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INTRODUCTION 

Few of us can any longer keep up with the flood of scientific literature, 
even in specialized subfields. Any attempt to do more and be broadly 
educated with respect to a large domain of science has the appearance of 
tilting at windmills. Yet the synthesis of ideas drawn from different 
subjects into new, powerful, general concepts is as valuable as ever, and 
the desire to remain educated persists in all scientists. This series, 
Advances in Chemical Physics, is devoted to helping the reader obtain 
general information about a wide variety of topics in chemical physics, a 
field that we interpret very broadly. Our intent is to have experts present 
comprehensive analyses of subjects of interest and to encourage the 
expression of individual points of view. We hope that this approach to the 
presentation of an overview of a subject will both stimulate new research 
and serve as a personalized learning text for beginners in a field. 
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I. INTRODUCTION AND SCOPE 

Condensed polymeric fluids exhibit a rich and complex set of experimen- 
tal phenomena associated with the combined influences of local, system- 
specific monomer structure and global connectivity and flexibility. Such 
behavior is of both fundamental and practical interest. Early pioneering 
theoretical work focused largely on simple lattice models that invoked 
severe simplifications of both molecular structure and statistical 
mechanics.' More recently, remarkable progress has been made in 
describing relatively long wavelength structure and properties by employ- 
ing scaling and renormalization group approaches inspired by analogies 
with critical phenomena, as well as self-consistent field  method^.^-^ 
However, these modern continuous-space approaches have restricted 
ranges of applicability (e.g., long chains, low and moderate densities), 
and generally address only the generic qualitative behavior of macro- 
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molecular systems from a polymer physics point of view. System-specific 
chemical structure features are lumped into fitting constants, or prefac- 
tors, and local fluid structure is not addressed. Thus, the a priori 
predictive capacity of such approaches is generally modest or nonexistent. 
In contrast, for simple atomic (and colloidal) and small-molecule fluids 
much theoretical progress for both structural and thermodynamic prop- 
erties has been made over the past two to three decades based on 
continuous-space integral equation  method^.^ Such microscopic ap- 
proaches are nonperturbative in interaction potentials and density 
(though generally “uncontrolled”), and can treat the physical conse- 
quences of the local molecular structure and intermolecular forces over a 
wide range of thermodynamic state conditions. 

The purpose of this chapter is to summarize some recent progress 
toward developing liquid-state theories of macromolecular systems. The 
attractiveness of such a theoretical approach is its ability to describe 
structure and correlations on all length scales, thereby allowing a 
quantitative treatment of both the universal polymer physics aspects and 
the molecule-specific questions of great interest to chemists, materials 
scientists, and engineers. We shall focus on one particular integral equa- 
tion ap roach, the Polymer Reference Interaction Site Model (PRISM) 
theory! first proposed by us in 1987. PRISM is a macromolecular 
extension of the pioneering RISM theory of Chandler and Andersen.’?’ 
We must emphasize that over the past few years many different liquid- 
state integral equation theories have been developed and applied (see 
Section X), and this activity is growing rapidly within the chemical 
physics community. We will only briefly address these developments here 
since a detailed survey and comparison of the emerging integral equation 
methods is the subject of a future review.’ Moreover, we note that 
PRISM theory is presently by far the most developed and widely applied 
polymer integral equation approach. 

A first review of the PRISM approach was written two and one half 
years ago, and was primarily intended for the polymer science 
community.” The present article will emphasize the most recent theoret- 
ical developments from a more liquid-state, chemical physics perspective. 
The detailed scientific issues of interest to polymer scientists that have 
motivated many of the PRISM developments and applications will be 
mentioned only briefly. Moreover, the often subtle and important 
question of the choice of molecular model that is adequate for a 
particular physical problem will not be emphasized here. However, 
examples of the influence of molecular structure simplification, or coarse 
graining, on physical predictions will be given throughout the chapter. 

We have attempted to touch on all the fundamental ideas associated 
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with the wide range of homogeneous phase phenomena and systems 
treated to date with the PRISM approach, supplemented with examples 
of specific applications. Liquid-liquid phase separation and copolymer 
self-assembly will also be discussed. However, the treatment of spatially 
in homogeneous systems and/or first-order phase transitions by combining 
PRISM theory with modern polyatomic density functional methods will 
not be discussed. Significant progress in this direction has been recently 
achieved (see Section XI), including problems such as the structure of 
polymers near surfaces and interfaces, confined chain molecule and 
polymer fluids, macromolecules in porous media, melt crystallization, 
block copolymer microphase separation, and liquid-vapor phase transi- 
tions. 

A major goal of this chapter is to summarize the essential modi- 
fications of RISM integral equation theory7,’ required to accurately treat 
condensed phases of flexible macromolecules. There appears to be three 
broad aspects which are worth enumerating explicitly. 

1. Many Coupled Integral Equations. Consider a one-component fluid 
consisting of macromolecules each of which is composed of N elementary 
“sites” (degree of polymerization). In general (except for cyclic ring 
polymers) there will be of order N 2  coupled nonlinear integral equations 
describing the site-site intermolecular pair correlation functions. Since N 
is of the order 102-105 for polymers, this leads to an intractable 
numerical problem. Thus, approximation schemes must be constructed 
that result in a tractable number of coupled equations for suitably defined 
“averaged” correlation functions. In general, the physically appropriate 
simplifications depend on the global macromolecular architecture (e.g., 
chain, rigid rod, star-branched, etc.). 

2. Closure Approximation. Many integral equation approaches, in- 
cluding RISM and PRISM, introduce an effective or renormalized site- 
site interaction potential called the direct correlation function. 5m The 
fundamental statistical mechanical approximations are made for this 
quantity by relating it to the bare intermolecular potential, thermo- 
dynamic state, and inter- and intramolecular pair correlation functions. 
Such relations are known as the closure approximation. Even for atomic 
fluids, the most useful closures depend on the form of the intermolecular 
potential, temperature, and density.’ In particular, following the classic 
van der Waals idea, harsh repulsive forces are generally treated different- 
ly than slowly varying potentials such as the attractive branch of the 
Lennard-Jones interaction or Coulombic in t e ra~ t ions .~ ’~~’ ’  A fundamental 
question is how to construct closures for macromolecular systems that 
yield reliable thermodynamic and structural predictions on all length 



INTEGRAL EQUATION THEORIES OF POLYMER FLUIDS 5 

scales. .4s a preview of subsequent sections, we have found that the 
standard site-site Percus-Yevick closure’.’ appears to work as well for 
the structure of repulsive force (athermal) macromolecular melts and 
mixture!; as it does for small, rigid molecule fluids such as benzene and 
carbon tetrachloride.’ However, a qualitatively correct treatment of the 
effect of‘ attractive forces on structure is much more difficult for polymers. 

3. Self-consistent Treatment of Intramolecular and Intermolecular 
Correlafions. Most macromolecules are conformationally flexible. Thus, 
the question of intermolecular packing and intramolecular structure are 
coupled and in principle must be solved for self-consistently?.12 This is 
true even for small flexible molecules such as the n-alkanes,’2 but the 
polymer problem is more complex due to “long range” (in chemical 
sequence) N-dependent intramolecular excluded volume effects, which 
can be progressively “screened” as the polymer density is increased.’-4 
The development of a complete ab initio theory of packing and conforma- 
tion within the RISM formalism requires tractable schemes for both 
constructing a medium-induced solvation potential and the self-consistent 
mathematical solution of the resulting complicated effective single-chain 
problem. 

In addition to the three general aspects given, there remains the 
thermodynamic inconsistency problem inherent to all integral equation 
approaches formulated at the level of pair correlations and not the 
partition function.’ A basic question is how much the integral equation 
predictions for thermodynamic properties and phase boundaries differ 
according to the route chosen (e.g., free energy charging, compressibility) 
as a function of macromolecular size and other system-specific variables. 
It appears this thermodynamic inconsistency problem worsens as the 
polymers become larger, both for melt properties such as the pressure 
and isothermal compressibility, and for phase boundaries of multicom- 
ponent fluids. This problem has motivated the development of novel 
molecuhw closure approximations described in Section VI. 

As true for atomic and small molecule fluids, the most unambiguous 
test of the accuracy of PRISM theory is via comparison with exact 
computer simulations of the same theoretical model. Unfortunately, 
simulation of long-chain, high-density polymer fluids in continuous space 
remains extremely time consuming even with modern supercomputers. 
However, significant progress has been made recently and some results 
have been obtained for both polymer melts and binary mixtures, which 
serve as benchmarks to test approximate theories. Direct comparisons of 
PRISM theory with experimental wide-angle scattering and selected 
thermodynamic property measurements on one-component hydrocarbon 
polymer liquids will also be presented. 
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In macromolecular fluids several interesting physical aspects and 
questions arise that have no analog in atomic and small-molecule systems. 
There are two broad issues worthy of explicit enumeration. 

A. What is the role of macromolecule degree of polymerization N and 
global architecture on equilibrium properties? For one-component fluids, 
the effect of N on intrinsic thermodynamic properties, local packing, and 
collective scattering patterns saturates rather quickly within a given 
architectural class (e.g., linear chains) and is only quantitatively affected 
by global architecture. However, intermolecular structure on the macro- 
molecular scale is always strongly influenced by N and depends explicitly 
on polymer global architecture (chain, ring, rod, star-branched, poly- 
meric fractal). In macroscopically phase-separating polymer mixtures and 
microphase-separating block copolymers, long wavelength concentration 
fluctuations and phase boundaries are strongly affected by the degree of 
polymerization. 

B. How does the level of chemical structure detail (or degree of coarse 
graining) retained in a theoretical model impact ‘physical property 
predictions? This is a subtle question the answer to which depends on 
many factors including the nature of the physical phenomenon of interest 
and the level of accuracy deemed acceptable. One broad goal of our 
research is to use PRISM theory to investigate a particular problem with 
a range of different single-polymer models varying from the most coarse- 
grained “Gaussian thread” model commonly employed in field-theoretic 

to atomistically realistic descriptions such as the rotational 
isomeric state (RIS) m0de1.l~ In this way, the influence of the system- 
specific molecular structure details on questions such as scattering 
patterns and phase equilibria can be systematically established, and 
adequate “minimalist” models for a particular question can hopefully be 
deduced. Examples of such an approach will be given throughout the 
chapter. Progress in understanding such chemical issues is essential in 
order to use integral equation methods as an interpretative and predictive 
tool in materials chemistry and polymer science and engineering. 

The question of the relationship between PRISM theory predictions 
and heavily coarse-grained scaling and field-theoretic appro ache^^-^ is an 
interesting one, particularly to the polymer physics community. For some 
problems good qualitative agreement is found, and PRISM theory can be 
viewed as a microscopic derivation of results obtained by hueristic scaling 
ansatzes or heavily coarse-grained incompressible field theories. How- 
ever, for other problems, such as correlation effects and phase separation 
in polymer blends and block copolymers, qualitative differences emerge. 
These reflect the differences in realism of the models adopted and/or the 
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basic statistical mechanical approximations employed. We do not discuss 
these issues directly here, but shall refer the reader to the original 
literature where appropriate. 

An attractive virtue of PRISM theory is the ability to derive analytic 
solutions for many problems if the most idealized Gaussian thread chain 
model of polymer structure is adopted. The relation between the analytic 
results and numerical PRISM predictions for more chemically realistic 
models provides considerable insight into the question of what aspects of 
molecular structure are important for particular bulk properties and 
phenomena. Moreover, it is at the Gaussian thread level that connections 
between liquid-state theory and scaling and field-theoretic approaches are 
most naturally established. Thus, throughout the chapter analytic thread 
PRISM results are presented and discussed in conjunction with the 
corresponding numerical studies of more realistic polymer models. 

11. PRISM THEORY: BASIC ASPECTS 

The integral equation approach to simple classical liquids was pioneered 
by Kirkwood and many others?”‘ Considerable progress was made 
initially in the a lication of integral equation theory to simple 
monatomic liquids!‘ The most accurate theories for simple liquids are 
based on  the well-known Omstein-Zernike equation that defines the 
direct correlation function C(r) in terms of fluid density and the radial 
distribution function g(r )  = 1 + h(r).  Pioneering work was done in the 
1960s and early 1 9 7 0 ~ . ~  For dense simple liquids with strongly repulsive 
and weak attractive interactions, the Percus-Yevick (PY) approxima- 
tion5.I6 gives remarkably accurate results when compared to computer 
simulation and x-ray scattering experiments on monatomic liquids. The 
PY approximation can be viewed as a closure that approximately relates 
the direct correlation function of the radial distribution function, inter- 
atomic potential, and temperature. This closure, together with the 
Ornstein-Zernike equation, leads to a nonlinear integral equation for the 
radial distribution function g(r)  of a monatomic liquid. Theoretical 
treatment of the structural consequences of attractive forces at moderate 
and low densities is far more difficult even for simple  fluid^.^ This area 
remains active in order to get better quantitative and thermodynamically 
consistent theories:.’7 a better description of nonclassical critical 

and also to correctly treat situations where the inter- 
molecular interactions are complex such as in colloidal suspensions.” 

In the 1970s Chandler, Andersen, and co-workers initiated the 
pioneering extension of atomic integral equation concepts to molecular 
liquids based on the Reference Interaction Site Model, or RISM, 
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t h e ~ r y . ” ~  This work, and other theoretical approaches based on inter- 
action site models, has been reviewed in several places.8320 ’ In RISM 
theory each molecule is subdivided into bonded spherically symmetric 
interaction sites. For small molecules (e.g., nitrogen, benzene, carbon 
tetrachloride) the definition of such sites is essentially obvious based on 
the chemical view of a molecule as a bonded collection of elementary 
units or functional groups. The liquid structure can be characterized by a 
matrix of site-site intermolecular pair correlation or radial distribution 
functions gay(r) defined according to’,’ 

, M  

for a fluid of M molecules. In Eq. (2.1) p” is the number density of 
molecules and rp specifies the position of site a on molecule i. In RISM 
theory Chandler and Andersen generalized the Ornstein-Zernike equa- 
tion of monatomic liquids to molecular liquids in a manner that includes 
intramolecular as well as intermolecular correlations.’ Physically, the key 
idea is that intramolecular chemical bonding constraints, which describe 
the molecular shape of rigid molecules, strongly influence intermolecular 
packing. Based on heuristic arguments, Chandler and Andersen then 
employed a PY-type closure for the direct correlation functions in analogy 
with the monatomic c a ~ e . ~ ”  The resulting set of nonlinear integral 
equations can be solved numerically for the intermolecular pair correla- 
tion 

Chandler and co-workers successfully applied this RISM formalism to 
describe the structure of rigid diatomic and polyatomic molecular 

The generalization of the RISM theory to treat flexible 
molecules was initiated by Chandler and PrattI2 in the late 1970s, and 
extensively applied to short alkane liquids12 and the hydrophobic effect .” 
By combining the RISM methodology for a single flexible ring molecule 
(in imaginary time) with the Feynman path integral formulation of 
quantum mechanics, Chandler and co-workers have recently developed 
microscopic theories of quantum processes in fluids focusing particularly 
on the solvated electron problem.23724 

Beginning in 1987, we and our co-workers have extended and widely 
applied the RISM concepts to the case of flexible polymer solutions and 

and block  copolymer^.^^ We 
generically refer to this work as polymer RISM, or PRISM, theory.“ The 
connection of the elementary aspects of PRISM theory with the quantum 
electron work has been discussed.34 

The earliest version of PRISM theory rests on two very simple ideas 

polymer mixtures or 
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that allow the circumvention of difficult computational and conceptual 
problems inherent to flexible macromolecular systems: points 1 and 2 
enumerated in the Introduction. The first technical simplification applies 
to linear polymers when the degree of polymerization N is large. in this 
case one can, to a good approximation, take each of the monomers along 
the chain backbone as equivalent. At the most fundamental level, this 
corresponds to assuming the site-site direct correlation functions are 
independent of where monomers are located along the chain. This 
"preaveraging of end effects" approximation results in a reduced theory 
for chain-averaged site-site pair correlation functions' such as g(r)  = 

N-' Ef,, gaT(r) .  Such a simplification, ga7(r) = g ( r ) ,  would be exact for 
cyclic ring polymers. Of course, this approach represents a loss of 
detailed structural information, and interesting questions such as the 
packing of chain ends cannot be addressed. Tractable schemes to go 
beyond the equivalent monomer approximation have been proposed: but 
to our knowledge not implemented. Numerical RISM studies on short 
linear molecules (propane, butane) suggest the preaveraging a proxi- 
mation is very accurate for the chain-averaged pair correlations even 
when N = 3 or 4. 

Within the equivalent monomer approximation scheme, each mono- 
mer in the linear chain is constructed from one or more spherically 
symmetric interaction sites A,  B, C, and so forth. The generalized 
Ornstein-Zernike-like matrix equations of Chandler and Andersen' can 
be conveniently written in Fourier transform space in the general form 

P, 

(2.2a) 

where the caret denotes Fourier transformation with wave vector k .  In 
real space one obtains 

H(r )  = J dr' J dr"Q( Ir - r'l)c( Jr' - r"l)[e(r") + H(r")] (2.2b) 

The first set of terms on the right-hand side of Eq. (2.2a,b) describes all 
possible site-site correlation pathways between a pair of tagged molecules. 
In the low-molecular-density limit only these contributions survive. The 
second set of terms describes all correlation pathways between two sites 
on a pair of molecules, which are mediated by one or more different 
molecules. The matrix multiplications in Eqs. (2.2) run over v-indepen- 
dent sites A, B, C, . . . and Ca7(r) is the v x v matrix of direct correlation 
functions. Because of symmetry there are v(v + 1)/2 independent 
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Ornstein-Zernike equations for the total correlation functions Hap(r)  

KYk) = P,P,h,,(r) = P*P,[g,,(r) - 11 (2.3) 

where pa = iNa is the density of sites of type a ,  and N, is the number of 
sites of type a per chain. 

When the generalized Ornstein-Zernike-like or PRISM matrix Eq. 
(2.2) is applied to flexible macromolecules, a conformational preaverag- 
ing assumption is employed by replacing the instantaneous, N-body 
intramolecular structure of the flexible chain by its ensemble-averaged 
pair correlation function d e ~ c r i p t i o n . ~ ~ ~ ’ ‘ ~ ~ ~ ~  Thus, all information con- 
cerning the intramolecular structure of polymer chains is contained in the 
functions n,,(r) defined as 

n,,w = 6 c y,W (2.4) 
r E a , l E y  

where q,(r)  is the normalized probability density between two sites i and 
j on the same molecule. In Fourier transform space f&(k) can be 
identified as the single-chain partial structure factors. 

