Prof: O. Civitarese — JTP: D.G. Actis — Ay. Dipl: P. Sotomayor

Práctica 1 — Electrostática

Distribuciones de carga. Ecuación de Laplace y Poisson sin bordes. Momentos multipolares.

Problema 1. Distribuciones de carga Exprese las densidades volumétricas para las siguientes distribuciones de carga. Sugerencia: corrobore con las integrales adecuadas que se recuperen las cantidades originales.

- a) Una carga $Q = 500 \,\mu\text{C}$ distribuida uniformemente sobre una superficie esférica de radio $R = 10 \,\text{cm}$.
- b) Una superficie cilíndrica de radio R=1 mm, espesor despreciable y longitud infinita, con densidad lineal de carga uniforme $\lambda=10~\mu\text{C/m}$.
- c) Un anillo de radio R=1 cm y espesor despreciable con densidad lineal de carga uniforme $\lambda=10~\mu\text{C/m}$.
- d) Un disco plano de radio R=2 cm y espesor despreciable, con densidad superficial de carga uniforme $\sigma=20~\mu\text{C/m}^2$.
- e) Un dipolo puntual con momento dipolar \vec{p} de módulo $p = 8 \times 10^{-30}$ Cm.
- f) Una membrana con forma de plano infinito, de espesor despreciable, con una densidad superficial de momentos dipolares perpendiculares al plano $\sigma_p = 5 \times 10^{-5} \text{ C/m}$.

Problema 2. Integrando la ecuación de Poisson calcule el campo eléctrico y el potencial electrostático generados por una esfera de radio a=3 cm y carga total Q=5 µC en función de la posición para los siguientes casos:

- a) La esfera es conductora
- b) La esfera tiene una densidad volumétrica de carga constante
- c) La esfera tiene una densidad volumétrica esféricamente simétrica, y que varía radialmente como r^n con n=2,-2.

Grafique el potencial y el módulo del campo eléctrico en función de r en cada caso, y analice la continuidad de estas funciones para r = a.

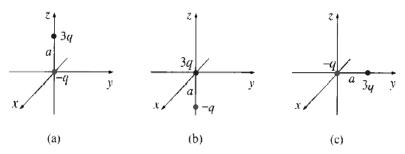
Problema 3. Integrando la ec. de Poisson, y valiéndose del principio de superposición, calcule el campo eléctrico y el potencial electrostático en función de la posición para las siguientes distribuciones de carga. ¿Qué forma tienen las respectivas superficies equipotenciales?

- a) Un alambre recto infinito con densidad lineal de carga $\lambda = 20 \text{ pC/m}$.
- b) Dos alambres rectos, infinitos, paralelos entre sí y separados por una distancia d=0.5 mm, uniformemente cargados con densidades lineales de carga $\lambda=5$ pC/m y $-\lambda$ respectivamente.
- c) Un plano infinito uniformemente cargado con densidad de carga $\sigma = 20 \ \mu\text{C/m}^2$.
- d) Dos planos paralelos infinitos, separados por una distancia d=1 mm, uniformemente cargados con densidad de carga superficial $\sigma=50~\mu\text{C/m}^2~\text{y}~-\sigma$.
- e) Un cilindro infinito de radio a=1 mm cargado uniformemente en volumen con densidad de carga $\rho=100~\mu\text{C/m}^3$.
- f) Un cilindro infinito de radio a=2 mm cargado uniformemente en su superficie con densidad de carga superficial $\sigma=500~{\rm pC/m^2}.$

Problema 4. Considere un cascarón esférico conductor de radio interior a=10 cm y radio exterior b=15 cm, rodea a una carga puntual de valor $q=50~\mu\text{C}$, ubicada en un punto a una distancia a/2 del centro del cascarón. Determine el campo eléctrico y el potencial electrostático en todo el espacio, y la densidad superficial de carga, para las siguientes situaciones:

- a) El cascarón se encuentra conectado a "tierra", es decir el potencial sobre su superficie es nulo.
- b) El cascarón se encuentra aislado, y posee una carga total $Q = 20 \mu C$.

Problema 5. Dipolos eléctricos La molécula de agua (H₂O) tiene un momento dipolar permanente de magnitud $|\mathbf{p}| = 6.1 \times 10^{-30}$ Cm, orientado en la dirección que une al átomo de oxígeno con el punto medio de la linea que une a los átomos de Hidrógeno. Calcule


- a) La fuerza que le ejerce a esa molécula un electrón (de carga $q \approx -1.6 \times 10^{-19} \text{ C}$) que se encuentra a una distancia grande respecto del tamaño de la molécula, en función de su posición.
- b) El torque que sufre la molécula en presencia de un campo eléctrico externo de 1 V/m, en función de la orientación relativa de campo y dipolo, y el trabajo necesario para rotar a la molécula desde la orientación paralela a la antiparalela al campo.
- c) La fuerza que le ejerce otra molécula de agua, que se encuentra a una distancia grande respecto del tamaño de las moléculas, en función de la distancia y del ángulo entre sus respectivos momentos dipolares.
- d) El torque que siente una molécula de agua debido a la presencia de la otra, en función de la distancia, del ángulo entre el primer momento dipolar y la posición, y del ángulo entre ambos momentos dipolares.

