
functional	units.			For	example,	the	Pentium	II	has	a	structure	similar	to	
this	figure.	



Multiprocessors	



Primary	memory	
The	basic	unit	of	memory	is	the	binary	digit,	called	a	bit	
	

Nearly	all	computer	manufacturers	have	standardized	on	an	8-bit	cell,	which	is	called	a	
byte.	Bytes	are	grouped	into	words.	A	computer	with	a	32-bit	word	has	4	bytes/word,	
whereas	a	computer	with	a	64-bit	word	has	8	bytes/word.	



Byte	Ordering	
	
The	bytes	in	a	word	can	be	numbered	from	left-to-right	or	right-to-
left.	At	first	it	might	seem	that	this	choice	is	unimportant	
	
	
	
	
	
	
	
	
	
Where	the	numbering	begins	at	the	‘‘big’	end	is	called	a	big	endian	
computer,	in	contrast	to	the	little	endian.	



Error-Correcting	Codes	

As	a	simple	example	of	an	error-detecting	code,	consider	a	code	
in	which	a	single	parity	bit	is	appended	to	the	data.	The	parity	
bit	is	chosen	so	that	the	number	of	1	bits	in	the	codeword	is	
even	(or	odd).	Such	a	code	has	a	distance	2,	since	any	single-bit	
error	produces	a	codeword	with	the	wrong	parity.		
	
It	can	be	used	to	detect	single	errors.	Whenever	a	word	
containing	the	wrong	parity	is	read	from	memory,	an	error	
condition	is	signaled.		
	
The	program	cannot	continue,	but	at	least	no	incorrect	results	
are	computed.	
	



Imagine	that	we	want	to	design	a	code	with	m	data	bits	and	
r	check	bits	that	will	allow	all	single-bit	errors	to	be	
corrected.		
Each	of	the	2m	legal	memory	words	has	n	illegal	codewords	
at	a	distance	1	from	it.	These	are	formed	by	systematically	
inverting	each	of	the	n	bits	in	the	n-bit	codeword	formed	
from	it.	
	Thus	each	of	the	2m	legal	memory	words	requires	n	+	1	bit	
patterns	dedicated	to	it	(for	the	n	possible	errors	and	correct	
pattern).	Since	the	total	number	of	bit	patterns	is	2n	we	must	
have	(n	+	1)2m	≤	2n.		
	
Using	n	=	m	+	r	this	requirement	becomes	(m	+	r	+	1)	≤	2r.		
	
Given	m,	this	puts	a	lower	limit	on	the	number	of	check	bits	
needed	to	correct	single	errors.		



Cache	Memory	
	

Historically,	CPUs	have	always	been	faster	than	memories.	
As	memories	have	improved,	so	have	CPUs,	preserving	the	
imbalance.		

The	basic	idea	behind	a	cache	is	simple:	the	most	heavily	used	
memory	words	are	kept	in	the	cache.	When	the	CPU	needs	a	
word,	it	first	looks	in	the	cache.	Only	if	the	word	is	not	there	
does	it	go	to	main	memory.	If	a	substantial	fraction	of	the	
words	are	in	the	cache,	the	average	access	time	can	be	greatly	
reduced.	



Examples	of	gates		