The generalized Ornstein-Zernike-like equations in Eq. (2.2) define 
v(v + 1)/2-independent direct correlation functions. In order to have a 
solvable system of equations, additional approximate “closure relations” 
are required. This is the critical step, since the RISM or PRISM 
equations are really just defining relations for the site-site direct correla- 
tion functions. The most accurate closure is system-specific and is a 
question of enduring interest. In our original work on dense one-com- 
ponent repulsive force liquids, we followed Chandler and Andersen by 
adopting the approximate site-site PY closure738 

C&) = (1 - exPIPu,,(r)lky(r) (2.5a) 

where uJr) is a spherically symmetric, repulsive interaction potential 
between sites a and y,  and /3 = l/k,T at temperature T where k ,  is 
Boltzmann’s constant. For hard sphere interaction between sites, the PY 
closure reduces to the particularly simple form 

(2.5b) 

which is equivalent to the so-called mean spherical approximation 
(MSA).578’” The condition inside the distance of closest approach d,, is 
an exact statement reflecting the impenetrability of hard spheres. The 
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second condition, in which the direct correlation functions are approxi- 
mated as zero outside the hard core, exploits the standard idea of 
Ornstein and Zernike that the direct correlation function is spatially short 
range. For atomic fluids, Eq. (2.5b) can be derived by established 
graph-theoretical partial summations and other functional  method^.^ 
However, for interaction site molecular fluids the PY closure is argued to 
be useful based on analogies with atomic fluids and heuristic physical 
 concept^.'.^ The lack of a rigorous interaction site cluster series basis for 
Eq. (2.5b) has led to RISM theory being described as a “diagrammatical- 
ly improper” theory.8 

Equations (2.3)-(2.5) lead to v(v + 1)/2-coupled integral equations 
that make up the polymer RISM theory in its simplest form appropriate 
for dense, repulsive force polymer fluids. The integral equations can be 
solved numerically using a variety of standard 

Alternative closure approximations for the repulsive force fluid have 
been investigated and will be briefly commented on in subsequent 
sections. Based on the idea that the atomiclike closures are useful by 
analogy for molecular fluids, there are several alternatives to the PY or 
MSA for hard core fluids. These include the hypernetted chain (HNC) 
appro~irnat ion~.’” .~~ 

and the Martytnov-Sarkisov (MS) c l o s ~ r e ~ ~ ~ ~  

cu7(r) = hu7(r) - ($)({1 + ln[l + huY(r)]}’ - 1) r > do, (2.7) 

Numerical studies of chain molecule fluids have also been carried out by 
Yethiraj38 using the considerably more complicated “diagrammatically 
proper” formulation of RISM theory due to Chandler et al.’9.4” Novel, 
even more complicated closures have been recently proposed by several 

but numerical predictions for polymer fluids have not been 
established. 

Appropriate closures for describing the influence of attractive forces 
on polymer liquid structure is a much more subtle and difficult problem 
than the repulsive force or hard core fluid case. We defer discussing this 
aspect until Section VI. 

In our application of PRISM theory to flexible polymer systems, one 
expects that the intramolecular structure, represented by Eq. (2.4), 
depends on the intermolecular structure specified in Eq. (2.3) and vice 

Thus, in a rigorous calculation the intramolecular and inter- 
molecular structure must be determined in a self-consistent manner 
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leading to problem 2 mentioned in the Introduction. This problem 
represents a major conceptual difficulty and might be thought to be 
especially formidable for large macromolecules. The self-consistent issue 
for flexible molecules was originally addressed by Chandler and Pratt in 
both a formal diagrammatic manner and in the context of tractable 
approximation schemes formulated for short-chain molecules.8’’2 For 
macromolecules, several new theories for performing such self-consistent 
structural calculations have been formulated and applied~”” which will 
be discussed in Sections VIII and IX. 

A simple, zeroth approximation to the self-consistent problem for 
dense one-component polymer melts can be invoked as suggested by our 
earliest PRISM work.6 Subsequent structural self-consistent calculations 
(see Section VII), as well as computer simulations and experiments, 
suggest that to a good approximation one can avoid (under appropriate 
conditions) the self-consistency complication by exploiting Flory’s “ideali- 
ty hypothesis”. F l ~ r y ’ . ~ ’  argued many years ago that in a high-density 
melt of strongly interpenetrating chains, the ‘‘long-range’’ intramolecular 
excluded volume interactions that lead to chain expansion in a dilute 
solution in a good solvent are “screened out” or “cancelled” by the 
compressive intermolecular interactions between chains embedded in a 
nearly incompressible fluid. At the level of a single chain, the net result is 
a cancellation of repulsive bare intrachain interactions by the attractive, 
“solvent-mediated’’ interactions. Thus, in a dense, one-component melt 
the chains act as a “theta or ideal solvent” for themselves in the sense 
that the chain radius-of-gyration obeys the maximum entropy ideal 
random walk scaling law: R, ,N’’*. The “prefactor” in this scaling 
relation can be computed based on an atomistic single chain model13 
which ignores interactions among monomers beyond close neighbours. 
Neutron scattering  experiment^^^ and computer sir nu la ti on^^^^^^ on poly- 
mer melts have demonstrated the accuracy of Flory’s conjecture. This 
approximation provides an enormous simplification because the in- 
tramolecular correlations in Eq. (2.4) can then be calculated from a 
separate single-chain computation in which long-range (in chemical 
sequence) interactions along the chain backbone are set to zero. A wide 
variety of single-chain models are availablej3 and thus the connection 
between polymer structural features and bulk properties and phenomena 
can be systematically investigated. 

It is important to note that in calculation of the intramolecular 
structure factors for input into PRISM theory, one can include as much 
(or as little) chemical detail regarding the molecular architecture as 
desired. For questions regarding intermolecular packing on relatively long 
length scales (e.g., the so-called correlation hole regime2 corresponding 
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to intermolecular separations of several monomer diameters and larger), 
the local monomeric structure is not important, and one can use a 
coarse-grained description of the polymer chain s t ruc t~re . ’ -~ . ’~  In this 
case a Gaussian, freely jointed, or semiflexible chain model for f i u p ( k )  
would suffice. Such coarse-grained models are also useful for investigating 
general trends which transcend the fine details of specific polymer 
molecules. 

On the other extreme, in order to make specific quantitatively accurate 
predictions for thermodynamic properties and the details of local packing, 
we anticipate that the local monomeric structure is important. For the 
often subtle question of macromolecular mixture miscibility and co- 
polymer self-assembly, it is often unclear a priori what level of chemical 
detail is adequate. For such problems, one may employ a model that 
includes the effects of constant bond lengths, bond an les, and rotational 
potentials such as the rotational isomeric state model.“ Inclusion of these 
local details into f i , , (k )  is feasible but requires significantly more 
numerical effort. With modern workstations, a tractable option is to 
perform a single-chain simulation to provide a chemically realistic input 
to PRISM. Thus, PRISM theory is versatile in its ability to make 
predictions about intermolecular packing on both local (monomeric) and 
global (radius of gyration) length scales, as a functional of intramolecular 
architecture. In this chapter we will describe PRISM applications that 
include the entire range of local chemical detail. 

111. STRUCTURE AND THERMODYNAMICS OF DENSE MELTS 

Pure one-component polymer liquids, or melts, are in one sense the 
simplest case since the single-chain conformation is nearly “ideal.” 
However, there remains the question of the influence of local chemical 
architecture on melt structure? thermodynamic properties, and physical 
phenomena (e.g., wide-angle scattering, crystallization). In the context of 
PRISM theory, the question is on what length scale, or degree of 
coarse-graining, is an “interaction site” defined? Since there does not 
exist a rigorous renormalization group type scheme to “integrate out” 
degrees of freedom and chemical details, the practical approach is to 
study families of models of variable levels of real i~m.~’  Figure 1 illustrates 
this process schematically in the context of an industrially important class 
of saturated hydrocarbon polymers (poiyolefins). Three general levels of 
chain models are illustrated. (1) An atomistic level where there may be 
multiple symmetry-inequivalent sites within a monomer repeat unit. For 
polyolefins, sites may be a methylene, methyl, or methyne group for 
which angstrom-level structure is explicitly accounted. (2) A single-site 
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Figure 1. Schematic representation of three levels of chain models considered and the 
coarse-graining procedure. The top level is an atomistic model of polyolefins. The second 
level shows two intermediate models: site overlapping semiflexible chain (with bending 
energy E,) and freely jointed branched chain. The bottom level is the Gaussian thread 
chain. 

intermediate-level “semiflexible chain” (SFC) model or multiple-site 
“freely jointed” branched chain. Such models correspond to a modest 
degree of coarse graining. (3) The extreme, heavily coarse-grained 
Gaussian thread model where the polymer is crudely treated as a thin, 
fully flexible, ideal random walk space curve. It is at this level that 
self-consistent field theoretic approaches describe polymer ~ t r u c t u r e . ~ - ~  

In the next two sections we consider melt structure, as embodied in the 
intermolecular site-site radial distribution functions and the total struc- 
ture factor describing collective density fluctuations in Fourier space, as a 
function of degree of coarse graining. Possible mappings, which relate the 
different chain models, are briefly mentioned.52 Purely repulsive (general- 
ly hard-core) interchain site-site potentials are employed corresponding 
to an athermal melt situation. At high liquid densities, structure is 
expected to be dominated by such purely steric packing forces.”” Use of 
the structural information to compute thermodynamic properties is 
addressed in Section C.  
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A. Single-Site Homopolymers 

Consider first linear polymers composed of identical spherical sites that 
interact intermolecularly via a pair decomposable site-site hard-core 
potential of diameter d .  The dimensionless reduced fluid density is p,d? 
where p,, = Np is the site number density. 

1 .  Gaussian Thread Chains 

At the most coarse-grained level the polymer is described as an ideal 
random walk on all length scales. The intramolecular structure factor 
matrix is Gaussian and given by2-4: A,,(k) = exp(-k’a211a - y 1 / 6 ) ,  where 
CT is the so-called statistical segment length. Physically, it represents a 
length scale beyond which real chain units are orientationally uncorre- 
lated. The mean-square end-to-end distance R and radius-of-gyration R ,  
are given by (R’) = N u  , and R, = R I G ,  respectively, where N is the 
number of statistical segments. The single-chain structure factor 4(k)  = 

N - ’  Cr,,  Auy(k) is easily computed in closed form. Numerically obtained 
PRISM predictions of g(r) and dimensionless collective density fluctua- 
tion structure factor, i ( k )  = A(k) + p,h^(k), for such a model have been 
represented for a wide range of N and reduced d e n ~ i t i e s . ~ ’ ~ ~ ’ ~ ~  Gaussian 
ring polymers have also been studied.‘.’’ As expected physically, for large 
N only minor structural differences between ring and chain melts are 
found on macromolecular length scales, and identical behavior is pre- 
dicted for the local region of g(r). 

A further model simplification, corresponding to a type of “continuum 
limit” (commonly employed in field-theoretic in the large 
N regime), can be introduced in order to obtain analytic results that 
capture all the essential physical features of the Gaussian chain 
m ~ d e l . ’ ~ . ~ ”  The single-chain structure factor is approximated by a 
Lorentzian’ 

2 

1 
d(k) = 

(k’a2/12) + N - ’  

This form neglects the self-scattering term appropriate for the ka-, 30 
regime, but which is irrelevant in a continuum-of-sites description. 
Equation (3.1) very accurately describes the exact Gaussian A(k)  for the 
k a  < 1 regime of interest in a continuum model. In particular, it exactly 
reproduces the k = 0 value and the “self-similar” intermediate scaling 
regime, &(k) = 12(ka)-’ for RR’ << k << a-’. In real space, this self- 
similar behavior corresponds to power law, or critical-like, correlations, 
w(r) r - I .  This is a polymeric effect associated with the ideal random 
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walk chain statistics on intermediate length scales, and is widely exploited 
in the “scaling theory” approach to polymer physics The 
second simplification is to take the “thread” limit, corresponding to d-, 0 
and p, + a such that the reduced fluid density is finite and nonzero. This 
simplification reduces the hard-core impenetrability constraint to a point 
condition, g ( r  = 0) = 0. Thus, within the PY closure approximation the 
site-site direct correlation function reduces to a delta-function form: 
C(r)  = Co6(r), where C, = e ( k  = 0) is a parameter to be determined by 
application of the PRISM integral equation and the core exclusion 
condition.25930 

The resulting PRISM integral equation is analytically solvable for the 
Gaussian thread model. The structural predictions are25330 

The fundamental length scales are the density screening length, t,, given 
by 

which controls the local packing of threads, and the “correlation hole” 
length scale tc = R , / ~ .  Equation (3.2) shows that the correlated part of 
g ( r )  consists of a local and macromolecular contribution. “Negative” 
correlation is predicted on all length scales, that is, g ( r )  < 1 for all r ,  and 
simple liquidlike solvation shells are entirely absent. Remarkably, these 
general features survive qualitatively in more chemically realistic, even 
atomistic, models of polymer structure due to thermal conformational 
disorder and destructive interference between the packing consequences 
of multiple local length scales (see Section 1I.B). For the simple thread 
model the local contribution to g ( r )  is directly related to s(0)  = 1 2 ( 5 , / ~ ) ~  
and hence the isothermal compressibility, K ,  via the thermodynamic 
relation $0) = p,,,k,TK. The simple Yukawa forms in Eqs. (3.2) and (3.3) 
are a consequence of the technical simplifications invoked by the 
Gaussian thread model. Hence, the precise details of g ( r )  in the local 
region will change as more chemically realistic models are employed. 
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The depth of the local correlation hole is predicted to be controlled by 
a so-called packing length (p, ,zcr2)- ’ .  This quantity is invariant to 
arbitrary redefinition of a coarse-grained segment (or regrouping of real 
monomers). Under melt conditions and for normal temperatures (T  = 

250-500 K), the packing length falls typically in the range of 1.7-5.5 A 
for a very wide class of semiflexible  polymer^.^^.^^ 

The predicted power law relation (for large N)  of Eq. (3.4) between 
the density screening length and p, is in excellent agreement with 
experiments, scaling arguments, and field theories for dense solutions but 
not rnelt~.~’.~‘ However, under many solution conditions the “ideality” 
approximation breaks down and the effective statistical segment length, 
and hence R, ,  acquires a polymer concentration dependence. This aspect 
has been incorporated by using the fully self-consistent version of PRISM 
(see Section VIII), or more simply by combining field-theoretic and/or 
scaling  prediction^^.^ for single-chain size (e.g., u a P - ’ ’ ~  in good sol- 
vents) with the PRISM analysis of intermolecular packing.54 

The second contribution to g(r)  in Eq. (3.2) is called the correlation 
hole effect by deGennes’ and is associated with the longer wavelength 
universal aspects of chain connectivity and interchain repulsive forces. On 
intermediate length scales it has a critical power law form due to chain 
conformation self-similarity, and this simple analytic form remains an 
excellent representation even for chemically realistic models when inter- 
site separations exceed an intrinsic (N-independent) distance of the order 
of 3-5 site  diameter^.'^ 

The dimensionless collective structure factor, s(k) in Eq. (3.3), is of a 
purely decaying, or “diffusive,” form; no large angle peaks (which must 
be present in real dense fluids) are present. Again, this is a consequence 
of the idealized Gaussian thread model, although the diffusive form is in 
general accord with experiments (in the ko< 1 regime) and field- 
theoretic redictions for moderately concentrated (“semidilute”) polymer 
solutions:’ 

The analytic Gaussian thread model has been generalized to approxi- 
mately treat nonzero chain thickness ( d Z 0 )  in a simple average 
manner.3” This generalization is called the Gaussian string model, and 
results in a g(r)  and S ( k )  of the same form as Eq. (3.2) but the 
density-density screening does not obey Eq. (3.4). For long chains all the 
basic structural and thermodynamic features remain the same as the 
thread model, although the contact value, g(d) ,  is now nonzero, and this 
has important implications for particular physical problems. The Gaussian 
string model has been shown to be generally in remarkable agreement 
with numerical PRISM predictions for discrete, nonzero thickness Gaus- 
sian  chain^.^" This agreement suggests that a type of “self-averaging” 

.p3 
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process occurs in polymer fluids, that is, th,e essential part of C(r) is its 
long wavelength, integrated strength C,  = C(k = 0). 

2. Semifiexible Chain Models 

The most fundamental aspects of real polymer structure are: (a) nonzero 
chain thickness, (b) semiflexibility, that is, a system-specific and thermo- 
dynamic-state-dependent tendency for chain bending or coiling due to 
rotational isomerism, and (c) an overall size strongly correlated with the 
degree of polymerization. As displayed in Figure 1, the discrete SFC 
model includes these features by introducing (a) a site diameter d ;  (b) a 
local bending energy E, , which controls the “chain persistence length,” 
defined as 6, = C z ( I ,  . I , )  ll,, which for large N is given by 6, = 

l , /{ 1 + (cos(0))} where I, is the magnitude of the nearest neighbor rigid 
bond length; and (c) a degree of polymerization, N ,  which determines the 
overall size ( R 2 )  = 1,(25, - 1,)N (for large N ) .  The ratio 1,ld controls 
the amount of exposed surface area available for interchain site-site 
interactions or packing. 

Summarizing, the structure of a fluid of hard-core SFC polymers is 
characterized by four dimentionless variables, which can be chosen to be 
pmd3 (reduced density) or total site packing fraction 7, r = 5,Id (chain 
aspect ratio), Zb/d, and degree of polymerization, N .  Novel approximate, 
but accurate and computationally convenient, numerical procedures have 
been developed by Honnell et a].” for the calculation of the single-chain 
structure factor, &(k), of the SFC model. In the polymer field jargon, the 
SFC model is the discrete, finite thickness generalization of the “worm- 
like chain” or “Koyama” which interpolates between the rigid 
rod and ideal random walk chain models. The approximate calculation of 
&(k) is based on a cumulant expansion and rigorous evaluation of the 
second and fourth moments of ray ,  or equivalently (cos(0)) and 
(cos’(0)). In addition, it is possible to exactly compute the next nearest 
neighbor correlationsp3 w,,, +2(r) ,  and this extension is generally adopted 
and accounts for the most local part of the intramolecular excluded 
volume interactions. 

Details of the rotational potentials, chemical bond lengths, bond 
angles, and nonspherical monomar structure are ignored in the SFC 
model and thus can only be mimicked by judicious choice of SFC model 
parameters. However, it has been recently demonstrated by Schweizer et 
a1.s2 that by appropriate choice of SFC parameters both the single-chain 
and interchain packing of real polymer liquids can be reproduced to 
surprising accuracy by the SFC model. Although inherently nonunique, 
specific procedures for “mapping” a real polymer onto the SFC have 
been formulated and successfully applied. Here we present a few 
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PRISM results" for the site-site g(r )  of a N = IOOO, 7 = 0.5 SFC model liquid Figure 2. 

and several experimentally relevant choices of chain aspect ratio r. 

representative results and refer the reader to the original literature for the 
details.52 

Figure 2 shows the predicted g ( r )  at meltlike density for N = 1000 
repeat unit chains, l , / d  = 0.5, and a range of aspect ratios (of order unity) 
relevant to typical flexible polymers of experimental interest .52 For these 
cases g(r) is relatively featureless and slowly varying in rough accord with 
the simple Gaussian thread model behavior. There is both a local and 
global correlation hole, and g(r)  < 1 for all r .  These features are in 
qualitive accord with atomistic calculations. Moreover, the form of g(r)  
appears to be a remarkably good, coarse-grained representation of the 
site-averaged correlations predicted by atomistic PRISM theory (see 
Sections III.A.4 and 1II.B) and atomistic  simulation^.^'-^^ Such agree- 
ment is not because real polymers are Gaussian on all length scales as 
assumed by the thread model. Rather, it is the multitude of local 
chemical lengths, and thermal conformational disorder associated with 
chains composed of real monomers, which frustrates the development of 
well-defined solvation shells and positive correlation in g(r). 5 2  

Another important structural feature in Figure 2 is that the local 
correlation hole is very sensitive to aspect ratio. As expected physically, it 
deepens as the chain becomes more flexible and less able to efficiently 
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pack with neighboring polymers. This feature has important conse- 
quences for thermodynamic properties (e.g., cohesive energy density) 
and the miscibility of polymer mixtures.s2 

As the chain aspect ratio is significantly increased above r r  1.4, 
and/or the accessible site surface area is enhanced by increasing /,Id, 
more well-defined solvation shells develop and “positive correlation” 
[ g ( r ) >  11 occurs. The extreme limit is the rigid rod polymer. The 
predicted packing of such models (not shown) begins to resemble a 
smeared version of the g(r) of simple atomic liquids, particularly in the 
“tangent” SFC limit” where 1, = d. Thus, such a tangent model appears 
to be a poorer coarse-grained representation (relative to the I ,  / d  < 1 SFC 
models) of the g(r)  of real polymer fluids. 

