Anisotropía magnetocristalina

### Sólo intercambio (ausencia de anisotropía)

Dirección aleatoria de **M** en  $4\pi$  => estado continuamente degenerado



Siempre estaríamos en presencia de un superparamagneto



### spin – órbita + campo cristalino



### Diagramas de desdoblamiento de orbitales d por el campo cristalino Campo tetraédrico ión libre campo octaédrico campo planar cuadrado $\Delta_{tet} = 4/9 \Delta_{oct}$ $d_{x^2-y^2}$ $d_{z^2}$ d\_\_\_\_2\_y2 eg Dig d,z vz $\Delta_{\rm oct}$ $\Delta_{oct}$ e $d_{x^2-y^2}$ $d_{z^2}$ t<sub>2g</sub> d<sub>yz</sub> d<sub>xz</sub> d<sub>xy</sub> ١g



# Anisotropía – descripción fenomenológica



 $e_{\kappa}$  energía de anisotropía por unidad de volumen

$$e_{K} = \sum_{i} K_{i}m_{i}^{2} + \sum_{ij} K_{ij}m_{i}^{2}m_{j}^{2} + K_{123}m_{1}^{2}m_{2}^{2}m_{3}^{2} + \sum_{ij} K'_{ij}m_{i}^{4}m_{j}^{4} + \cdots$$

$$E_{\kappa}$$
 energía de anisotropía  $E_{\kappa} = \int e_{\kappa} dV$ 

Ejemplo: sistema ortorrómbico















### Sistemas hexagonal y tetragonal



### Anisotropía uniaxial



$$e_K = K_1 \sin^2 \theta + K_2 \sin^4 \theta \longrightarrow e_K = K \sin^2 \theta$$

Siempre que pueda simplificarse



## Anisotropía uniaxial

### ejemplos

$$e_{K} = K_{1}\sin^{2}\theta + K_{2}\sin^{4}\theta$$

| Material          | K <sub>1</sub><br>(10 <sup>5</sup> J/m <sup>3</sup> ) | K <sub>2</sub><br>(10 <sup>5</sup> J/m <sup>3</sup> ) | Eje fácil |
|-------------------|-------------------------------------------------------|-------------------------------------------------------|-----------|
| Со                | 4.1                                                   | 1.0                                                   | hexagonal |
| SmCo <sub>5</sub> | 1100                                                  | -                                                     | hexagonal |

### Anisotropía uniaxial

Efecto de las potencias de seno y coseno





Anisotropía de Interfaz

Anisotropía de Intercambio

# superficies e interfaces





$$\vec{m} = \vec{M} / M$$

$$e_{K} = K_{S} \left[ 1 - (\vec{m} \cdot \vec{n})^{2} \right]$$

$$K_{S} > 0 \Rightarrow \vec{m} / / \sup$$

$$K_{S} < 0 \Rightarrow \vec{m} \perp \sup$$

$$K_{S} < 0 \Rightarrow \vec{m} \perp \sup$$

Anisotropía de intercambio\*



$$e_{K} = K_{S}\vec{m}\cdot\vec{u}_{S} = \frac{H_{x}}{2}\vec{m}\cdot\vec{u}_{S}$$
$$e_{K} = \frac{H_{x}}{2}m\cos\varphi$$



Exchange bias field

\*también llamada unidireccional

### Anisotropía de intercambio







# Letters to the Editor

### New Magnetic Anisotropy

W. H. Meiklejohn and C. P. Bean

General Electric Research Laboratory, Schenectady, New York (Received March 7, 1956) PHYSICAL REVIEW VOLUME 102, NUMBER 5 JUNE 1, 1956



### Magnetoresistencia









Spin Valve Structure





# Anisotropía en nanopartículas magnéticas

# anisotropía de superficie en nanopartículas



### Anisotropía de superficie - ejemplo

$$K_B(Co_{fcc}) \approx 1 \times 10^5 J / m^3$$

 $K_{ef} = K_B + \gamma \frac{K_s}{\overline{d}}$ 

$$K_{S}(Co / Al_{2}O_{3}) \approx 3.3 \times 10^{-4} J / m^{2}$$



imagen MFA de nanopartículas de Co fcc en una matriz de alúmina. Las partículas son de aprox 11 nm (diámetro).

$$K_{ef} \left( Co / Al_2 O_3 \right) \approx \left[ 1 \times 10^5 + 6 \frac{3.3 \times 10^{-4}}{11 \times 10^{-9}} \right] J / m^3 \approx 2.8 \times 10^5 J / m^3$$
  
Si d ~ 3 nm = 3x10<sup>-9</sup>m  $\longrightarrow K_{ef} \left( Co / Al_2 O_3 \right) \approx 10^6 J / m^3 \qquad \tau = \tau_0 e^{\frac{K_{ef} V}{kT}}$ 