Sugerencia: escriba la energía potencial electrostática y usar su gradiente en las coordenadas de una partícula para obtener la fuerza aplicada sobre ella.

Problema 6. Utilizando el desarrollo multipolar, determine en forma genérica el potencial electrostático originado por una distribución de cargas $\rho(\vec{r})$ localizada en una región \mathcal{R} , observado en la región exterior a \mathcal{R} . Represente gráficamente las contribuciones dipolares ($\ell=1$) y cuadrupolares ($\ell=2$) y dé explícitamente las expresiones para los momentos correspondientes en coordenadas cartesianas.

Problema 7. Determine la expansión en multipolos para un disco de radio a y espesor despreciable, con densidad superficial de carga uniforme σ .

Problema 8. Momentos multipolares para distribuciones discretas de carga Dos cargas puntuales 3q y - q se encuentran separadas una distancia a. Para cada configuración de la figura, encuentre los dos primeros momentos multipolares y el potencial aproximado, a grandes distancias, incluyendo ambas contribuciones (monopolar y dipolar).

Problema 9. El potencial medio temporal de un átomo de hidrógeno neutro viene dado por

$$\Phi(r) = \frac{e}{4\pi\varepsilon_0} e^{-2r/a} (1/r + 1/a)$$

donde $a \approx 1 \times 10^{-10}$ m es el "radio de Bohr" y $e \approx 1.6 \times 10^{-19}$ C es el módulo de la carga del electrón. Encuentre la distribución de carga estática que daría lugar a este potencial e interprete este resultado físicamente. Corrobore el resultado calculando la integral en todo el espacio de $\rho(\vec{r}')/|\vec{r}-\vec{r}'|$.

Problema 10. Una carga +q se encuentra distribuida uniformemente en una varilla de largo z=2a. Determine la expresión del potencial electrostático asociado.

A partir de aquí opcionales (no cuentan para la entrega de la práctica)

Problema 11. Una esfera de radio R=20 cm uniformemente cargada tiene en su interior una "vacuola" esférica de radio a=1 cm, cuyo centro se encuentra a una distancia d=3 cm del centro de la esfera mayor. Si la carga total de la esfera es de $Q=10 \mu C$, determine el campo eléctrico en cualquier punto del interior de la vacuola.

Problema 12. Energía de configuración Una esfera de radio a=20 cm posee una carga total Q=10 pC. Determine la energía electrostática asociada a las siguientes configuraciones:

- 1. Toda la carga concentrada en una región esférica de radio $b \ll a$ en torno a algún punto dentro de la esfera.
- 2. La carga distribuida volumétricamente en la esfera, con densidad de carga proporcional a la distancia a su centro.
- 3. La carga distribuida uniformemente sobre la superficie de la esfera.

Problema 13. Capacitores Calcule la capacidad de los siguientes capacitores y la energía total almacenada en función de la carga:

- a) Dos placas conductoras paralelas, de gran área $A = 20 \text{ cm}^2$, separadas por una distancia d = 1 cm. Determine la fuerza que una de las armaduras ejerce sobre la otra.
- b) Dos esferas concénctricas conductoras de radios a y b. ¿Qué ocurre en el límite $b \gg a$? ; y si $|a-b| \ll a, b$?
- c) Dos cilíndros concéntricos, conductores de radios a y b, de longitud $L \gg a, b$.

Problema 14. Desde un punto de vista eléctrico, podemos modelar a una célula eucariota y al medio intercelular como dos conductores, y a la membrana plasmática, de espesor $d \approx 5$ nm como un aislante. Si la diferencia de potencial entre ambos lados de la membrana es de -50 mV, estime

- 1. El campo eléctrico dentro de la membrana.
- 2. La densidad de carga dentro de la membrana.
- 3. Si la célula tiene un radio de aproximadamente 50 µm, estime su carga total.
- 4. A partir de los resultados previos, determine la "capacitancia" efectiva de la célula.
- 5. Determine la energía electrostática almacenada por el sistema.

Problema 15. En coordenadas esféricas, la ecuación de Laplace tiene la forma

$$\nabla^2 F(r,\theta,\phi) = \frac{1}{r} \frac{\partial^2 (rF(r,\theta,\phi))}{\partial r^2} + \frac{1}{r^2 \sin(\theta)} \frac{\partial}{\partial \theta} \left(\sin(\theta) \frac{\partial F(r,\theta,\phi)}{\partial \theta} \right) + \frac{1}{r^2 \sin^2(\theta)} \frac{\partial^2 F(r,\theta,\phi)}{\partial \phi^2} = 0$$

a) Construya la solución general por el método de separación de variables. b) Exprese la función de Green correspondiente como combinación lineal de soluciones de variables separadas.

Problema 16. Encuentre la solución general para la ecuación de Laplace para simetría cilíndrica, regular fuera del origen.