1.4 has been 
studied in recent large-scale molecular dynamics and Monte Carlo 
simulations of dense melts by several Comparisons of PRISM 
theory predictions with these benchmark simulations has shown agree- 
ment at roughly the same level obtained for atomic and small molecule 
(RISM) liquids (e.g., 10-20% errors at contact and much better as r 
increases). This is significant since it shows that the standard site-site PY 
closure for hard-core fluids suffers no obvious loss of accuracy as the 
chains become longer. For linear chain solutions and melts interacting via 
pure hard-core potentials the site-site PY closure appears to be the most 
accurate closure for g(r)  as judged by overall comparison with computer 
simulations.60 At the highest meltlike densities, Yethiraj and Schweizer6’ 
have shown that PRISM theory with the PY, HNC, and MS closures yield 
similar results for g(r). However, the PY closure is the most robust since 
under certain density and chain length conditions the HNC, MS, and 
diagramatically proper ~ l o s u r e s ~ ~ - ~ ~ )  can fail to converge and/ or result in 
extremely poor descriptions of collective structure and density fluctua- 
tions especially on long length scales. Theoretical arguments for this have 
been suggested“’ Very recent simulation studies by Yethiraj62 of hard- 
core fluids composed of rather stiff chains of larger aspecr ratios (roughly 
r > 2) reveals that PRISM theory predicts the local (near contact) 
behavior of g(r) very well, but longer range aspects associated with liquid 
layering and solvation shell structure is not accurately described. 

An example of a comparison by Honnell et al? of PRISM theory with 
molecular dynamics simulations5’ are shown in Figure 3.  Details of the 
model are given e l s e ~ h e r e . ~ ’ . ~ ~  Briefly, a meltlike density was studied for 
N =  50-150 unit chains. The linear polymers were modelled as freely 
jointed beads with a purely repulsive, shifted Lennard-Jones interaction 
between all segment pairs. The corresponding chain aspect ratio is 
r 1.4. PRISM theory with the PY closure (plus a standard correction 

The tangent SFC model with chain aspect ratio of r 
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Figure 3. Intermolecular site-site radial distribution function for soft-core, repulsive 
Lennard-Jones chain liquids at 7 = 0.464 and (a) N = 50 and (b)  N = 150. The circles are the 
molecular dynamics simulation results of Grest and Kremer.5' Curves are PRISM 
predictions" based on the exact G ( k )  (solid h e  for N = SO) and the SFC model (dashed 
curve for N = 50 and solid curve for N = 150). Distances are scaled by the Lennard-Jones 
site diamctcr. 
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for repulsive force softness) was applied for two choices of the in- 
tramolecular structure factor G(k) :  (i) an SFC chain model with bending 
energy chosen to reproduce the simulated value of the chain end-to-end 
distance and (ii) the exact simulation result for the single-chain quantity 
A(/?). The second approach involves the fewest statistical mechanical 
approximations and provides a precise check on the accuracy of the 
PRISM/PY theory for interchain packing. Errors of the size of 15% are 
found at small separations, which become much smaller as r increases. 
Calculation (i) is in the best agreement with the N = 50 simulation. This 
is partially fortuitous, that is, errors in PRISM theory and errors in the 
approximate calculation of &(k) have largely cancelled to yield nearly 
perfect agreement for N = 50, 100 (not shown), and 150. Calculations for 
a simpler ideal freely jointed chain model have also been performeds13ss 
(not shown here) and are in the poorest agreement with simulation since 
this fully flexible ideal model ignores the very local intrachain excluded 
volume interactions between monomers separated by two bonds. Thus, 
chain size is underestimated leading to the strong underestimation of g(r) 
locally. 

The trends of g(r)  with decreasing fluid density are qualitatively similar 
to decreasing aspect ratio at melt den~ity.~’  Single-chain conformational 
entropy becomes increasingly more important relative to interchain 
packing entropy as the fluid becomes more dilute, resulting in a g(r )  that 
is less structured with a much deeper local correlation hole. Many 
examples have been given in the However, as true for 
RISM theory of simple molecules,8 the quantitative accuracy of PRISM 
theory is reduced as the fluid density is lowered even if the exact, 
simulated G(k)  is Similarly, at fixed density and aspect 
ratio, the chains pack more poorly [less solvation shell structure and 
deeper hole locally in g(r)]  as N is increased.6,25*ss However, a stable 
long-chain limit is approached in the local region of g(r),  and this occurs 
more quickly as the density and/or chain aspect ratio is increased. 

3. Atomistic Models 

The structurally simplest polymer, and one of the most commercially 
important, is polyethylene. It consists of a linear chain of CH, units, 
which we model as single spherical sites in the single-site homopolymer 
spirit. There exist well-developed ideal rotational isomeric state chain 
modelsI3 where the bond rotational degrees of freedom are represented 
as discrete trans and gauche isomers. Numerical calculation of the 
required single-chain structure factor can be achieved via Monte Carlo 
simulation or using the recently developed computationally convenient 
approximate methods of McCoy and c o - w o r k e r ~ . ~ ~  
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The predictions of PRISM theory for melts of ( 4 H 2 - ) N  chains 
based on purely hard-core intermolecular potentials have been numerical- 
ly obtained, including a systematic study of the n-alkanes by Honnell et 
al. (N = 4-20).64.65 Detailed comparisons with wide-angle x-ray scattering 
measurements of Narten and Harbenschuss have been carried out, and 
excellent a reement between theory and experiment has been demon- 
~ t r a t e d . ~ ~ - ~  This agreement has motivated theoretical extensions that 
employ PRISM theory of the liquid as input to treat melt thermodynamic 
properties (PVT equation-of-state, compressibility, thermal expansion 
coefficient)P7 and the development and ap lication of novel polymeric 
density functional theories of crystallization and polymer near surfaces 
and interfaces. For the strongly first-order crystallization transition, it has 
been found by McCoy et alPR that the atomistically realistic description of 
polyethylene is required for a proper description of the phase transition.6x 
This is not surprising since crystallization is a phenomenon exquisitely 
sensitive to local molecular structure and packing. 

Figure 4 shows the predicted melt methylene-methylene g(r )  for a 
range of  temperature^.^' The experimental density and a temperature- 
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PRISM predictions for the site-site radial distribution function of an N = 
1000 RIS model of a hard-core polyethylene melt at various temperatures." Distances are 
scaled by the effective (T-dependent) hard-core diameter. 

Figure 4. 
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dependent hard-core diameter associated with the repulsive Lennard- 
Jones methylene interactions (computed according to the standard 
Barker-Henderson p roced~re )~ . '  has been employed in the calculations. 
Although there is some fine local structural details for r < 20 A, they are 
rather weak and g(r) crosses over to the long-range correlation hole form 
for larger separations [h(r) 0~ r - ' ] .  Random behavior corresponding to 
g ( r )  = 1 is attained only when r > R,. As the temperature is raised, the 
reduction of local packing efficiency occurs due to the lower liquid density 
and enhanced conformational disorder (more twisted gauche -+ confor- 
mers). Comparison of the predicted dimensionless collective structure 
factor, j (k) ,  with wide-angle scattering data is shown in Figure .5.64,6h 
Excellent agreement is obtained for the chemically sensible value of 3.9 A 
for the methylene hard-core diameter. Comparable agreement between 
theory and experiment has been found for the entire alkane series.6' 

The most significant feature of Figure 5 is the strong first diffraction 
peak or "amorphous halo," which is influenced by both inter- and 
intramolecular pair  correlation^.^^-^^ The very large angle scattering 
reflects single-chain correlations that are input to the theory. Agreement 
of the theoretical prediction for the collective structure factor at k = 0 
with the measured data point is partially fortuitous since the attractive 
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Figure 5. Dimensionless total structure versus absolute wave vector for a N = 6429 
polyethylene melt just above its melting temperature.6J.66 The solid circles are the x-ray 
scattering data, and the line is the PRISM prediction based on a hard-core model with 
drH2 = 3.9 A. The solid square at k = 0 represents the experimental value based on the 
measured isothermal compressibility and liquid density. 
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intermolecular interactions present in the real fluid have not been 
included in the calculation of this thermodynamic property. 

The broad message of all the atomistic PRISM studies of the linear 
hydrocarbons is that the theory is capable of an essentially quantitive, ab 
initio description of melt structure for the structurally simplest case of 
(-CH .-) N. 

4. Coarse Graining and Relationship of Different Chain Models 

The collective density fluctuation melt structure factor, $&), has been 
computed for a wide range of single-site models and chain 
parameters.h.~S.SS.6j-hh.6R ~h ere are two primary packing-related features 
of interest: the zero-angle scattering s(0) and the first strong diffraction 
peak. These basic density correlation features are qualitatively the same 
for all chain models since they are not intrinsically of polymeric origin. 
However, clear differences exist with rather well-defined trends. For 
example, at fixed fluid packing fraction, chain length, and chain per- 
sistence length both the inverse zero-angle scattering amplitude and the 
amplitude and sharpness of the amorphous halo increase as the monomer 

Within the structural model includes more local structural features: 
SFC model:’ these features also increase as the chain aspect ratio 
increases and/or N decreases since local packing is enhanced, although a 
saturation behavior occurs for sufficiently large r and /or N .  

The ability to construct coarse-grained models in such a way as to 
mimic, or reproduce, selected properties of real polymers or atomistic 
computations is a goal of both computational and conceptual value. 
Recently. some progress has been made in this direction using PRISM 
theory.” Briefly, in its minimalist implementation the key ideas employed 
to select the parameters of the coarse-grained model are as follows: (1) 
require an identical aspect ratio as the atomistic model or real experimen- 
tal polymer: this parameter has been argued to be the primary one in 
determining the average interchain packing efficiency. (2) Set N equal to 
the degree of polymerization on a monomer basis. (3) Choose the 
reduced density such that $0) is equal to the experimental value; part of 
the motivation here is the intriguing direct connection between S(0) and 
the local g(r) suggested by the Gaussian thread analytic results and 
empirically verified for more realistic chain model studies. In the initial 
studies based on the SFC model, a purely hard-core interaction has been 
employed with a common value of d and I, /d = 0.5. 

The results of this approach as applied to polyethylene are shown in 
Figure 6 .  Remarkable agreement between the atomistic model g(r) and 
the SFC g(r )  is found. Moreover, even the Gaussian thread result seems 
reasonable as an “interpolation” through the atomistic g(r) .  For inte- 

7 5.64 ~ 66 
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Predicted interchain radial distribution function for a hard-core polyethylene 
melt described by three single-chain models: atomistic RIS at 430 K, overlapping ( l i d  = 0.5) 
SFC model with appropriately chosen aspect ratio and site number density (see text), and 
the Gaussian thread model (shifted horizontally to align the hard core diameter with the 
value of rld = 1). 

Figure 6 .  

grated thermodynamic quantities, such as the cohesive energy density 
associated with intermolecular attractive forces, close agreement is found 
between all three appro ache^.^^ 

Generalization of this mapping scheme to polymers of more complex 
monomer structure, such as polypropylene, also yield promising results52 
for the chain-averaged carbon-carbon radial distribution gav(r). Although 
there will surely be systems and phenomena where such a “preaveraging” 
of chemical structure detail will incur significant (and perhaps fatal) 
errors, such a mapping scheme allows one to construct and study coarse- 
grained SFC models for a very large number of materials. Thus, this 
approach has significant potential for making PRISM theory a “molecular 
design tool” in the sense that many possible material systems can be 
quickly studied based on input of a small amount of conformational and 
related information. This approach has been recently implemented by 
Schweizer and co-workers with considerable success for understanding 
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and predicting melt solubility parameters and polyolefin blend misci- 
bility.5? . ( I 9  

B. Multiple-Site Vinyl Polymers 

In order to capture the nonspherical nature of monomers for polymers 
more complicated than polyethylene, one can use additional independent 
sites to build the monomer structure. An example is shown in Figure 7 for 
a vinyl polymer. Note that the sites can be overlapping to maintain the 
correct bond lengths, angles, and steric volume of the atoms or groups of 
atoms making up each site. We use a united atom scheme” to construct a 
vinyl monomer from three independent sites where site A represents a 
CH, group, site B represents a CH group, and site C depicts a side chain 
substituent. PRISM theory in Eqs. (2.3)-(2.5) now yields six integral 
equations for the six independent radial distribution functions gAA(r) ,  
gBB(r), gcc(r) ,  gAB(r), gAC(r), and gBc(r), which characterize the inter- 
molecular packing. 

As a first approximation” one can model the vinyl polymer as a freely 
jointed, tangent hard sphere chain as depicted on the second line of 
Figure 1. Thus each bond (of fixed length) is completely flexible with each 
site, including the side group site C ,  acting as a universal joint. Invoking 
the Flory ideality hypothesis, the intramolecular structure functions 
fia,(k) in Eq. (2.4) becomez6 

Vinyl Chain 

Figure 7. Schematic representation of a three- 
site model for describing vinyl polymers contrasted 
with a one-site model for polyethylene. Polyethylene 
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where m(i, j )  is the number of bonds between a pair of sites i and j on 
the same chain. The summations in Eq. (3.5) can be performed in a 
straightforward manner and are detailed in Ref. 26. 

In reality it is known from computer simulation’’ that the intra- 
molecular excluded volume is not completely screened out in a polymer 
melt, even at high density. Overall the chains will exhibit ideal scaling 
with R, - N”* characteristic of a chain with no long-range repulsions, but 
the chain expands locally due to intramolecular overlaps. This is con- 
firmed in self-consistent  calculation^^^-^^ as discussed in Section VIII. In 
order to quantitatively compare PRISM calculations for the intermolecu- 
lar structure with computer simulations, it is necessary to compensate for 
this local chain overlap. This can be accomplished by using the in- 
tramolecular structure functions f i a y ( k )  obtained from the full many- 
chain simulation. Alternatively one can compute fiaY(k) from a single- 
chain calculation or simulation in which only local, short-range repulsions 
are included. Figure 8 shows selected components of the intramolecular 
structure factor matrix for vinyl chains of 33 monomers obtained from 
Monte Carlo simulations of Yethiraj and co -~orke r s .~”  The points are 
from the full, many-chain simulation, whereas the curves were obtained 
from a single-chain Monte Carlo simulations of Yethiraj and co-workers. 
The points are from the full, many-chain Monte Carlo simulation in 

0 1 2 3 4 
kdAA 

Figure 8. Predictions for two diagonal partial structure factors of vinyl chain melts of 33 
monomers. The points are from the multiple-chain Monte Carlo simulations of Yethiraj and 
co-worker~.~” The curves are from single-chain simulations”’ in which repulsive interactions 
between sites separated more than 2 bonds are screened (set to zero). The BB structure 
factors are similar to AA and were omitted for clarity. 
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which sites separated by two bonds are prohibited from overlapping. 
Interactions between sites separated by more than two bonds are set to 
zero based on the physical expectation that long-range excluded volume is 
screened under melt conditions. It can be seen from this figure that the 
intramolecular structure of a chain, with local repulsions only is an 
excellent approximation of a chain in a melt. 

Using these results for fiOy(k) as input to PRISM theory, the six 
coupled equations resulting from Eqs. (2.2) and (2.5) can be solved 
numerically using a straightforward Picard iteration scheme.26 The inter- 
molecular packing of vinyl chains of 33 monomers is compared with the 
simulations of Yethiraj et al.70 in Figure 9. While the agreement is not 
quantitative, it can be seen that the PRISM theory certainly captures the 
essential features of the intermolecular packing. The comparison with 
simulation in Figure 9 was carried out at a packing fraction characteristic 
of a concentrated solution (7 = 0.35). We anticipate that the agreement 
between PRISM and theory would improve as the packing fraction 
increases to 77 - 0.5 characteristic of a neat polymer melt. 

It is instructive to examine the details of the six intermolecular radial 
distribution functions in Figure 9. Note that on long length scales (RR - 3) 
all the gcry(r)  are essentially identical in the correlation hole regime. This 
verifies that the local monomer architecture does not affect the packing 
on intermediate and long length scales. On the other hand, on short 
length scales near contact, significant local packing differences are seen 
between the different types of sites making up each monomer. We 
observe from Figure 9a that gcc(r )  is much larger than all the other local 
correlations. This is a consequence of the fact that the C sites are situated 
on the outside of the chain and hence can easily approach each other near 
contact. 

By contrast, gBB(r) is small near contact because of screening effects. 
The B site is located on the chain backbone underneath the C groups and 
therefore is stron 1 shielded by the surrounding sites. These qualitative 
screening ideasz6. can be carried further to explain the relative order of 
all the radial distribution functions near contact: g,,(d) > gA,(d) > 
g,,(d) > gAA(d) > gA,(d)  > g,,(d). Not surprisingly the local packing, 
characterized by the six different goy(r) ,  is a sensitive function of the 
detailed monomeric structure. For example gcc(r) is ~ e e n ~ ' . ~ ' '  to sys- 
tematically increase near contact when the hard-core diameter of the C 
site is increased. For typical nonpolar van der Waals interactions the 
attractive interactions between sites are spatially short range. For this 
reason one expects the local intermolecular packing details are important 
in determining the thermodynamic properties (e.g., cohesive energy) of 
the polymer liquid. 

Q Y  
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Figure 9. A comparison of theoretical PRISM predictions (curves) for the radial 
distribution functions with Monte Carlo simulations (points)." The simulations were 
performed on vinyl chain melts of N = 33 monomers at a packing fraction of 0.35. Note the 
shielding effects at short distances. (a) The diagonal components AA, BB, and CC of the 
correlation functions. (b) The off-diagonal components AB, AC, and BC of the correlation 
functions. 
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The structure of a polymer melt can be probed by x-ray or neutron 
scattering experiments. The density of scattering Z(k) is given by 

where b,2 is a scattering cross section of species (Y, and the SJk) are the 
partial structure factors making up a structure factor matrix defined 
analogously to Eq. (3.3) 

j ( k )  = $(k)  + @(k)  

= (1 - $ ( k )  < (k ) )  ~ ' $ (k )  (3.7) 

The second equality in Eq. (3.7) follows from Eq. (2.2). The summations 
in Eq. (3.6) run over the v-independent sites making up the monomer. 
Assuming for the moment that the scattering cross sections of each site 
are equal, then the scattering intensity of a three-site vinyl polymer melt 
is proportional to the average structure factor defined according to 

j a v ( k j  is plotted in Figure 10 for a tangent hard-sphere, freely jointed 
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chain melt26 for various diameters d,, of the side group site labeled as C. 
Note that when there is no side chain group (dc ,  = 0) the vinyl chain 
reduces to a one-site, freely jointed polyethylene-type chain. In this case 
the main structural feature at low wave vector is seen from Figure 10 to 
occur at kd,, = 7 corresponding to the nearest neighbor distance (=2~r /  
k ) .  When a side group substituent is added, however, a new peak grows 
in below kdAA = 2. This low-angle peak grows in intensity and shifts to 
smaller wave vectors as the size of the side group increases. Curiously, 
this low-angle feature corresponds to packing distances in real space of 
approximately three hard-core diameters. Such a “prepeak” has been 
reported from some vinyl polymer melts such as polystyrene; however, 
recent x-ray scattering  measurement^^^ on isotactic polypropylene show 
no indication of a prepeak. Examination26 of the partial structure factors 
reveals that the prepeak is arising from relatively long-range interchain 
correlations between backbone carbon centers that are modulated by the 
presence of the side groups. 