Mayores tiempos de relajación



F. Luis, J.M. Torres, L.M. Gracía, J. Bartolomé, J. Stankiewicz, F. Petroff, F. Fettar, J. L. Maurice and A. Vaurés. Phys. Rev B, **65** (2002) 094409



$$E_{K} = e_{K}V = KV\sin^{2}\phi$$
$$E_{H} = -\vec{\mu}\cdot\vec{B} = -\mu_{0}\vec{\mu}\cdot\vec{H} = -\mu_{0}VM_{z}H = -\mu_{0}VM_{s}H\cos\phi$$
$$E = E_{K} + E_{H} = KV\sin^{2}\phi - \mu_{0}VM_{s}H\cos\phi$$





$$E = E_K + E_H = KV \sin^2 \phi - \mu_0 VM_S H \cos \phi$$

llamamos Campo de anisotropía

$$H_{K} = \frac{2K}{\mu_{0}M_{S}} \qquad h = \frac{H}{H_{K}} = \frac{\mu_{0}M_{S}H}{2K}$$

$$E = KV \left( \sin^2 \phi - 2h \cos \phi \right)$$



$$E = KV \left(\sin^{2} \phi - 2h \cos \phi\right)$$

$$h = \frac{H}{H_{K}} H_{K} = \frac{2K}{\mu_{0}M_{S}}$$

$$h = 0.00$$





Η

Campo en dirección arbitraria

 $\theta \neq 0$ 



 $E = E_K + E_H = KV \left[ \sin^2(\phi - \theta) - 2h\cos\phi \right]$ 



 $\theta = \pi/2$ 

$$E = E_K + E_H = KV \cos \phi (\cos(\phi) - 2h)$$





$$M_{z} = \frac{M_{S}}{H_{K}}H; \qquad |h| < 1$$

$$\mathbf{M}$$
Fig. diffei



Partículas ferromagnéticas pequeñas – modelo de Stoner - Wohlfarth

|         | IC HYSTERESIS IN<br>ALLOYS      | E. P. WOHLFARTH<br>sity of Leeds                   | 947)                 | [Published 4 May 1 |
|---------|---------------------------------|----------------------------------------------------|----------------------|--------------------|
| [ 299 ] | ISM OF MAGNETI<br>HETEROGENEOUS | TONER, F.R.S. AND E<br>Physics Department, Univers | (Received 24 July 19 | 74                 |
|         | MECHAN                          | By E. C. S<br>I                                    |                      | (Price 10s.)       |
|         | A                               |                                                    |                      | 826                |

1948

The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to STOR STOR Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. Www.jstor.org

Vol. 240. A. 826 (P)



field direction is given by  $I_0 \cos \phi$ , where  $I_0$  is the saturation magnetization. The field, H, is given by by the numbers on the curves. The dotted curves give  $\cos \phi_0$  and  $\cos \phi'_0$ , where  $\phi_0$  and  $\phi'_0$  are the angles FIGURE 6. Magnetization curves for prolate spheroids. The resolved magnetization in the positive  $H = (N_b - N_a) I_0 h$ , where  $N_a$  and  $N_b$  are the demagnetization coefficients along the polar and equamade with the positive field direction by the magnetization vector at the beginning and end of the torial axes. The angle,  $\theta$ , between the polar axis and the direction of the field, is shown, in degrees, discontinuous change at the critical value,  $h_0$ , of the field.



FIGURE 7. Magnetization curves for prolate (full curves) and oblate (broken curves) spheroids orientated at random. The curves refer to similar prolate (or oblate) spheroids orientated at random.  $\overline{\cos \phi}$  is proportional to the mean resolved magnetization per spheroid in the positive field direction, or to the resultant magnetization in this direction of the assembly.  $H = (|N_a - N_b|) I_0 h$ .

IBM Journal of Research and Development Spintronics Volume 50, Number 1, 2006



### Rapid-turnaround characterization methods for MRAM development

by D. W. Abraham, P. L. Trouilloud, and D. C. Worledge

#### Figure 4

(a) Typical data for a Stoner–Wohlfarth stack. (a) Kerr easyaxis (EA) data taken at low field, showing the excellent low Néel offset and sharp hysteresis loop. (c) High-field EA Kerr magnetometry data showing the relative motion of the magnetization in the two ferromagnetic films, permitting direct measurement of pinning and interlayer coupling. (d) Hard-axis data revealing the film anisotropy. Microhilos, P. Mendoza Zéliz et al, 2007



Efectos Dinámicos (T  $\neq$  0)





$$au_{ij} = c_0^{-1} e^{rac{\Delta E_{ij}}{kT}}$$
 Tiempo de relajación



$$\tau = \tau_0 e^{\frac{KV}{kT}}$$

$$\tau_0 \approx cte$$

Ejemplo, usando  $au_0$  = 10<sup>-9</sup> s

| material | K(J/m³)             | R(nm) | τ(s)                |
|----------|---------------------|-------|---------------------|
|          |                     | 4.4   | 6x10 <sup>5</sup>   |
| Со       | 3.9x10 <sup>5</sup> | 3.6   | 0.1                 |
|          |                     | 14.0  | 1.5x10 <sup>5</sup> |
| Fe       | 4.7x10 <sup>4</sup> | 11.5  | 0.07                |