It should be emphasized that Figure 10 was calculated for an idealized 
freely jointed chain melt in which the site diameter and bond length are 
the same. In order to make quantitative contact with experiments, it is 
necessary to more faithfully xpresent the monomer architecture through 
the intramolecular functions R,,(k). A model that captures more of the 
local chemical structure of real polymer chains is the well-known 
rotational isomeric state m0de1.I~ In order to mimic a chain in a theta 
solvent or a melt, intramolecular repulsions are included between sites 
separated by less than or equal to four bonds (the “pentane e f f e ~ t ” ) . ’ ~  

Detailed PRISM calculations were performed by Rajasekaran et a1.“ 
on the stereochemically regular isotactic polypropylene (i-PP) of N = 200 
monomers employing the rotational isomeric state model of Suter and 
F 1 0 r y ~ ~  to compute the required fi,,,(k). The characteristic ratio of a 
linear chain is defined as C ,  = (R2) /Nb1&,  where Nb is the number of 
backbone carbon-carbon bonds of length lc.. According to the Suter- 
Flory rotational isomeric state calculation for i-PP, C ,  4.0 at 473 K. 
SANS  measurement^:^ however, indicate that C,  = 6.2 for i-PP in the 
melt state. In order to compensate for this discrepancy in chain dimen- 
sions, the rotational state energies (or equivalently the temperature 
T = 286 K) was rescaled to obtain the experimental C,. Although the 
moments of the distribution can be computed in closed form, the single- 
chain structure functions cannot be computed conveniently for the 
rotational isomeric state model. Thus, a Monte Carlo simulation of a 
single chain was employed to obtain the six functions f iay (k ) .  

The six intermolecular radial distribution functions for 1-PP were then 
deduced from PRISM calculations using the single-chain simulation 

71 
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l l a ,  and the off-diagonal components are given el~ewhere.~'  It can be 
seen that the i-PP correlation functions are qualitatively similar to the 
idealized chain results in Figure 9. An interesting feature of the BB radial 
distribution function for the atomistically realistic model is that because 
of shielding effects, and the added constraints of the local chain architec- 
ture, gBB(r) approaches zero at a distance greater than the d, ,  = 3.9 A 
hard-core diameter. In other words, because of local steric constraints, 
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Figure 11. PRISM predictions for hard-core atomistic RIS models of polyolefins. (a) 
The three diagonal radial distribution functions of isotactic p~lypropylene.~'  (b) A com- 
parison of chain averaged site-site radial distribution functions at 473 K for N,, = 400 models 
of polyethylene, isotactic polypropylene, and syndiotactic p~lypropylene.~'  The characteris- 
tic ratio. C.. of the RIS models employed for PP are shown in parentheses. 
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the CH sites of different chains are restricted from coming into direct 
contact. 

The resulting x-ray scattering pattern of the i-PP melt was found to be 
in some disagreement with the wide-angle scattering measurements of 
Londano et al.72 in the region k = 1 A-’. This led Curro and c o - ~ o r k e r s ~ ~  
to introduce further realism into the single-chain structure by performing 
single-chain Monte Carlo simulations in which the internal rotational 
angles 4 were allowed to vary in a continuous manner. This additional 
realism in the local chain architecture leads to excellent agreement with 
scattering measurements on i-PP melts, as discussed el~ewhere.~’ 

A comparison at fixed liquid packing fraction of the chain-averaged 
carbon-carbon radial distribution function, gav(r), for polyethylene 
(C, 7), isotactic polypropylene (with two values of C,), and syndiotac- 
tic polypropylene (s-PP) are shown in Figure ll.52 The polymers i-PP and 
s-PP are regular multiple-site homopolymers of different stereochemistry 
and significantly different characteristic ratios were used in the calculation 
( C x z  10.5 for s-PP). The clear differences among all the systems 
demonstrates the sensitivity of local packing in polymer melts to mono- 
mer shape, stereochemistry or tacticity, and backbone stiffness. Finally, 
as discussed in depth elsewhere, the Z,ld =0.5 SFC model of section 
III.A.2 reproduces the structural variations quite well based on the 
effective aspect ratio mapping idea.” 

C. Thermodynamics 

Having determined the structure of the polymer liquid, it is in principle 
possible to compute most thermodynamic properties of interest .53* 

Whereas the structure or radial distribution functions at liquid density are 
primarily controlled by the repulsive part of the intersite potentials, 
thermodynamic quantities will also be sensitive to the attractive po- 
tentials. In the case of a one-component melt, thermodynamic quantities 
of interest include the pressure P, isothermal compressibility K ,  and the 
internal or  cohesive energy U. Since in general one theoretically knows 
g(r) only approximately, the thermodynamic properties derived from 
structure will be approximate. Moreover, integral equation theory leads 
to thermodynamically inconsistent results in the sense that the predictions 
depend on the particular thermodynamic route used to relate the 
thermodynamic quantity to the s t r u c t ~ r e . ~ ’ ~  

1. Equation of State 

Thermodynamic inconsistency is particularly apparent for the pressure of 
polymer fluids.67 There are at least three routes that relate the pressure to 
the structure. Perhaps the easiest method to implement is the so-called 
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compressibility route: 

P dP -- 
k,T - s,,o (3.9a) 

where p,,kBTK = s,,(O). The analog of the virial route of monatomic 
liquids for the pressure of a molecular liquid is the free energy charging 
formula. For hard-core potentials one can  rite^.^ 

(3.9b) 

where g ~ , ~ ) ( A d , , )  is the contact radial distribution function for a fluid 
composed of molecules with hard-core sites of diameter Ad,,; F and F, 
are the Helmholtz free energies of the fluid of interest and a corre- 
sponding ideal gas, respectively. In Eq. (3.9b) the hard-core diameter is 
turned on as the “charging parameter” A changes from 0 to 1 .  The 
pressure follows from differentiation of F with respect to volume. 

Yethiraj and c o - ~ o r k e r s ~ ~  calculated the hard-core contribution to the 
equation-of-state of polyethylene by various thermodynamic routes using 
PRISM theory. It can be seen from the results plotted in Figure 12 that 
very large differences are found between the compressibility and charging 
routes. Qualitatively similar results are seen for ethane and n - b ~ t a n e ; ~ ’  
however, the thermodynamic inconsistency appears to increase signifi- 
cantly with N. One contributing reason for this large, N-dependent 
thermodynamic inconsistency is traceable to the fact that RISM 
unlike the PY theory5 for atomic liquids, is not exact in the low-density 
limit. Both Eqs. (3.9a) and (3.9b) effectively integrate the structure of 
the fluid over the complete range of density. A route that uses only 
structural information at liquidlike density, where RISM theory is 
accurate, might produce better results. 

Based on an argument by P e r c ~ s , ~ ~  another route to the pressure was 
proposed by Dickman and Hall” making us of the density of sites in a 
nonuniform molecular liquid at a hard wall p, (O):  

= P w ( O ) ~ B ~  (3.9c) 

Yethiraj and Hall78 developed a “wall PRISM” theory to compute p , ( O ) .  
The wall PRISM theory prediction for hard sphere polyethylene is also 
shown in Figure 12. It can be seen that pressures intermediate between 
the charging and compressibility route predictions are found. 

Also plotted in Figure 12 is the predictions of a continuous space 
Flory-Huggins type of approach: the generalized Flory dimer (GFD) 
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Figure 12. The hard-sphere equation-of-state (d = 3.9 A) as a function of reduced fluid 
density computed6' for polyethylene at T = 430 K and N = 6429 by various thermodynamic 
routes: free energy (upper solid), compressibility (lower solid), wall (dashed), and GFD 
(short /long dash). The inset includes attractions by perturbation theory using the GFD 
curve as the reference system; the points represent experimental results.x3 

equation of state of Dickman et al.79 suitably modified by Yethiraj and 
co-workers to rotational isomeric state chains of overlapping sitesP7 
Monte Carlo studies79 have documented the accuracy of the GFD 
equation of state for chain molecule liquids at high densities. It can be 
seen from Figure 12 that the wall PRISM and GFD predictions for 
hard-core polyethylene chains are in reasonable accord at densities 
p,d3 -2  characteristic of polyethylene melts. It can be seen from the 
slopes of the curves, however, that the isothermal compressibility from 
wall PRISM calculations is somewhat higher than from the GFD model. 
Recently, density functional theory has been combined with PRISM 
theory by McCoy and co-workers'" as an alternative to wall-PRISM in 
computing the density profile of sites near a wall. This approach avoids 
the wall PRISM assumption of intramolecular chain ideality in the vicinity 
of the wall. Preliminary calculationsXo for the pressure by this approach 
are in close agreement with corresponding GFD calculations. Direct 
comparisons of PRISM predictions for the equation of state of hard-core 
n-alkane fluids with simulations have been recently carried out by 
Yethiraj :la and for the interchain structure by Dodd and Theodorou.x*b 

Although the intermolecular packing of a dense polymeric melt is 
generally believed to be controlled by the repulsive part of the potential, 
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attractions will have a strong influence on the equation of state. The 
conceptually and computationally simplest way to incorporate the effects 
of attractions on the pressure is through thermodynamic perturbation 
theory' about a hard-core reference system. For convenience we employ 
the Barker-Henderson'.'' version of perturbation theory in which the 
intersite Lennard-Jones potential u(r) is divided into a repulsive branch 
uu(r) and an attractive branch u,(r): 

u(r) = 4 ~ [ ( u / r ) ' ~  - (u/r>6] 

uo(r) = u(r) r 5 u 

= O  r > u  

u,(r) = 0 r d u  

=u(r) r > u  

The Helmholtz free energy can then be written to first order as 

(3.10) 

(3.11) 

where FHS and go(r) are the free energy and intermolecular radial 
distribution function of the corresponding hard core reference system. 
Equation (3.11) is written for a single-site monomer but is easily 
generalized to monomers consisting of multiple sites. The pressure is then 
found by differentiation of Eq. (3.11) with respect to volume. The 
optimum diameter d of the hard-core reference system is given by 

d = l :  (1 -exp[-u,(r)/k,T]}dr (3.12) 

Any of the four hard-core equation-of-state curves in Figure 12 could 
be used in conjunction with Eq. (3.11) to obtain the pressure of a 
polyethylene melt at any desired temperature. The method that appears 
to be the most accurate is to use the GFD equation of state for the 
reference system and PRISM theory for the structure g,(r) of the 
reference system. The results6' of this procedure are shown in the inset of 
Figure 12 along with experimental PVT data of Olabisi and Simha.s3 In 
calculating the polyethylene pressure curve, the hard-core diameter d was 
maintained at 3 .9A in order to be consistent with x-ray scattering 
m e a ~ u r e m e n t s ~ ~ ' ~ ~  on polyethylene at 430 K. 'The Lennard-Jones well 
depth parameter was then adjusted in order to f i t  the experimental data; 
this procedure yields E l k g  = 38.7 K,  which fixes u = 4.36 A according to 
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Eq. (3.12). It can be seen from the inset in Figure 12 that excellent 
agreement is obtained with experiment. However, this approach is not 
completely satisfying since PRISM theory is not used for the equation of 
state of the reference system. On the other hand, the simulation studies 
of Yethiraj and Hall have shown that the use of the PRISM theory go(r) 
leads to an accurate prediction of the attractive potential contribution to 
the pressure within a perturbative HTA f r a m e ~ o r k . ' ~  

Reasonable ab initio results have also been obtained for the thermal 
expansion coefficient and isothermal compressibility [g(k = O)] of Poly- 
ethylene melts?2367 The latter was computed using the experimental 
T-dependent density and the assumed dominance of soft repulsive forces. 
The resulting $0) was found to be roughly 20% larger than the 
experimental values, although excellent agreement was obtained for the 
relative temperature dependence5* over the entire experimental range of 

Finally, analytic predictions for the osmotic pressure of polymers in 
good and theta solvents can be derived based on the Gaussian thread 
model, PRISM theory, and the compressibility route.30 The qualitative 
form of the prediction for large N is54 pP m ( p ~ ~ ) ~ ,  which scales as p3  for 
theta solvents and p9'4  for good solvents. Remarkably, these power laws 
are in complete agreement with the predictions of scaling and field- 
theoretic approaches and also agree with experimental measurements in 
semidilute polymer ~ o l u t i o n s . ~ - ~  

T = 380-525 K. 

2. Melt Solubility Parameters 

The internal or cohesive energy density U is also a useful thermodynamic 
parameter for polymer melts. It is defined asx5 

where the integration is carried out over the attractive branch of the 
potential in Eq. (3.10). In first-order perturbation theory the radial 
distribution function is approximated by its reference hard-core melt 
value g:,(r) thereby yielding 

(3.13b) 

In the absence of correlations, or the random mixing limit, the radial 
distribution functions are all unity. In this "mean-field" limit the cohesive 
energy density reduces to U,, = m p m u  for the Lennard-Jones 2 3  
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potential. Note that the simple quadratic scaling of U with density is as 
expected for a mean field theory which accounts only for the number of 
(random) pairwise interactions. 

The melt solubility parameter 6 can be computed fromE5 

S = C U  (3.14) 

For small molecule liquids S can be measured directly from the heat of 
vaporization. For polymer melts the solubility parameter can only be 
indirectly estimated from solubility data in various grouE 
contribution tables?' or model-dependent fitting of PVT measurements. 

The cohesive energy density for polyethylene as a function of tempera- 
ture has been computed from Eq. (3.13b).52 In agreement with experi- 
ment, IUI was found to decrease nearly linearly with t e m p e r a t ~ r e . ~ ~  This 
trend arises from the fact that the correlation hole of polyethylene 
deepens as the temperature is increased due to the combined effects of 
decreased density, and an increase in the number of gauche states of the 
polyethylene (PE) chain backbone (see Fig. 4). The magnitude of the 
predicted solubility parameter is in good agreement with experimentally 
inferred values for polyethylene in the range 15-19 (J/cm3)", based on  
PVT mc:asurement~'~ and group  contribution^.^' 

The cohesive energy of isotactic polypropylene has also been calcu- 
lated from Eq. (3.13a) using the intermolecular structural information in 
Figure 11 for the hard-core system. The united atom Lennard-Jones 
potentials of Jorgensen and co-workers9" for CH,, CH, and CH, groups 
with u urn,, were employed, along with appropriate values for the CH, 
group well depth energy E = E~~ and relative values for the CH, and CH 
groups of 

Based on the Jorgensen  parameter^,^" the relative solubility parameter is 
predicteds2 to be S,,/8i.pp = 1.24. If as a simplifying approximation one 
sets A 1  = A, = 1, then C ~ , ~ / S , . ~ ,  = 1.26 is predi~ted.~ '  These predicted ratios 
are in good agreement with S,,/Si.pp = 1.20 inferred by Rodgers et al." 
from equation-of-state data for isotactic polypropylene. For the case of 
syndiotactic polypropylene one finds52 that a,,, /SS.,,, = 1.07 under the 
assumption A, = A, = 1. Thus, polypropylene is predicted to have a 
smaller solubility parameter than polyethylene because of differences in 
packing on local length scales (see Fig. l lb ) .  

Schweizer and c o - ~ o r k e r s ~ ~  have estimated the cohesive energy of a 
range of polymers of varying chain architecture using both the single-site 
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semiflexible chain model and the analytic Gaussian thread model. Model 
calculations of the reduced solubility parameter are shown in Figure 13. 
As discussed in Section II.B.2, for experimental applications a system- 
specific effective aspect ratio was employed to map the semiflexible chain 
model to a particular polymer of interest. As described in detail 
elsewhere:2 the relative solubility parameters computed with the SFC 
approach are in good agreement with the atomistic values quoted above 
for both polyethylene and the various tacticities of polypropylene. 
Moreover, predictions for many other hydrocarbon polymer melts have 
also been made and compared with experimental solubility param- 

Good agreement is found that provide a simple understand- 
ing of how polymer structure influences melt solubility parametess2 

The Gaussian thread model, in conjunction with a Yukawa form for 
the attractive interchain potential of spatial range a:  

eterS.87,88,91 

- r i a  e 
u(r)  = -&a ~ & > O  (3.16) r 

yields a simple analytic expression for the reduced solubility parameter. 
The result can be written in several alternative, but equivalent, forms52 

This form is plotted in Figure 13 for two experimentally relevant choicess2 
of the parameter d/2a7. The prediction of a direct connection between 
polymer density, aspect ratio [or packing length ( p , c ~ * ) - ’ ] ,  and spatial 
range of the attractive potential is intuitively reasonable. Equation (3.17) 
has been shown by Lohse to provide an excellent representation of 
experimentally deduced solubility parameters of polyolefin melts.y2 

As a cautionary remark, we note that significant quantitative differ- 
ences between the SFC and Gaussian thread model predictions are 
evident in Figure 13. These differences are not surprising, and reflect the 
poorer local packing of Gaussian threads relative to semiflexible chains. 
These differences also highlight the potential subtleties of the proposed 
mapping schemes, that is, the need to separately “calibrate” the different 
coarse-grained model parameters against experimental data or  atomistic 
PRISM  computation^.^^ 
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Figure 13. Reduced solubility parameter as a function of chain aspect ratio for the 

l ld  = (1.5 SFC model and the analytic Gaussian thread model?' Predictions based on two 
choices of polyethylene aspect ratio at 430 K are shown. The liquid density is determined by 
the calibration procedure discussed in Ref. 52. 

IV. ATHERMAL POLYMER BLENDS 

Mixtures of polymers, or blends, are of major scientific and materials 
engineering interest."-y5 Moreover, the phase behavior of high polymer 
blends is very subtle due to the enormous reduction of the ideal 
(combinatorial) entropy of mixing due to chain connectivity.' Athermal 
blends are mixtures of two or more polymer components for which the 
heat of mixing is zero. An example of such a blend is one in which all 
intermolecular site-site interactions are entirely repulsive hard core in 
nature. Although athermal blends do not exist in reality, their behavior is 
important from a theoretical point of view. Based on studies of atomic5." 
and small molecule liquids' the structure of one-component liquids at 
high density is believed to be primarily determined by the repulsive part 
of the potential. This suggests that a useful strategy for describing general 
polymer blend thermodynamics might be to treat the attractive interac- 
tions by a perturbation expansion about an athermal reference system. 
Thus the problem of determining the intermolecular packing in athermal 
polymer blends is a fundamental one and forms the basis of the simplest 
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conceivable general blend theory. In addition, the role of excess entropic 
effects on mixing, and possible athermal phase separation, are questions 
of basic statistical mechanical interest. 

The well-known mean-field incompressible Flory-Huggins theory' of 
polymer mixtures assumes random mixing of polymer repeat units. 
However, it has been demonstrated that the radial distribution functions 
g J r )  of polymer melts are sensitive to the details of the polymer 
architecture on short length scales. Hence, one expects that in polymer 
mixtures the radial distribution functions will likewise depend on the 
intramolecular structure of the components, and that the packing will not 
be random. Since by definition the heat of mixing is zero for an athermal 
blend, Flory-Huggins theory predicts athermal mixtures are ideal solu- 
tions that exhibit complete miscibility. 

In this section we examine athermal binary mixtures using PRISM 
theory. Tests of both the structural and thermodynamic predictions of 
PRISM theory with the PY closure against large-scale computer simula- 
tions are discussed in Section 1V.A. Atomistic level PRISM calculations 
are presented in Section IV.B, and the possibility of nonlocal entropy- 
driven phase separation is discussed in Section 1V.C at the SFC model 
level. Section 1V.D presents analytic predictions based on the idealized 
Gaussian thread model. The limitations of overly coarse-grained chain 
models for treating athermal polymer blends are briefly discussed. 

A. Comparison with Computer Simulations 

An important question is whether PRISM theory can predict the packing 
in athermal blends with the same good accuracy found for one-com- 
ponent melts. To address this question Stevenson and co-workersY6 
performed molecular dynamics simulations on binary, repulsive force 
blends of 50 unit chains at a liquidlike packing fraction of q = 0.465. The 
monomeric interactions were very similar to earlier one-component melt 
 simulation^^^ which served as benchmark tests of melt PRISM theory. 
Nonbonded pairs of sites (both on the same and different chains) were 
taken to interact via shifted, purely repulsive Lennard-Jones potentials. 
These repulsive potentials were adjusted so that the effective hard site 
diameters, obtained from Eq. (3.12), were d,, = 1.015 and d,, = 1.215 
for the chains of type A or B, respectively. Chain connectivity was 
maintained using an intramolecular FENE potentials1 between bonded 
sites on the same chain. The resulting chain model has nearly constant 
bond lengths that are nearly equal to the effective hard-core site 
diameter. 

The three intermolecular radial distribution functions gAA(r),  gAB(r), 
gBB(r) in the blend were obtained from the simulation as a function of the 
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concentration. Corrections were made for finite size effects in the 
simulation.'6 Likewise, the intramolecular structure factors fiAA(k) and 
bBB(k) were obtained from the simulation and used as input for PRISM 
calculations on the athermal blend. In the PRISM calculation the PY 
closure of Eq. (2.5a) was used for the same soft repulsive potentials as in 
the simulation. A comparison between the results from the molecular 
dynamics simulation and PRISM theory is shown in Figure 14 for the case 
of volume fraction of A chains 4 = 0.368. Although deviations are seen at 
small distances, overall the agreement is quite good and comparable to 
similar s t ~ d i e s ~ ' . ~ '  done earlier on one-component polymer melts (see 
Fig. 3).  Similar agreement was found at other blend  concentration^.^^ 

The simulation of Stevenson and co-workers allow a direct test of the 
random mixing approximation. Strictly speaking, at the structural level 
the random mixing approximation in its polymeric Flory-Huggins form ' 
implies that all the radial distribution functions in the mixture are 
identically unity, ga,(r) = 1. As can be seen from Figure 14 this is 
obviously a poor approximation. A less restrictive definition of random 
mixing might be that the packing is the same for both species in the 
blend; in other words all the g J r )  are the same. We can probe this 
approximation by defining an excess correlation function Ag(r) based on 
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A comparison between PRISM theorv and M D   simulation^^^ for the radial - 
distribution functions in an athermal blend of 50 unit chains. The composition was 
maintained at r$ = 0.368. The points are the simulations and the curves are the PRISM 
predictions. 
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the differences in radial distribution functions between species. 

This function quantifies the tendency for “pairing” or physical clustering 
of like species. Figure 15 depicts Ag(r) for the 4 = 0.368 case obtained 
from the simulation. Significant departures from random mixing, caused 
by local differences in monomer size, are evident at short length scales. 
Remarkably, PRISM theory is able to capture these subtle packing effects 
as seen by the solid line in Figure 15. 

Another important question regarding the structure of athermal blends 
is whether the single-chain conformation changes with composition. In 
the molecular dynamics simulations,y6 small changes (at most 10-15%) 
were observed in f iAA(k)  and in the mean-square end-to-end distance 
(R’) of the chains in the blend. However, such changes are barely within 
the statistical error of the simulation. The collective partial structure 
factors were also monitored in the simulation and no evidence for 
incipient phase separation was detected in this athermal mixture.96 

Benchmark Monte Carlo simulations of a different class of athermal 
polymer mixtures have recently been carried out by Weinhold et al.y7 An 
equimolar (4 = 0.5), constant-volume binary blend was considered. The 
polymers were modeled as semiflexible, tangent bead chains of equal 
degrees of polymerization, N ,  interacting via a purely hard-core potential 
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Figure 15. The nonrandom mixing Ag(r)  in an athermal blend of composition Cp = 

0.368. The points are the simulations and the curves are the PRISM predictions.y6 
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of the same diameter for all sites. The reduced fluid density was pmd3 = 

0.65 (77 0.34) representative of a concentrated solution. The only 
difference between the A and B species was the local chain bending 
energy, which controls the chain aspect ratio. A statistical segment length 
was defined as a = ( 6 R i / N ) ' ' ' ,  and an aspect ratio as r = a t d .  The A 
("flexible") chain aspect ratio was fixed at T,= 1.5, and the B ("stiff") 
chain aspect ratio was varied over the wide range of I-, = 1.7-4.2. Various 
model blends were studied for N = 20 with the stiffness asymmetry of 
each characterized by the variable 6 = 2(Ts - Tf)/(r, + T,). Besides pro- 
viding exact results to test PRISM theory for athermal blends, these 
studies were motivated by scientific questions related to the relevance of a 
purely entropic packing frustration mechanism for phase separation in 
chemically similar polymer blends such as the saturated po1yolefins.'"- lo" 

Here representative examples are given of the PRISM/simulation 
comparisons and the main conclusions are s ~ m r n a r i z e d . ~ ~  The PRISM 
calculations were carried out assuming conformational ideality,. and the 
required single-chain structure factor was computed using the discrete, 
tangent site Koyama model" adjusted such that it reproduced the radius 
of gyration of the chains in the one-component melt. To within the 
statistical errors of the simulations, no changes in single-chain conforma- 
tion on going from the melt to the equimolar mixture were detected. 

The agreement of PRISM theory with simulations for the three blend 
pair correlation functions, g,,(r) ,  g,,(r), and gf5 ( r ) ,  was found to be typical 
of prior studies of dense melts, that is, errors of roughly 10-20% close to 
contact, but much more accurate as r increases. More importantly, the 
relative form of the three g(r)'s, and their changes with increasing blend 
stiffness asymmetry, were accurately described by PRISM theoryP7 One 
simulation was carried out for N = 200 and 6 = 0.28. No loss of accuracy 
of PRISM for structural properties was found as N was increased from 20 
to 200. 

Blend thermodynamic properties were also computed. Comparisons of 
PRISM theory and simulations for the partial excess (interaction en- 
tropic) free energies of mixing per site, AF,,,,,..,. are listed in Table I for 
N = 20 and 200. The PRISM results are based on the free energy charging 
route expressions, which for C$ = are given byy7 

for the A species. The B-species expression is obtained by interchanging 
A and B labels in Eq. (4.2). Surprisingly good agreement between theory 
and simulation is obtained for all stiffness asymmetries and both values of 
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TABLE I 
Comparison of Theory and Simulation Values of Excess Partial Free Energy of Mixing 

Changes as Defined in Text9’ a 

Simulation Theory 

5 P P AF, P AF, P AF, P A F L  
0.024 - - -0.0063 0.0063 0.00003 
0.14 -0.022 0.020 -0.0175 0.0179 0.0004 
0.28 -0.032 0.031 -0.0276 0.0296 0.0017 
N = 200 -0.065 0.069 -0.0539 0.0549 0.0010 
0.41 -0.036 0.035 -0.0306 0.0337 0.0031 
0.53 -0.038 0.036 - - - 

”Theory results are computed based on free energy charging method. The statistical 
uncertainties of the simulation values is roughly &0.005. Subscripts s and f denote stiff and 
flexible components. The flexible statistical segment length, af, is fixed at 1.50 2 0.01 and 
the stiffness asymmetry variable is 5 = 2(a, - af) / (a,  + a,). P AF,,, is the total excess free 
energy of mixing predicted by PRISM theory; to within statistical uncertainty this quantity is 
found to be zero in the simulations for all cases shown. All results shown are for N = 20, 
except for the one N = 200 case. 

N .  Note that the stiff and flexible excess free energy of mixing are 
opposite signs, which implies that the flexible (stiff) chain is destablized 
(stabilized) upon transfer from the melt to the blend. Such behavior 
reflects local packing differences and equation-of-state  effect^^^^'"^ which 
cannot be described within an incompressible theory as often employed in 
polymer science.’ Note, however, the total net excess free energy was 
extremely small in all cases [even much smaller than the ideal entropy of 
mixing per segment = ~ ~ ‘ l n ( 2 ) l .  

Thus, for the short and moderately long chains studied the athermal 
stiffness blend behaves as a nearly ideal mixture in a thermodynamic sense 
even though there are significant differences in segmental packing among 
the different species consistent with the molecular dynamics (MD) 
simulations described above.’6 PRISM computations of an effective 
interaction (or “chi” in polymer science) parameter based on the free 
energy or compressibility route have also been shown to be in surprisingly 
good agreement with simulationy7 and are very small, thus supporting the 
above conclusions. 

We note that there are hints in Table I ,  and structural fluctuation 
quantities such as Ag(r) discussed eisewherer7 that as N or stiffness 
mismatch increase the excess free energy of mixing also increases and the 
blend is less stable. Thus, the possibility of entropy-driven phase sepa- 
ration due to packing frustration of dissimilar flexibility chains as N 
increases beyond 200 remains open based on the simulation studies of 
Ref. 97. 
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Summarizing, the major conclusion of this section is that PRISM 
theory provides an excellent description of the structure and (constant 
volume) free energy of mixing of high-density athermal polymer blends 
composed of the short and modest chain length molecules presently 
accessible to computer simulation. This has motivated the application of 
the theory to experimentally relevant situations such as long chain ( N  = 
103-104) and chemically realistic atomistic models. 

B. Multiple-Site Homopolymer Blends 

It was demonstrated in Section II1.B for one-component melts that subtle 
screening effects resulted from the packing of nonspherical monomers. It 
is natural to expect that similar screening effects would also be operable 
in athermal blends of vinyl polymers. In order to probe this aspect at a 
chemically realistic level, Rajasekaran and co-workers3’ studied an 
athermal mixture of polyethylene and isotactic polypropylene. The chains 
in this mixture were modeled as illustrated in Figure 7 with three sites (A, 
B. C) making up a polypropylene monomer, and a single D site 
representing the CH, group of polyethylene. Application of Eqs. (2.2)- 
(2.5) lead to a set of 10 coupled integral equations that were solved 
numerically using standard Picard iteration techniques. 

Assuming that the intramolecular structure of the chains in the 
athermal blend is independent of composition, then the elements of the 
4 X 4 h,,(k) intramolecular matrix for the blend are already available 
from the corTesponding one-component melt intramolecular structure func- 
tions. The RJk) for (Y, y = A ,  B, C were obtained from Monte Carlo 
simulations of a single, rotational isomeric state chain using the parame- 
terization of Suter and F10ry’~ discussed in Section 1II.B. Likewise, 
f i , , ( k )  was obtained from the RIS calculations of Honnell and co- 
workers for p ~ l y e t h y l e n e . ~ ~ ? ~ ~  

Figure 16 depicts the intermolecular packing in the athermal PE/i-PP 
blend for chains of 200 monomers at a volume fraction of polyethylene 
sites of cb = 0.50. Although there are 10 independent correlations. only 
the diagonal components are shown. The radial distributions in the blend 
are qualitatively similar to those in the one-component melt (see Fig. 11). 
However, as demonstrated elsewhere ;” the detailed structure is found to 
be significantly composition dependent. For example, the local peaks in 
the polyethylene gDD(r) increase monotonically in magnitude as more 
polypropylene is added to the mixture (by roughly 30% at = 0.1 
relative to the pure PE melt). This suggests a tendency of the poly- 
ethylene to cluster in the mixture as a result of unfavorable cross 
correlations between the PE and i-PP chains. Despite this clustering 
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Figure 16. The radial distribution functions32 for a blend of polyethylene and isotactic 
polypropylene (NPE = N,, = 200) at a volume fraction of polyethylene off = 0.5. The four 
diagonal correlations are shown. 

tendency, no thermodynamic evidence was found for macroscopic phase 
separation in the athermal mixture at any composition. 

From a knowledge of the radial distribution functions in the blend as a 
function of composition, one can obtain the various thermodynamic state 
functions by applying the analysis of Kirkwood and Buff.“” For the 
present case the following relationship for the entropy of mixing ASmi, 
can be derived3’ 

where q is the overall blend packing fraction and v is the volume of one 
of the sites (assumed to be all equal). If incompressibility ( K + O )  and 
random mixing [g,,(r) = 11 are enforced, then the continuous-space 
analog of the Flory-Huggins, or ideal, solution relationship is obtained3’ 

Calculations by Rajasekaran and c o - ~ o r k e r s ~ ~  of the entropy of mixing 



INTEGRAL EQUATION THEORIES OF POLYMER FLUIDS 49 

derivative for the PE/PP blend using Eq. (4.3) predict a smaller entropy 
stabilization of the mixture, by approximately a factor of 2, relative to 
ideal solution beha~ior .~’  Thus, excess entropic effects do destabilize this 
PE/i-PP blend relative to the ideal solution behavior, but no athermal 
phase separation is found even for this very structurally asymmetric case. 
Experimentally, an equimolar PE/PP mixture is immiscible for all 
accessible temperatures and values of N,,,,, far less than 200. Thus, 
explanation of the experimental behavior requires consideration of 
thermal effects (attractive forces) as discussed in Section V. 

It should be mentioned that Eq. (4.3) is only one of several possible 
thermodynamic routes to the entropy of mixing in the athermal blend. 
Another possible route is through the “charging formula” of Chandler’ 
used earlier in Eq. (3.Yb) for the one-component polymer melt. 

C. Semiflexible Blends and Entropy-Driven Phase Segregation 

Motivated by both scientific questions related to the origin of phase 
separation in saturated polyolefin  alloy^^^-^'^' and the basic statistical 
mechanical question of entropy-driven phase segregation, Singh and 
Schweizer’”’ have carried out a detailed numerical PRISM study of the 
structure and phase behavior of the binary athermal “stiffness” blend 
discussed in Section 1V.A. A wide range of chain aspect ratios of the 
tangent SFC chain, fluid density, blend composition, and ratio of A and B 
site diameters were investigated. Liquid-liquid spinodal phase separation 
is defined as when all the partial collective structures at zero wave vector, 
S,,.(k = 0), simultaneously diverge. This condition is precisely given as 

where CMM, =d,,.(O). For the cases of interest here NA = N B  = N ,  
pA = pB = ( 1  - 4 ) p .  and p is the total site number density of the 
binary blend. 

The possibility of entropy-driven phase separation in purely hard-core 
fluids has been of considerable recent interest experimentally, theoret- 
ically, and via computer simulations. Systems studied include binary 
mixtures of spheres (or colloids) of different diameters,lU3 mixtures of 
large colloidal spheres and flexible polymers,’“ mixtures of colloidal 
spheres and rods:(’5 and a polymer/small molecule solvent mixture under 
infinite dilution conditions (here an athermal conformational “coil-to- 
globule” transition can occur).’06 For the latter three problems, PRISM 
theory could be applied, but to the best of our knowledge has not. The 
first problem is an old one solved analytically using PY integral equation 
theory by Lebowitz and R o w l i n ~ o n . ’ ~ ~  N o  liquid-liquid phase separation 
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was found, that is, the hard sphere mixture is completely miscible. Recent 
simulations and experiments suggest this is not true for highly size- 
asymmetric and modifications of the atomic closures have been 
proposed to account for the observed phase separation.'" For the 
polymer problem, we are also using the site-site PY closure. However, 
entropy-driven phase separation, if it occurs, is associated with the 
difficulty of packing chains of different stiffness or bending rigidity. In 
analogy with liquid crystal systems,'09 one might expect phase separation 
if the "packing frustration" is sufficiently great (although for mixtures of 
rods and coils segregation into an isotropic and nematic phase generally 
occurs). Relevant variables for such an entropy-driven phenomenon 
would include the individual chain aspect ratios, overall packing fraction, 
and degree of polymerization. 

Here only a few of the highlights of the extensive study"' will be 
mentioned for the simplest case of equal A and B site hard-core 
diameters, and an equimolar mixture of chains of N sites each (4 = 3). 
The A chain aspect ratio is fixed at approximately 1.3, which is 
representative of a polymer such as p ~ l y e t h y l e n e . ~ ~  Thus, the structural 
asymmetry variable 5 = 2(f, - T,)/(I', + r,) < 0 for most experimental 
polyolefin mixtures since unbranched polyethylene generally has the 
largest aspect ratio of the saturated hydrocarbon  polymer^.^^,^'*'^^ Figure 
17 shows spinodal phase boundaries based on Eq. (4.5) for two reduced 
densities representative of a dense melt and concentrated solution (as 
studied by simulation) .97 There are several important features.'" 

1. No phase separation is found for a stiffness asymmetry variable less 
than roughly 0.4, or for low values of N and any value of stiffness 
mismatch (consistent with s i m ~ l a t i o n ) . ~ ~  Since experimentally one expects 
for hydrocarbon polymers that 8 < 0 (since polyethylene has a high aspect 
ratio), this result suggests that a purely entropy-driven mechanism cannot 
account for the facile tendency of polyolefins to demix. Moreover, for 
chain parameter values typical of most serniflexible polymers of interest, 
the excess entropic effects appear small and much weaker than enthalpy 
related considerations associated with local packing differences between 
species (see Section V). 

2. Phase separation can occur at large enough N under the appropriate 
conditions. It seems clear that since large N is required, the predicted 
phase separation is driven by spatially long range, or nonlocal, aspects of 
polymer connectivity and excluded volume interactions. Thus, nonlocal 
entropy-driven phase segregation requires a large enough N and sufficient 
absolute stiffness and aspect ratio mismatch of the polymer backbones. 
This deduction seems natural in that packing frustration is created locally 
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Figure 17. Athermal spinodal phase diagram obtained using PRISM theory”’” and the 

compressibility route for two reduced fluid densities (d  = o) and a flexible chain aspect ratio 
of 1.3. The structural asymmetry variable 5 = 2(r, - rA)/(rB + rA). 

and then propagated to macomolecular length scales via a backbone 
stiffness dependent chain connectivity mechanism. This scenario is further 
reinforced by the fact that PRISM theory studies to date have found no 
athermal phase separation for highly flexible chain models such as 
Gaussian or freely jointed models2’-*’ (see also Section IV.D), which lack 
completely the local rodlike stiffness on length scales comparable and 
shorter than the chain persistence length. 

3. The effect of fluid density is relatively weak, but phase separation is 
enhanceld at higher density consistent with intuition. 

A structural interpretation of the predicted nonlocal entropy-driven 
phase separation can be deduced by examining the spatially resolved pair 
correlation function measure of incompatibility or clustering, Ag(r)  
defined in Eq. (4.1). Figure 18a shows this function for the case of fixed 
chain aspect ratios and several values of N and fluid packing fraction. As 
the chains become longer, local clustering of like segments is enhanced 
but tends to “saturate” at large N .  However, the growth of a much larger 
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Figure 18. Intermolecular pairing function in the equimolar athermal stiffness blend.""' 

Except as explicitly noted ail curves are for the melt like packing fraction of 0.5. (a) Results 
for fixed aspect ratio asymmetry of y = To/TA = 1.49 and various values of N .  (h )  
Dependence on aspect ratio asymmetry for fixed N = 100. From top to bottom the curves 
correspond to y = 2.319 (spinodal boundary), 2.199, 1.979, 1.734, 1.343, and 1.219. 
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amplitucle and longer spatial range component is dramatic. It coincides 
with increasingly large long-wavelength concentration fluctuations and 
ultimately spinodal phase separation. This N-dependent correlation 
feature is associated with the chain connectivity and inpenetrability on 
intermediate “correlation hole” length scales, 

The dependence of Ag(r) on chain stiffness mismatch at fixed N = 100 
is shown in Figure 1%. Again, local segregation increases with stiffness 
mismatch but tends to saturate. However, nonlocal segregation continues 
to grow in both amplitude and range, ultimately resulting in phase 
separation. The latter behavior is particularly striking since at fixed N the 
size of the polymers, and hence the spatial range the correlation hole 
associated with meltlike density fluctuations, is nearly fixed. This plot also 
illustrates an intriguing empirical observation that the contact value 
Ag(r = d ) tends to acquire a common critical value at the spinodal phase 
boundary (roughly 0.1 in the cases of Fig. 18), which is nearly in- 
dependent of how the phase transition is driven (increasing N at fixed 
y = T,/r,, or increasing y at fixed N).’”’ 