$$\tau = \tau_0 e^{\frac{KV}{kT}}$$

\_



| Técnica                                        | $	au_{	ext{exp}}$        |
|------------------------------------------------|--------------------------|
| Mössbauer <sup>57</sup> Fe, <sup>119m</sup> Sn | ≈ 10 <sup>-8</sup> s     |
| Susceptibilidad ac                             | 10 <sup>-4</sup> —1 s    |
| Susceptibilidad ac hf                          | desde 10 <sup>-6</sup> s |
| Magnetización <i>dc</i>                        | 0.1 –100 s               |

| $\tau_{exp} < \tau \Longleftrightarrow T < T_B$     | Sistema<br>bloqueado    | Patrón estático | Histéresis,<br>desdoblamiento<br>Zeeman (EM)       |
|-----------------------------------------------------|-------------------------|-----------------|----------------------------------------------------|
| $\tau_{\rm exp} > \tau \Longleftrightarrow T > T_B$ | Sistema<br>desbloqueado | Patrón dinámico | Equilibrio,<br>patrón super-<br>paramagnético (EM) |

### Dependencia del campo coercitivo con la temperatura



$$H_{C}(T) \approx H_{K}\left(1 - \sqrt{\frac{kT}{KV}} \ln(\tau_{exp} / \tau_{0})\right) \frac{1}{\vec{H} / \vec{K}}$$



### Temperature Dependent Magnetic Properties of Barium-Ferrite Thin-Film Recording Media

Yingjian Chen, *Member, IEEE,* and Mark H. Kryder, *Fellow, IEEE* IEEE TRANSACTIONS ON MAGNETICS, VOL. 34, NO. 3, MAY 1998

/



introduciendo

$$T_B = \frac{KV}{k \ln(\tau_{\rm exp} / \tau_0)}$$

the easy axis orientation. In a system with unjaxially aligned easy axes, n is 1/2 [29], and in a system with random easy axis orientations n is 2/3 [30]. The fitting parameters  $V_{sw}$ 

- [29] M. P. Sharrock and J. T. McKinney, *IEEE Trans. Magn.*, vol. MAG-17, p. 3020, 1981.
- [30] R. H. Victora, "Predicted time dependence of the switching field for magnetic materials," *Phys. Rev. Lett.*, vol. 63, pp. 457–460, 1989.

$$c = 0.48$$

$$H_{C} = c \frac{2K}{\mu_0 M_s} \left[ 1 - \left(\frac{T}{T_B}\right)^{1/2} \right]$$

expresión de uso extendido

#### Dependencia del campo coercitivo con la temperatura 2





Población de los estados orientacionales

$$P_1 + P_2 = 1$$
$$M \approx 0 \rightarrow P_1 \approx P_2 \approx 0.5$$

Evolución temporal Por el principio del balance detallado

$$\frac{dP_1}{dt_2} = P_2 f_{21} - P_1 f_{12}$$
$$\frac{dP_1}{dt_2} \approx 0.5 (f_{21} - f_{12})$$

$$M = M_{s}(P_{1} - P_{2}) = M_{s}(2P_{1} - 1) \qquad \frac{dM}{dt} = 2M_{s}\frac{dP_{1}}{dt} \approx M_{s}(f_{21} - f_{12})$$

$$\frac{1}{\nu_0 M_s} \frac{dM}{dt} \approx e^{-\frac{KV(1-h)^2}{kT}} - e^{-\frac{KV(1+h)^2}{kT}}$$

$$\frac{1}{V_0 M_s} \frac{dM}{dt} \approx e^{-\frac{KV(1-h)^2}{kT}} - e^{-\frac{KV(1+h)^2}{kT}} \approx e^{-\frac{KV(1-h)^2}{kT}}$$

$$\frac{1}{V_0 M_s} \frac{dM}{dt} \approx e^{-\frac{KV(1-h)^2}{kT}} - e^{-\frac{KV(1+h)^2}{kT}} \approx e^{-\frac{KV(1-h)^2}{kT}}$$

$$\frac{dM}{dt} = \frac{dM}{dH} \frac{dH}{dt}$$
  
cuando  $H \approx H_C \rightarrow \frac{dM}{dH} = \chi \approx cte$ 

$$\frac{1}{\nu_0 M_s} \chi \frac{dH}{dt} \bigg|_{H_c} \approx e^{-\frac{KV(1-h_c)^2}{kT}}$$

$$H_C \approx H_K \left\{ 1 - \sqrt{\frac{kT}{KV} \ln \left[ \frac{M_S}{\chi (dH/dt)_{H_C}} \frac{1}{\tau_0} \right]} \right\} \qquad \tau_0 = 1/c_0$$

escribiendo  $\chi \approx \Delta M / \Delta H$ ,  $dH / dt \approx \Delta H / \Delta t$ 



saturación desde M=0







Ferrogel de NP de magnetita (8 nm) en hidrogel de PVA, Mendoza Zélis et al, enviado



HOW HAS THE ARMY NOT THOUGHT OF THIS YET?

Fin módulo