The detailed nature of single-phase blend correlations, effective 
interaction parameters, and the entropy-driven phase separation phenom- 
enon have been found to be sensitive to system-specific factors such as 
composition, differences in A and B site diameter, density, and local 
architectural details.’’’ However, the basic conclusions summarized above 
seem qualitatively general. 

A limited number of numerical studies have been carried out using the 
free energy charging approach to blend thermodynamics instead of the 
compressibility route described above.“” In the miscible region, quantita- 
tive differences in the excess free energy of mixing, or interaction 
parameter, have been found, but these differences are generally no more 
than a factor of 2 or 3. More work is required to establish the severity of 
the thermodynamic inconsistency problem for this athermal stiffness 
blend system. Another caveat is that it is well known that PRISM does 
not properly incorporate “nematiclike” orientational correlations in the 
one phase fluid.8 ’’) ‘ O  This should represent a technical limitation to 
describing liquid-liquid phase separation, which becomes more severe as 
the chain aspect ratios increase. Description of isotropic-nematic phase 
separation is not possible. However, for the experimental applications to 
conformationally flexible polyolefins and polydienes of current interest, 
strong nematic correlations seem improbable. 

D. Analytic Gaussian Thread Model 

PRISM tlheory for the athermal stiffness asymmetric blend model de- 
scribed in Section 1V.C can be analytically solved29 30 in the idealized 
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Gaussian thread limit for N + x .  For many physical problems (e.g., 
polymer solutions and melts, liquid-vapor equilibria, and thermal poly- 
mer blends and block copolymers), the Gaussian thread model has been 
shown to be reliable in the sense that it is qualitatively consistent with 
many aspects of the behavior predicted by numerical PRISM for more 
realistic semiflexible, nonzero thickness chain models. However, there 
are classes of physical problems where this is not the case. The athermal 
stiffness blend in certain regions of parameter space is one case, both in 
the bulk'"" and near surfaces."" Nevertheless, even for this problem the 
thread model does correctly capture certain aspects, and when it does fail 
this provides considerable insight into the key factors that control the 
behavior of real polymer systems."' 

Employing the simplified Gaussian forms of Eq. (3.1), and enforcing 
the three pointlike core conditions within the PY closure approximation 
[g , , , (r  = 0) = 01, results in three nonlinear transcendental equations for 
the three direct correlation parameters C,,,. In the long-chain limit, the 
Gaussian chain structure factors take on a perfectly self-similar form: 
d,,,(k) = 12(kc~,,,)-~, and no large k crossover to locally rigid behavior, 
&(k) 0~ (k( , ) - ' ,  occurs. This mathematical feature allows an exact analytic 
solution that has a scaling 

where r = crA l d  and y = uB luA is the "structural or conformational" 
asymmetry variable. The perfect scaling relations among the blend 
composition-dependent CMM, are a consequence of the self-similar 
intrachain correlations and the PY closure treatment of the (pointlike) 
excluded volume constraints. 

Equation (4.6) predicts that the repulsive effective potential between 
segments of like species, -kBTC,,, is larger in the blend for the 
conformationally stiffer chain than the more flexible one. This result is in 
accord with physical intuition and is mathematically required to satisfy 
the local hard-core (point) exclusion constraint. Moreover, the repulsive 
pseudopotential between the more flexible (stiffer) species is predicted to 
increase (decrease) upon transfer from a one-component melt to the 
blend environment. This trend is intuitively sensible, consistent with the 
signs of the species-dependent effective chi parameters derived 
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elsewhere,'"' and agrees with numerical SFC PRISM calculations and 
Monte Carlo simulations of the partial excess free energies of mixing and 
effective chi  parameter^.'^ 

The thread model is predicted to be miscible under all conditions due 
to the perfect scaling relations of Eq. (4.6). Although this complete 
miscibility conclusion is in agreement with numerical SFC PRISM for low 
aspect ratio chains (those best described by a Gaussian model), it misses 
the entropy-driven phase separation phenomenon found numerically for 
sufficiently stiff polymers.'"" This point emphasizes the limitations of the 
thread model. It ignores the consequences of local chain rigidity on 
packing, which appears to be central to the athermal phase segregation 
phenomenon. Another example of the limitations of the Gaussian thread 
model is its prediction29230 of interchain random mixing or conformal 
solution behavior, corresponding to g M M , ( r )  = gerf(r ;  +). Again, this is a 
consequence of the (assumed) perfectly self-similar Gaussian single 
polymer structure and the d + 0 idealization. In reality, there are always 
differences in the gMMl ( I )  functions due to local, nonuniversal breaking of 
the self-similar chain correlations. 

Finally, field theoretic approachesy9 have recently predicted athermal 
phase separation driven by nonlocal-entropic considerations for incom- 
pressible blends of Gaussian thread polymers. This prediction is at odds 
with PRISM theory in the thread limit. However, for the effective chi 
parameter PRISM theory has been shown'"" to be equivalent to the field 
theory if the free energy route is employed in conjunction with the 
extremely simple RPA closure (not PY). The RPA closure, CMM,(r) = 

-pu,,,(r) for  all r ,  is known to be very poor for repulsive force systems 
and violates the hard-core impenetrability condition. Thus, the field- 
theoretic prediction has been suggested to be a consequence of the 
combined use of a long-wavelength incompressibility approximation in 
conjunction with a RPA closure.'" 

V. THERMAL EFFECTS IN POLYMER BLENDS: 
PERTURBATION APPROACH 

In reality, polymer mixtures are not athermal and attractive interactions 
can play a crucial role in determining their miscibility and thermodynamic 

This fact is evident in the mean-field Flory-Huggins properties. 
theory where phase separation and the interaction parameter are entirely 
of an enthalpic origin. For a binary blend of A and B single-site chains 
composed of N repeat units, the free energy of mixing per segment is 

1.93-95 
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given in the incompressible Flory theory as1 

(5.la) 

where 
version is of an extremely simple, purely energetic mean-field form 

+ +B = 1, and the interaction, or  chi, parameter in its off-lattice 

(5.1b) 

Here uMM,(r )  are the (generally attractive) tail potentials between species 
M and M‘. The spinodal instability corresponds to a vanishing of the 
second compositional derivative of the free energy of mixing yielding the 
condition 

where 4 = 
phase separation temperature of 

and NA = NB = N .  This implies a liquid-liquid spinodal 

The critical composition is 4A = $ J ~  = 
The two prime predictions of Flory theory are as follows: (i) T,  cx N 

due to the nearly complete loss of ideal entropy of mixing due to chain 
connectivity constraints. Hence, it is correctly predicted to be generally 
very difficult to create a miscible polymer (ii) Immiscibility is 
promoted as the A and B monomers become more chemically distinct as 
quantified by their intermolecular tail potentials (e.g., London dispersion 
interactions). 

Equation (5.1) includes only the ideal, combinatorial entropy of 
mixing and the simplest conceivable “regular solution” type estimate of 
the enthalpy of mixing based on completely random mixing of monomers: 
g M M , ( r )  = 1 in the liquid state language; ,yo is referred to as the “bare” chi 
parameter since it ignores all aspects of polymer architecture and 
interchain nonrandom correlations. For these reasons, the model blend 
for which Eq. (5.1) is thought to be most appropriate for is an interaction 
and structurally symmetric polymer mixture. The latter is defined such 
that the only difference between A and B chains is a uAB(r) tail potential, 
which favors phase separation at low temperatures. The closest real 
system to this idealized mixture is an isotopic blend, where the A and B 

by symmetry. 
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chains are hydrogenated and deuterated versions of the same polymer.“’ 
The symmetric model has played a central role in theoretical and 
simulation studies due to its great simplicity from a chemical viewpoint.”* 

In real systems, nonrandom mixing effects, potentially caused by local 
polymer architecture and interchain forces, can have profound conse- 
quences on how intermolecular attractive potentials influence miscibility. 
Such nonideal effects can lead to large corrections, of both excess 
entropic and enthalpic origin, to the mean-field Flory-Huggins theory. 
As discussed in Section IV, for flexible chain blends of prime experimen- 
tal interest the excess entropic contribution seems very small. Thus, 
attractive interactions, or enthalpy of mixing effects, are expected to 
often play a dominant role in determining blend miscibility. In this 
section we examine these enthalpic effects within the context of thermo- 
dynamic pertubation theory for atomistic, semiflexible, and Gaussian 
thread models. In addition, the validity of a Hildebrand-like molecular 
solubility parameter approach based on pure component properties is 
examined. 

A. Thermodynamic Perturbation Theory 

For dense. nonpolar polymers the intersite interactions are of the van der 
Waals type, and one anticipates that the attractive branch of the potential 
may exert little influence on interchain packing. Although obviously true 
if the tail potentials are weak relative to k,T,  such “repulsive force 
~creening’’~’~’  may also be operative in polymer mixtures for several 
reasons discussed below. Although there will undoubtably be errors made 
by such a simplification, it represents a conceptually and computationally 
convenient starting point. In such a thermodynamic perturbation, or 
high-temperature approximation (HTA), approach the polymer liquid 
structure is assumed to be determined solely by an appropriately con- 
structed repulsive reference system. 

The starting point is the reduced Helmholtz free energy of the blend in 
the standard “charging parameters” formx 

where the attractive branch of the potential huay(r) is gradually turned on 
as the charging parameter A varies from 0 to 1; Fn is the free energy of the 
corresponding athermal, or reference repulsive force, system and may 
depend on temperature implicitly through the density, single-chain 
conformation, and/or effective hard core diameter. Equation (5 .3)  
ignores single-chain intramolecular contributions associated with the 
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attractive branch of the potentials. This generally represents an additional 
approximation, bur within the context of the conformational ideality 
simplification such contributions would only contribute terms linear in 
polymer concentration and blend density. Such terms then cancel our in 
the free energy of mixing relevant to blend mixing thermodynamics. Since 
all PRISM work on blend thermodynamics to date has employed this 
conformational ideality assumption, Eq. (5.3) is appropriate. Future 
work based on the self-consistent formulation of PRISM discussed in 
Section VIII needs to be done in order to investigate the corrections to 
blend thermodynamics due to nonideal conformational effects (e.g., 
changes in polymer structure on going from the melt to blend, or mixture 
composition-dependent conformational changes). 

Within the HTA scheme, the liquid structure of the mixture is 
approximated by the structure of the athermal system, that is, g: , ( r )=  
g&,(r ) .  Thus to first order, Eq. (5.3) can be approximated as 

(5.4) 

Such a HTA might be expected to be particularly accurate for polymers 
since the critical temperature grows without bound as N increases. Thus, 
the literal perturbative condition that Puay(r)  << 1 might be expected to 
hold in the one-phase region for long chains. Although this argument is 
sound in principle, in practice the experimentally accessible temperatures 
are restricted to T = 200-500 K so such a weak coupling condition will 
not necessarily be valid for laboratory blends for which the demixing 
transition is measurable. 

At constant pressure P, the Gibbs free energy of mixing A G m i x  of the 
blend relative to the pure components can be expressed as 

AGmix  = AF,,, + P AV,,, (5.5) 

where AVmi, is the volume change of mixing. In first-order perturbation 
theory, the Helmholtz free energy of the reference athermal system is 
entirely due to the entropy of mixing, that is, AF;,, = -T AS,,,. Thus, 
from a knowledge of the structure of the athermal reference blend, one 
can calculate the free energy of mixing and phase behavior of the general 
blend. Any theory based on Eqs. (5.4) and (5.5) is expected to yield 
classical critical exponents. 

Incompressible Flory mean-field theory' is recovered from Eqs. (5.4) 
and (5.5) if one assumes the following: (i) no excess volume of mixing; 
(ii) a blend composition-independent total packing fraction; (iii) the 
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athermal reference system is an ideal solution, that is, zero excess entropy 
of mixing; and (iv) literal random mixing, corresponding to g M M e ( r )  = 1. 

In the PRISM studies carried out to date, simplification (i) has been 
invoked. An effective interaction, or chi parameter, can be defined in the 
usual manner as the second derivative of the excess free energy of mixing: 

[ - T AS:,: + AH,,,,x] 
1 d 2  

2 a42 
--__ - - 

where the third line defines excess entropic and enthalpic interaction 
parameters. Spinodal phase boundaries are determinable from this 
quantity. 

B. Phase Behavior of Atomistic Models 

Rajasekaran and c o - ~ o r k e r s ~ ~  applied Eq. (5.4) to the PE/i-PP blend 
using the 10 radial distribution functions determined from the athermal 
mixture as discussed in Section 1V.B. For this case Eq. (5.5) can be 
written in the form 

with an enthalpic interaction parameter x,< defined implicitly in terms of 
the heat of mixing. Alternative definitions of an effective chi parameter, 
such as Eq. (5.6) are equally valid since as a matter of principle a single 
interaction parameter cannot completely characterize the nonideal as- 
pects of a compressible binary mixture. For purposes of computing the 
spinodal phase boundary, the precise definition of a homogeneous phase 
interaction parameter is irrelevant. For the PE/i-PP blend, xH can be 
written in the form 

(5.8a) 

with the various contributions to the heat of mixing taking the form 

(5.8b) 
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(5 .8~)  

where the arguments of the relevant functions have been suppressed. In 
the literal random mixing limit, in which all the radial distribution 
functions are unity, Eqs. (5.8) reduce to the continuum analog of the 
Flory-Huggins “bare” chi parameter: 

where the A’s are ratios of attractive well depth parameters as defined in 
Eq. (3.15), and u and E are the Lennard-Jones parameters for interac- 
tions between a pair of methylene sites. 

Using Eq. (4.3) for the second derivative of the entropy of mixing 
together with Eqs. (5.8) for the heat of mixing permits the evaluation of 
the Gibbs free energy of mixing as a function of volume fraction 4 of 
polyethylene. In their application to the PE/i-PP blend, Rajasekaran and 
c o - ~ o r k e r s ~ ~  approximated the volume change of mixing as zero. This is 
equivalent to approximating the partial molar volumes in the mixture by 
the pure component molar volumes. It should be emphasized that making 
the assumption that AV,,, = 0 does not neglect the effect of density 
fluctuations (or equation-of-state effects), which are still present in the 
free energy of mixing through the composition dependence of the packing 
fraction ~(4). If the polarizability ratios are estimated from group 
additivity tablesP6 or from Jorgensen’s potential functions9” for alkanes, 
the heat of mixing for PE/i-PP is found to be positive. Furthermore the 
critical temperatures found from PRISM theory32 are much higher than 
the corresponding Flory-Huggins estimates. This can be seen from the 
spinodal curves plotted in Figure 19 obtained using Small’s estimateX6 for 
A,  and A,. The critical temperature for this mixture is predicted by 
PRISM theory to be approximately 11 times larger than from the 
corresponding mean-field Flory value. This is in qualitative accordance 
with experimental observations indicating a high degree of incompatibility 
between polyethylene and polypropylene. Thus, one concludes that local 
nonrandom packing effects, induced by local structural asymmetries in 
the monomeric structure of PE and i-PP, lead to gross (primarily 
enthalpic) destabilization of the blend. 

In the case of polyolefin chains one expects the site polarizability 
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Figure 19. The spinodal curve calculatediZ using PRISM theory for a blend of 
polyethylene and isotactic polypropylene (NPE = N , ,  = 200). The ratios A,  and A, were 
estimated from the group contribution tables of Small.'" The ordinate is a reduced 
temperature defined as T* = k,T/e  where F is the united atom, Lennard-Jones parameter 
for a pair of methylene sites. 

increases with the number of hydrogens present. For example, the 
polarizability of CH, is larger than for a CH group. Thus, in terms of Eq. 
(3.15) A, > 1 and A2 < 1 for polyolefins. It is interesting to observe that if 
A,  and A, are switched [keeping the bare Flory-Huggins chi parameter in 
Eq. (5.9) unchanged], then PRISM theory predicts a negative heat of 
mixing and a miscibility for this hypothetical PE/i-PP blend. Such an 
intriguing possibility of "compensation" of the demixing consequences of 
structural and interaction potential differences between species was first 
discovered by Singh and Schweizer"3 as described in the next section. 

Finally, Honey~u t t ' ' ~  has applied blend PRISM theory at an atomistic 
RIS model level to study the effect of tacticity (stereochemical differ- 
ences) on the phase behavior of a commercially important binary polymer 
mixture. 'Tacticity is found to result in significant changes of the computed 
spinodal boundaries, which serves to again emphasize the importance of 
monomer structure and local packing on the free energy of mixing. 

C. Miscibility of Semiflexible Chain Models 

The thermodynamic behavior of binary blends of the semiflexible chain 
model (fL, = d/2), discussed in Sections III.A.2 and IV.C, have been 
thoroughly investigated numerically using PRISM theory within the HTA 
framework .l 13, l 5  Calculations have focused on the experimentally rele- 



62 K. S. SCHWEIZER AND J .  G .  CURRO 

vant range of chain aspect ratios (r = a / d  = 0.8-1.4) for polyolefins, 
polydienes, and other flexible polymers. The mismatch of Lennard-Jones- 
like attractions (r > d )  

(5.10) 

is characterized by a monomer-averaged well depth ratio parameter 
A = ( E ~ ~ / E ~ ~ ) ” *  (typically in the range 0.9-1.1). In the spirit of con- 
structing a minimalist model, the Berthelot geometric combining law is 
adopted for the AB cross term, and a meltlike reduced density of 
p d 3  = 1.375 is employed. The pure components are taken to have the 
identical reduced melt densities and zero volume change upon mixing is 
assumed. Experiments” on polyolefins support the latter behavior, and 
the consequences of the former simplifications have been d isc~ssed .~’ .”~  

A primary goal is to investigate the combined influences of conforma- 
tional asymmetry (characterized by y = rB /rA)  and interaction or chemi- 
cal asymmetry (characterized by A) on blend miscibility as conveniently 
quantified by the effective chi parameter of Eq. (5.6). Investigating the 
validity of regular solution, or Hildebrand, approachess5 is also of interest 
since it has been recently suggested” to work surprisingly well for 
hydrocarbon polymer alloys based on experimental studies of polyolefin 
blends. For simplicity, we focus here on equimolar mixtures (+ = +), 
although the blend composition-dependence of the effective chi parame- 
ter is found to be very weak under the conditions of the calculations 
stated above.’I5 

As argued in Section IV and e l s e ~ h e r e , 6 ~ ~ ’ ~ ~ ~ ’ ’ ~  the excess entropic 
contribution to the chi parameter appears to be small in an absolute sense 
for experimentally relevant chain lengths, aspect ratios, and conforma- 

have esti- tional asymmetries. Moreover, Singh and Schweizer 
mated (based on the SFC model blend) that the enthalpic contribution to 
the chi parameter xB, is generally much larger (1-3 orders of magnitude) 
than the excess entropic contribution x, in Eq. (5.6). Thus, only the 
enthalpic contribution, defined as the second term in Eq. (5.6), is 
considered here. It is instructive to express xB in terms of two distinct 
contributions: 

69,100,1 15 

where the second term is implicitly defined. Incompressible Flory or  
random mixing theory is recovered if a literal mean-field approximation 
is invoked, that is, g M M r ( r )  = 1, resulting in a “bare” ,yo = ( 1 0 ~ / 9 )  x 
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pd3P&,,(h- 1)'. The first term in Eq. (5.11) includes nonrandom 
packing corrections and arises from taking compositional derivatives only 
on the explicit factors pApB in Eq. (5.6). The second term describes 
enthalpic contributions associated with composition-dependent changes in 
local (athermal) blend structure. Although the latter are found to be small 
in absolute sense, they are significant in a polymer blend since miscibility 
is so difficult to achieve ( x N  = 2  at the critical point). The precise 
magnitude and direction of the local structural changes are nonuniversal, 
but there is a general tendency for clustering of like species that increases 
as the mismatch of the A and B polymer aspect ratios grows. We note in 
passing that the xe of Eq. (5.6) appears to generally be in excellent 
agreement with the direct enthalpy of mixing definition implicit in Eq. 
(5 .7) ,  that is, xH = AH,,,,x/4(l - 4). 

In Figure 20 representative results for the dependence of the thermal 
chi parameter xB on chain aspect ratios and the energetic asymmetry 
variable are presented.' l 3  Incompressible Flory theory would predict a 

. .  
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Figure 20. Blend (solid lines) and Hildebrand (dashed lines) effective chi parameters in 
units of the reduced thermal energy'13 computed within the HTA scheme. Results are 
shown as a function of the chemical asymmetry variable for four cases of structural (aspect 
ratio) mismatch. The symbols attached to the curves are guides to the eye for identifying the 
various cases. The horizontal arrows label the value of the bare interaction parameter for 
A = 0 . 9  and 1.1. 
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parabola centered about A = 1 and xB = 0. (Also shown are predictions 
based on the melt solubility parameter approach, which are discussed in 
the next section.) The major predicted trends for xB, which all have 
major implications for understanding recent experiments on hydrocarbon 
blends that do not conform to simple mean-field t h e ~ r y : ’ ~ ~ ~ , ” ~  are as 
follows: 

1. xB is a nonmonotonic, nonaddirive function of the conformational 
and energetic asymmetry variables. A minimum chi parameter, or “most 
miscible state,” occurs for an optimal value of chemical asymmetry. 

2. xB is relatively large (compared to critical value of 2 / N  = 0.002 for 
present calculations) and positive (unfavorable to mixing) when the 
structural and energetic asymmetries “reinforce,” that is, if y > 1, then 
A > 1. This situation corresponds to the common experimental situation 
for polyolefins where the higher aspect ratio polymer (less branched) is 
characterized by stronger (more attractive) van der Waals interactions. In 
the “reinforcement” regime the positive chi parameter increases strongly 
as y increases, and decreases as the mean blend aspect ratio increases at  
fixed conformational asymmetry. 

3. Negative values of xB can occur when the conformational and 
energetic asymmetries are sufficiently large and if the system is in a 
“compensation” regime defined as y > 1 and A < 1 or vice versa. From 
the perspective of Flory or  regular solution theory, this is a surprising and 
unanticipated result for nonpolar polymer blends. The system behaves as 
if there were a specific AB attraction that favors AB contacts, although 
no such bare energetic driving force has been included in the calculation. 
This result suggests novel strategies for achieving miscibility of hydro- 
carbon polymers of significantly different monomer structures, and may 
provide a basis for understanding recent “anomalous” experimental 
observations of such facile mixing of special hydrocarbons.’’ 

4. Complex non-mean-field T dependences of xB may occur (fT-’) 
due to polymer-specific thermal variations of chain aspect ratios. Since PE 
is of order unity at typical experimental temperatures, the predicted 
absolute magnitudes of xB are consistent with experimental measure- 
ments for most hydrocarbon  blend^.^^.''^ 

The origin of the rich predictions for xB is the two terms in Eq. (5.11). 
The leading exchange energy type of contribution is dominant in the 
asymmetry reinforcement parameter regime. However, near or in the 
“compensation” regime, the second term in Eq. (5.11) can become 
negative and dominant over the first (positive) contribution. Thus, the 
physical origin of a xB < 0 is the composition-dependent changes in blend 
packing . I  ’ 3 9 1  I s  
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One might ask whether a useful analytic theory at the thread model 
level might be constructed based on the PRISMIHTA framework, the 
free energy route, and the results of Section 1V.D. The answer is no 
because of the unrealistic random structural mixing prediction, g,,, ( r )  = 

gefr(r; 4), of the athermal thread blend model, which is inadequate for 
capturing the consequences of conformational asymmetry on the blend 
enthalpy of mixing. 

The influence of several physical features on the predictions of the 
PRISMIHTA theory of blends and the simplified SFC and Berthelot 
models of polymer structure and interactions need to be investigated. 
These include (i) the effect of atomistic-level structure features such as 
explicit chain branching, (ii) mixing volume changes and composition- 
dependent blend packing fraction, (iii) nonideal conformational perturba- 
tions, and (iv) possible T-dependent modifications of local packing 
(beyond HTA). 

Points (iii) and (iv) have begun to be addressed within the context of 
the simplest “symmetric” blend model as discussed e l s e ~ h e r e ’ ~ ’ - ’ ~ ~  and 
in Sections VIII and VI, respectively. Some aspects of point (ii) has been 
examined elsewhere.”.’” Point (i) has been addressed for the PEIPP 
blend discussed in Section V.B above. Based on the proposed mappings of 
real structures to the effective SFC model:’ and the preaveraging of the 
site-site Lennard-Jones well depth parameters, we have found”’ that the 
atomistic and coarse-grained theories predict thermal chi parameters that 
differ by at most a factor of 2. The generality of this encouraging level of 
agreement is unknown at present, and we certainly expect there will be 
systems for which the coarse-grained SFC approach will be poor. 
However, systematic and detailed applications of the minimalist SFC 
model approach have been recently carried out for over 50 polyolefin 
blends and compared against experiments.”’ The agreement between the 
complicated non-mean-field experimental behavior and the coarse- 
grained PRISMIHTA theory is very good, and we believe establishes it 
as a generally reliable zeroth-order basis for understanding and predicting 
miscibility of polyolefin alloys. The cases not well treated primarily 
involve particular homopolymer/ homopolymer blends with small positive 
chi parameters.lIs For these cases subtle packing effects associated with 
the nonspherical monomer structure may become dominant. 

D. Molecular Solubility Parameter Theory 

A second part of the study of Singh and Schweizerll”.”s described in 
Section V.C was to investigate the validity of a solubility parameter 
approach to polymer blend miscibility. Solubility parameter, or Hilde- 
brand, theory” is potentially extremely useful from a practical viewpoint 
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since it expresses (by assumption) blend properties solely in terms of the 
pure one-component liquid properties. From a fundamental theoretical 
perspective, it is an interesting question to ask how much of the mixture 
thermodynamic (and structural) behavior is “foretold” in the pure melt 
systems? 

The additional approximations required to obtain a solubility theory 
from Eq. (5.11) are well k n o ~ n . ~ ’ ~ ~ ~  The diagonal M = M’ contributions 
to xB are computed using the pure one-component melt radial distribution 
functions gMM(r) =gM,,,elt(r). The AB cross term is approximated by a 
geometric combining law involving the pure component diagonal terms 

(5.12) 

Note that such an approximation is more severe, and does not have the 
same theoretical basis, as the well depth parameter Berthelot analog of 
F~~ = ( E B B & A A ) i ’ 2 .  Under the above conditions, the second term in Eq. 
(5.11) vanishes, and the first term reduces to Hildebrand form, denoted 
here as xh, and given by 

P 
x h  - (5.13a) 

(5.13b) 

In Eq. (5.13b) pure component melt cohesive energy parameters have 
been defined. Note that xh is rigorously blend composition-independent 
and can never be negative. However, subtle, nonadditive competitions 
between conformational and energetic asymmetries are captured since 
local chain architecture enters via its influence on radial distributions.52,6y 

Representative results based on Eq. (5.12) are shown in Figure 20. In 
the asymmetry “reinforcement” regime (characteristic of most polyolefin 
blends), there is remarkable agreement between xh and xB, both with 
regard to the general shape of the curves and the absolute magnitudes. 
The level of agreement between xh and xB tends to improve as the aspect 
ratio mismatch decreases and/or the mean aspect ratio increases. How- 
ever, significant differences occur as the “compensation” regime is 
approached and/or entered, and xh can never be less than zero. The 
“negative” deviation case (xB < xh) are generally predicted to be more 
dramatic. 
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and our theoretical results 
suggest the solubility parameter approach is very valuable, at least for 
hydrocarbon polymer blends. This has motivated the derivation and 
application by Schweizer and Singh of an analytic molecular solubility 
parameter PRISM theory at the level of the Gaussian thread model.69 
The thermal chi parameter is given by Eq. (5.13) where the melt cohesive 
energy parameter of species M, a,, are given by Eq. (3.17). The analytic 
thread predictions for the dependence of xh on blend packing fraction, 
aspect ratios, conformational and energetic asymmetry parameters and 
spatial range of the attractive branch of the potential are all in qualitative 
agreement with numerically derived trends based on the more realistic 
SFC model (although quantitative differences occur as expected).6’ The 
reason for this agreement is the qualitative adequacy of the thread model 
for pure component melt packing and cohesive energy as discussed in 
Section 1II.C. The simple analytic form is thus very valuable for both 
physical understanding of numerically derived trends and qualitative 
prediction of the consequences of changing system parameters. 

91,116 Clearly, both experimental studies 

VI. BEYOND THERMODYNAMIC PERTURBATION THEORY: 
MOLECULAR CLOSURE APPROXIMATIONS 

The ideas of van der Waals, and the elegant modern statistical mechanical 
formulations, have clearly established that for high-density one-com- 
ponent fluids of atoms or molecules interacting via a harsh repulsion plus 
slowly varying attractive tail(s), the fluid structure is dominated by the 
nearly hard-core repulsions.5*” The effect of attractive interactions on 
packing is “screened,” and their important thermodynamic consequences 
can be treated within a perturbative or HTA scheme. At moderate and 
low fluid densities, or in multicomponent fluids, this great simplification is 
far less tenable, and attractive potentials can significantly modify inter- 
molecular packing  correlation^.^^" The formulation of microscopic inte- 
gral equation theories and closure approximations that accurately capture 
the consequences of both repulsive and attractive forces under all 
situations has proven to be a difficult problem even for simple atomic 
 fluid^.^." Many approaches exist, but the concept of a “reference” 
repulsive force fluid treated by one closure scheme (e.g., PY) and a 
second different closure approximation to treat slowly varying forces 
(e.g., HNC) is common and quite succe~sful.~ The “best” closure scheme 
often depends on system-specific details such as temperature, fluid 
density, and the strength and spatial form of the tail potentials. Even for 
atomic fluids, most work along these lines has focused on the variable 
density one-component case, and simple fluid mixtures have received far 
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121,122 less attention. Theoretical work on molecular liquid mixtures within 
the interaction site model framework is also sparse.'23 Although some 
progress has been made recently within the integral equation framework 
on the question of a proper treatment of the critical divergence (expo- 
nents) problem:8 this aspect has only minor effects on phase diagrams, 
effective interaction parameters, free energy of mixing, etc., and decreas- 
ingly so for polymer mixtures as N increases and mean-field critical 
behavior becomes increasingly more relevant.2,112 

Thus, the development of suitable closure approximations to simul- 
taneously treat both attractive and repulsive forces in macromolecular 
fluids and blends has a relatively weak theoretical foundation upon which 
to build. Moreover, for polymer mixtures phase separation and long 
wavelength (radius-of-gyration scale) structure and scattering are known 
to be very molecule weight dependent: a feature with no analog in simple 
fluids. Considerable difficulties were encountered in our early attempts to 
use the PRISM approach to treat such thermal macromolecular mixtures 
based on atomiclike site-site closure  approximation^.^"^^^^^ This moti- 
vated the development of novel approximation schemes by Yethiraj and 
Schweizer,' 'ti,1 l 9  referred to as mofecular closures, which explicitly ac- 
count for polymer connectivity at the level of both the generalized 
Ornstein-Zernike-like equations and the closure approximation. In this 
section we discuss the current situation for the above problems using the 
binary polymer mixture as the prototypical example. 

A. Atomic Versus Molecular Closures 

The most straightforward approach to treat the effect of the tail potentials 
uMM.(r )  is to employ the site-site analog of closures developed for atoms. 
Based on the standard site-site MSA c l o s ~ r e ~ . ~  

the predictions of PRISM theory for idealized symmetric binary mixture 
of homopolymers [see discussion below Eq. (5 .2) ]  were obtained by 
Curro and Schweizer numerically for various single-chain models and 
analytically within the Gaussian thread i d e a l i ~ a t i o n . ' * , ~ ~ ' ~ ~ ~  The PRISM- 
MSA predictions resulted in qualitative N-dependent errors for long 
wavelength collective fluctuations [$,,.(k) for small kR, < 11 as well as 
for the critical and spinodal temperatures based on the compressibility 
route to the thermodynamics. In particular, the large N-depFndence of the 
effective chi parameter [which controls the amplitude of S,,.(k = 0) for 
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the symmetric blend] and spinodal temperature are given by 

where ,yo is the “bare” result defined in Eq. (5.lb), which ignores all 
aspects of polymer connectivity and intermolecular correlations. Thus, 
PRISM-MSA theory predicts a massive N-dependent renormalization of 
the chi parameter, and radical modification of the mean-field’ scaling law 
of T, N. 

Surprisingly, the Flory N-scaling behavior’ had never been verified 
experimentally at the time the PRISM-MSA prediction was obtained in 
1988. Subsequently, both specially designed experiments by Bates et al. 
on model isotopic polymer blends,I2’ and lattice Monte Carlo simulations 
by Deutch and Binder,’26 clearly showed the PRISM-MSA N-scaling 
predictions were incorrect and the mean-field Flory scaling was essentially 
exact. PRISM theory based on alternative site-site closures (PY, HNC, 
MS; see Section 11) and the compressibility route were shown to disagree 
even worse with the mean-field N-scaling law than the MSA 
approximation.118 Thus, the unsettling conclusion is that PRISM theory 
with any standard atomiclike closure to treat attractions makes qualitative 
errors for the N-dependence of long-wavelength fluctuations and com- 
pressibility route spinodal phase boundar i e~ .”~” ’~  

As shown by Chandler,’27 for binary symmetric model mixtures the 
erroneous phase boundary prediction problem can be avoided by employ- 
ing the free energy route to the thermodynamics. From Eq. (5 .3) ,  one 
sees that the long-wavelength errors in interchain pair correlations due to 
the tail potentials are cutoff for fluid systems interacting via relatively 
short-range tail potentials. In the large N limit the HTA becomes exact 
and simple Flory theory is recovered (with quantitative corrections due to 
local density correlations). Thus, one conclusion that can be drawn is that 
atomic closures for attractions yield results that are “thermodynamically 
inconsistent” in a qualitative manner for long-wavelength concentration 
fluctuation proce~ses.’~’ However, questions concerning the long-wave- 
length structure, scattering, and physical clustering driven by thermal 
interactions cannot be addressed by invoking a HTA or the free energy 
route. Moreover, from a basic theoretical perspective it would be very 
satisfying to construct new closure approximations that are thermo- 
dynamically consistent at least in a qualitative N-scaling sense. Of course, 
there would remain the unavoidable quantitative inconsistencies, but such 
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a development would place PRISM theory on the same footing as simple 
liquid-state t h e ~ r y . ~  

The development of new molecular closure schemes was guided by 
analysis of the nature of the failure of the MSA closure. In particular, the 
analytic predictions derived by Schweizer and Curro 124 for the renormal- 
ized chi parameter and critical temperature of a binary symmetric blend 
of linear polymeric fractals of mass fractal dimension d, embedded in a 
spatial dimension D are especially revealing. The key aspect of the mass 
fractal model is the scaling relation or growth law between polymer size 
and degree of polymerization: R, K N;Ido. The non-mean-field scaling, or 
chi-parameter renormalization, was shown to be directly correlated with 
the average number of "close contacts" between a pair of polymer 
fractals in D space dimensions: N21Ri  0~ N2-(Did f ) .  If the polymer and/or 
space is sufficiently "open" (d, < D / 2 ) ,  then the number of contacts 
between a pair of macromolecules is intensive (N-independent), and the 
predicted N-dependent renormalization of the effective chi parameter 
disappears. Moreover, the predicted renormalization remains qualita- 
tively unchanged with varying temperature, and thus applies even at very 
high temperatures in the weak coupling, small concentration fluctuation 
limit. These features strongly suggest the origin of the N-dependent 
renormalization is fundamentally linked to the two-polymer problem and 
not directly with correlations at low t e r n p e r a t ~ r e . " ~ ~ ' ~ ~  

With this motivation, a family of new molecular closures was formu- 
lated by Yethiraj and Schweizer"8."9 at the level of two macromolecules, 
not two interaction sites. Even at the two-macromolecule level, the 
presence of a large number of interaction sites implies there are many 
indirect correlation pathways (mediated by chain connectivity) between a 
pair of tagged sites on different macromolecules [the leading Q*C*Q 
terms in the PRISM equation (2.2)J. Such indirect correlation pathways 
are ignored in the standard atomic site-site closure approximations that 
retain only the direct interaction between the pair of tagged sites. One 
might anticipate that the importance of such indirect pathways increases 
with N ,  and their neglect by atomiclike closures is the origin of the 
N-dependent errors of such schemes. 

PRISM with the molecular closures has been applied both numeri- 
CallY ' 183120  and analytically"y3'20~128 to several different macromolecular 
mixture problems. All the (limited) studies to date support the conclusion 
that this molecular closure approach does properly describe the N 
dependence of long-wavelength concentration fluctuations and spinodal 
phase boundaries. As true of simple RISM, these new closures are not 
really "derived," but their heuristic construction is motivated by a 
combination of intuition and empirical experience with liquid-state 
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theory. Their ultimate validity and usefulness can be established only by 
comparison of the theoretical predictions with simulations, experiments, 
and known exact limiting results. 

The strategy for explicitly formulating the molecular closures was 
guided by three considerations.”8”’” (1) Use of the commonly employed 
“reference” a p p r ~ a c h . ~  The successful site-site PY closure is retained to 
describe the repulsive force reference fluid but a molecular closure 
scheme is adopted to describe the attractive, slowly varying forces. (2) 
The approximation scheme is required to provide an exact description of 
the structural consequences of the tail potentials at the two-molecule level 
in the weak coupling limit [pu,,.(r) << I]. ( 3 )  Use of an appropriate 
site-site approximation for the direct attractive interaction contribution 
motivated by experience in simple f l ~ i d s . ~ , ~  

Taken as a whole, the ideas discussed led Yethiraj and Schweizer to 
propose the following reference molecular closure approximations for site 
interaction potentials consisting of a hard core plus tail 118,119 

R * C * R ( r )  - -  - = R*C‘”’*@(r) - -  + @* A,C*@(r) r > day (6.4) 

where the symbol * represents spatial convolution integrals. From the 
PRISM equation (2.2b) one sees that the quantity being approximated on 
the left-hand side of this equation is the two-molecule component of the 
interchain pair correlation h,,, (r) .  The convolution structure implies that 
the full site-site direct correlation function inside and outside the hard 
core are coupled, which is not true for the standard atomic closures. 
Explicit results require specification of the attractive potential contribu- 
tion to the direct correlation function AC,,,. For nonpolar fluids three 
schemes have been proposed and investigated based on analogy with the 
MSA and linearized PY closures of simple fluids”’ 

A c M M ’ ( r )  = - p u M M ’ ( r ) @ M M ’ ( r )  ( 6 .5 )  

where the tail potential is nonzero only outside the hard-core diameter. In 
the ‘‘full’’ R-MPY closure @,,,(r) = [I - exp(puM,.(r))]gMM,(r). Within 
the two-molecule framework, the R-MMSA is “mean-field-like” in the 
sense that only the bare tail potential enters. On the other hand, the 
linearized R-MPY approximation can be thought of as correcting the bare 
attractions by weighting their importance by the full interchain pair 
correlation function. Thus a self-consistent “feedback” mechanism be- 
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tween fluid packing and the effective potentials [CMM.(r ) ]  enters in a 
manner akin to a partial enthalpy quantity. The HTA version of the 
linearized R-MPY does not have such a feedback aspect and corrects the 
bare potential only via the packing correlations of the reference repulsive 
force fluid. The PRISM equations, with molecular closures plus the exact 
hard-core impenetrability constraint, can be numerically solved using the 
Picard algorithm.’ 

Analytic solutions are also possible based on the idealized Gaussian 
thread model since the molecular closures simplify dramatically. Because 
the hard-core diameter is shrunk to zero, Eq. (6.4) applies for all r ,  
thereby allowing “cancellation” of the convolution integrals and all 
factors of w .  Hence, the thread analogs of Eqs. (6.5) and (6.6) become’” 

c M M , ( r )  = cO,,,~(r) - p u M M ’ ( r ) @ M M ’ ( r )  (6.7) 

Note that the R-MMSA and R-MPY/HTA approximations for the direct 
correlation functions are now “deterministic,” that is, uncoupled from the 
determination of the full pair correlation functions g M , , ( r ) .  However, for 
the most complex R-MPY closure the direct correlation functions are still 
self-consistently linked to the full radial distribution functions and tail 
potentials. 

Although essentially all studies to date using PRISM and the molecular 
closures have involved macromolecules, it is conceivable such closures 
may be of value even for small or intermediate-sized flexible and/or rigid 
molecules. A careful documentation of the accuracy of the new molecular 
closures as a broad function of thermodynamic state and molecular fluid 
type remains an important future direction. In addition, recent interesting 
alternative approaches to liquid theory for polymer mixtures with attrac- 
tions have been developed within the general PRISM framework by 
Melenkevitz and Curro’” based on the optimized RPA(0RPA) ap- 
proach, and Donley et. alP1 based on density functional theory and also 
from a field-theoretic perspective by Chandler.”’ Application of these 
approaches to treat the effect of attractive interactions on fluid structure 
and phase transitions remains to be worked out. 

B. Fluctuation Phenomena in Symmetric Blends 

As described briefly in Section V, the “structurally and interaction 
symmetric” binary blend is an idealized model in which the A and B 
homopolymer (single site) chains are identical in every respect except 
they interact via a potential uAB(r),  which disfavors mixing. By symmetry, 
the critical concentration is equimolar, c,bc = 0.5. Many “symmetric” 
models can be constructed depending on the choice of single-chain model 
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and form of the intermolecular tail potentials u M M . ( r ) .  In the athermal 
limit, this symmetric blend reduces to a homopolymer fluid. Although the 
symmetric model is not of direct experimental relevance, it has been the 
prime subject of the large majority of computer simulations and field- 
theoretic studies of thermal polymer It is believed to contain the 
generic aspects of demixing and concentration fluctuations in polymer 
blends of central interest to polymer physicists. Such a symmetric model 
has also been investigated in the simple atomic liquids community .Iz1 One 
origin of the mathematical simplicity of this model is the near decoupling 
of density and concentration fluctuations due to the assumed symmetries. 

Based on lattice model simulations (for N typically in the range 
16-256): Binder and co-workers have discovered a host of non-mean- 
field, or fluctuation, phenomena in the symmetric blend model, most of 
which appear to be nonuniversal.126.'30 In particular, in contrast to 
Flory-Huggins theory, an effective, or renormalized, chi parameter that 
deviates from the mean-field behavior [see Eq. (5.2)) in many ways was 
observed: 

where F is a complicated function(a1) that also depends on polymer 
intramolecular structure. This renormalization ratio is generally less than 
unity (fluctuation stabilized). The fluctuation effects discovered via 
simulations, though obtained for lattice models, provide stringent 
semiquantitative tests of the ability of PRISM theory with the new 
molecular closures to describe density and concentration fluctuation 
processes in polymer blends. 

In this section some of the recent results obtained for the symmetric 
blend based on PRISM with the molecular closures are summarized.'ls~lz" 
In the numerical studies a tangent SFC chain model with zero bending 
energy is employed (which is the closest continuum chain model used in 
the lattice simulations). For simplicity, the single-chain structure factor is 
taken to be ideal (blend composition and density independent), and 
temperature independent. The tail potentials are taken to be of a Yukawa 
form 

u M M , ( r ) = e M M . ~ e x p [  d -(r ad - d )  1 r z d  

where d is the site hard-core diameter, a is the spatial range, and E ~ ~ ,  is 
the energy parameter. The effective chi parameter is computed from the 
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first equality in Eq. (6.2), which is adequate for the symmetric blend 
model but not in general due to nonlinear compressibility effects. 

1. Numerical Results 

A very extensive numerical study has been recently carried out by Singh 
and co-workers."" Except for the critical divergence Ising exponent, 
excellent agreement is found between PRISM theory based on the R-  
M P Y  closure and ~ i m u l a t i o n ' ~ ~ , ' ~ "  for all the fluctuation effects men- 
tioned above. Some of the fluctuation effects are found to be intrinsic, 
that is, survive in the long chain limit, while others are finite size effects 
that arise from chain-connectivity-induced coupled local and long-wave- 
length concentration fluctuations. However, due to the multiple sources 
of the fluctuation effects, even asymptotic finite size effects can appear 
intrinsic over extended ranges of N as observed in the relatively small N 
simulation studies. 

All the fluctuation effects can be understood in simple terms by 
examining the enthalpy of mixing and local interchain pair correlations.'20 
The key physical process is thermally driven local interchain rearrange- 
ments corresponding to clustering of like species. These fluctuation 
processes are driven largely by the enthalpic desire to reduce unfavorable 
AB contacts, which becomes increasingly important for smaller N ,  lower 
blend density, shorter tail potential range, and/or more equimolar 
concentrations. 

Here we give a couple of representative examples for both thermo- 
dynamic and structural properties.'2o At fixed temperature, PRISM/R- 
MPY calculations of xeff(4) generally show a parabolic dependence on 
blend composition with a minimum at 4 = 0.5 in qualitiative accord with 
simulation. This behavior is due to the fact that at fixed T the blend is 
closer to the demixing transition the closer the blend composition is to 
equimolar. Thus, fluctuation stabilization effects become weaker as the 
pure one-component fluid state is approached leading to the observed 
parabolic-like behavior. An example of the amplitude of this effect as a 
function of N is shown in Figure 21 for a fluid packing fraction [v = 0.2 
(concentrated solution)] representative of the lattice simulations. Results 
are plotted for various temperatures close to the critical temperature 
(corresponding to ,yefrN = 2), spatial range of tail potentials, and thermo- 
dynamic route. Most results are for an S ordering of tail potentials 
corresponding to cAA = cBB = 0 and F~~ > 0, except for the one case 
labeled "MS" which corresponds to a "Most symmetric" choice of tail 
potentials: cAA = F~~ = - E ~ ~  = F < 0 also studied by simulation.'26 Note 
the reduced amplitude for the MS potential model case, and the near N 
independence of the amplitude for N of the order of lo2 and smaller, 

128,131 
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Figure 21. PRISMIR-MPY predictions'" for the amplitude of the composition depen- 
dence of the effective interaction parameter of an equimolar, symmetric binary mixture as a 
function of chain degree of polymerization. The spatial range parameter of the Yukawa tail 
potential is u = 0.4. Except as noted, all the curves are based on the compressibility route to 
the thermodynamics (F.R. denotes free energy route), are at the critical point (,yeffN = 2) ,  
and the S-ordering choice of the tail potentials. 

features in agreement with the lattice simulations.126 However, in the 
large N limit the chi parameter becomes concentration independent since 
the relevant temperature scale diverges (T ,  cc N ) ,  and the tail potentials 
cannot then induce structural rearrangements and physical clustering. At 
meltlike packing fractions of q = 0.5 (not shown here),'20 the blend is far 
less compressible and the fluctuation effects as embodied in xeff(+) are 
suppressed to the level of a 20-30% effect for N of the order of 100 and 
less. 

The predicted critical temperature relative to the mean-field Flory 
value is shown in Figure 22. Note the significant reduction of T,  in all 
cases due to thermally induced changes in blend structure that reduce 
(enhance) the number of close AB (AA and BB) contacts. However, the 
N dependence of this fluctuation effect and approach to the long-chain 
limiting behavior is highly nonuniversal. Simple physical arguments have 
been given to explain such trends.120 The results of Figure 22 agree with 
the limited simulation s t ~ d i e s ' ~ " . ' ~ ~  available for the effect of tail 
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Figure 22. Concentrated solution symmetric model critical temperature (reduced by its 
mean-field value) as a function of N as predicted by PRISM/R-MPY theory.'*' Results for 
two choices of tail potential orderings and spatial range are shown. Except as noted, all 
curves are for the compressibility route to the thermodynamics. Smooth interpolative curves 
through the theoretical points are a guide to the eye. 

potential ordering, spatial range, and N on the renormalization of the 
critical temperature. At higher meltlike packing fractions, trends similar 
to Figure 22 are obtained (with some subtle changes), but the overall 
scale of the normalization effects is much smaller, for example, 0.8-1.1, 
consistent with the less compressible nature of the melt state.I2" 

An example of the changes in blend pair correlations upon cooling 
from the athermal (pure melt) limit to the critical temperature is shown 
in Figure 23 for the two values of N and a highly asymmetric blend 
composition. Strong deviations of the gMMt(r) from the athermal melt 
behavior are seen especially for the smaller N case. Moreover, the 
clustering of the minority species (A) is more dramatic than the majority 
(B) species. For the N = 2000 case, the majority species pair correlations 
are barely discernable from the athermal melt behavior, consistent with 
the approach to the HTA limit. Similar trends are seen at higher meltlike 
packing fractions but again are less dramatic due to the less compressible 
nature of the fluid.'" Continuum molecular dynamics simulations are 
underway to test the influence of attractive tail potentials on blend 
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Figure 23. PRISMIR-MPY predictions for the local intermolecular blend structure of a 
10190 mixture of A and B chains.'" The corresponding athermal limit (homopolymer melt) 
curves are also plotted. Results are  shown at the 6 = 0.5 critical temperature for two choices 
of degree of polymerization, the S-ordering of the tail potential (a  = 0.4) and a concentrated 
solution packing fraction of 71 = 0.2. The inset shows g,,(r) for N = 100, which is off scale 
on the main plot. 

structure and the molecular closure  approximation^.'^^ Very recent work 
by Gromov and de P a b l ~ ' ~ ~  has shown for the symmetric blend model 
that PRISM with the R-MPY closure is in excellent agreement with 
continuous space simulations for the structure, mixing thermodynamic 
properties, and the coexistence curve. 

Finally, for PRISM I R-MPY theory the thermodynamic consistency 
between the free energy and compressibility route calculations of the chi 
parameter and spinodal phase boundaries has been shown to be re- 
markably good.'*' Moreover, in the long-chain limit the predicted chi 
parameter and phase boundary appear to be exactly equivalent, which is a 
unique circumstance for liquid-state theories. However, this is not a 
general feature of PRISM with the molecular closures but rather derives 
from the fact that in the long-chain limit the critical temperature becomes 
arbitrarily high, the HTA is rigorous, and thus the symmetric blend 
reference system reduces to a composition-independent homopolymer 
melt. 
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2. Analytic Predictions for Gaussian Threads 

For the symmetric Gaussian thread blend interacting via the Yukawa tail 
potentials of Eq. (3.16), a nearly complete analytic treatment can be 
carried out for all three molecular closures of Eq. (6.7) within the S 
potential ~ r d e r i n g . " ' ~ ' ~ ~  Remarkably, all the analytically derived trends 
are consistent with numerical studies based on the compressibility route 
to the thermodynamics. Results based on the free energy route have also 
been obtained.I2' 

Based on the simplest R-MMSA closure the effective chi parameter is 
given by"' 

Thus, in the thread limit PRISM with the R-MMSA closure reduces 
precisely to mean-field Flory theory! The corresponding spinodal tem- 
perature is given by Eq. (5.2). The inverse osmotic compressibility, or 
concentration fluctuation scattering intensity, is nearly exactly given by 
the RPA form' 

(6.11) 

that is, $- '(O) goes to zero linearly with inverse temperature. 
The R-MPY/ HTA closure includes the athermal density fluctuation 

correction (+-independent) due to the go(r) # 1 factor in Eq. (6.5). The 
predicted chi parameter, denoted xHTA, is given by'19 

XHTA 3 1 
x o  

m 

a ' s .HTA 
+--- - as N + m  

a + 5, T*.FH 
(6.12) 

where 6, and 5, are defined in Eq. (3.4), and Tr,FH is the mean-field 
Flory-Huggins (or thread PRISMIR-MMSA) spinodal temperature. The 
inverse osmotic compressibility still displays the standard T-' law of Eq. 
(6.11), only the absolute magnitude of the effective chi parameter is 
modified. 

Within the compressibility route to the thermodynamics, the above two 
closures yield predictions that miss entirely the blend composition-depen- 
dent fluctuation corrections obtained numerically in the preceding subsec- 
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tion based on the R-MPY closure. Application of the linearized version of 
the latter (LR-MPY of Eq. (6.6)) for the thread model results in a 
nonlinear, self-consistent equation for xeff, which does capture these 
fluctuation effects. Straightforward analysis yields the nonlinear trans- 
cendental equation'" 

-- Xeff 3(5,* - s,*> 

0 = (< I' + 5 I')( 1 + a / < + ) (  1 + a / [ - )  

- 1 +  
XO npCr30 

(6.13) 

where a density-fluctuation-like length scale 5, and concentration fluctua- 
tion length scale 5- are given by 

(6.14) 

Note that the above two length scales are coupled via xetf and the 
nonlinear self-consistent Eq. (6.13). Thus, the blend density and con- 
centration fluctuations are coupled in a manner that becomes stronger for 
lower density (more compressible fluid), smaller chain lengths, and/or 
thermodynamic states closer to the spinodal phase boundary. 

For long chains and moderate densities, Eq. (6.13) predicts the 
amplitude of the composite dependence of the chi parameter to be'20 

This simple equation explains all the numerical results for x,,,($) as a 
function of N ,  a, and p. It is clear that the composition dependence of the 
chi parameter is a finite size effect that is inversely proportional to the 
correlation hole length scale <=, which is enhanced as the critical point is 
approached. With increasing density, the screening length 8, decreases, 
which reduces the composition dependence of xerf. The tail potential 
range u competes with the density screening length. 

For high densities and/or large N ,  the R-MPY closure can be shown to 
yield 

(6.16) 

which quantifies the effect of concentration fluctuations on blend stabili- 
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zation. The general spinodal temperature, T,, follows from Eq. (6.13) by 
setting 2xeftN4(1 - 4 )  = 1. The resulting expressions show that the shape 
of the predicted spinodal envelope remains of the mean-field Flory form, 
that is, the net renormalization at the spinodal is 4 independent. 

As discussed elsewherei2' a consequence of the concentration fluctua- 
tion process captured by the linearized or full R-MPY approximation is a 
finite size nonlinear region in the j - ' ( k  = 0) versus T- '  scattering curve 
near the spinodal temperature corresponding to a stabilization relative to 
the mean-field/RPA behavior. Analytic expressions have also been 
derived for the interchain pair correlations, gMMt ( r ) .  Physical clustering, 
as characterized by Ag(r) of Eq. (4 .1) ,  depends explicitly on all three 
length scales, liquid density, and (implicitly) spatial range of the tail 
potential. Its amplitude approaches zero as N - 1 ' 2  for large N ,  that is, as 
the ratio of microscopic length scales to the macromolecular size. The 
chain length asymmetric case, NA # N,,  has also been studied"" and 
distinctive modifications of the fluctuation effects are predicted that can 
be tested by computer simulation. 

In the long-chain limit, all concentration fluctuation effects on the chi 
parameter disappear and a density correlation corrected version of mean- 
field theory is obtained since the R-MPY closure reduces to its HTA 
version. Thus, perfect thermodynamic consistency between the free 
energy and compressibility route predictions are obtained in the N - m  
asymptotic limit for the idealized symmetric blend system."' 

C. Conformational and Interaction Asymmetric Blends 

The idealized symmetric blend model is not representative of the 
behavior of most polymer alloys due to the artificial symmetries 
invoked.'28 Predictions of spinodal phase boundaries of binary blends of 
conformationally and interaction potential asymmetric Gaussian thread 
chains have been worked out by Schweizer'28 within the R-MMSA and 
R-MPY/HTA closures and the compressibility route to the thermo- 
dynamics. Explicit analytic results can be derived for the species-depen- 
dent direct correlation functions CMMr, effective chi parameter, small- 
angle partial collective scattering functions, and spinodal temperature for 
arbitrary choices of the Yukawa tail potentials. Here we discuss only the 
spinodal boundary for the simplest Berthelot model of the uMMr(r)  tail 
potentials discussed in Section V. For simplicity, the A and B polymers 
are taken to have the same degree of polymerization N .  

The spinodal temperature corresponding to liquid-liquid phase sepa- 
ration follows from the condition s,',.(O) = 0 of Eq. (4.5). The analytic 
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result is''' 

(6.17) 

where the attractive energy scale variable fiAA is given by 

In the above equations, teff = 36~7, / [  

R-MMSA 

R-MPY/ HTA (6.18) 

n-a,'C~,] is a $-dependent . .. .~ 

effective density screening length in- the reference athermal blend, y = 

aB /aA quantifies the conformational asymmetry, A = eBB leAA quantifies 
the interaction asymmetry, and C;, is the integrated strength of the AA 
direct correlations in the athermal thread blend [see Eq. (4.7)]. The 
leading term displays the classic N scaling associated with macromolecu- 
lar concentration fluctuations. It predicts a strong, nonadditive con- 
nection between miscibility and conformational and energetic asymmet- 
ries. Note that even if there is no "bare" energetic driving force for phase 
separation ( A  = 1; xo = O),  strong immiscibility can occur due to the 
conformational differences that influence the direct correlation functions, 
and hence local packing and enthalpy of mixing. This striking non-mean- 
field prediction has been very recently verified by Kumar and Weinhold 
(preprint, 1996) using off-lattice Monte Carlo simulation. The possibility 
of reinforcement or cancellation of the conformational and energetic 
asymmetries is also predicted. This behavior was also found numerically 
based on thermodynamic perturbation t h e ~ r y ' ' ~ . '  I s  (see Section V.C), and 
analytically within the molecular solubility parameter approach6' of 
Section V.D. However, subtle differences between the compressibility and 
(numerical) free energy routes for this and other aspects do occur due to 
the thermodynamic inconsistency problem with integral equation theory. 
For example, the emergence of a negative chi parameter in the 
asymmetry compensation regime (see Fig. 20) is not predicted. The shape 
of the predicted spinodal envelope, and location of the critical com- 
position, is not of the classic symmetric inverted-parabola form due to 
both stiffness asymmetry and explicit compressibility corrections. The 
application of Eq. (6.17) to qualitatively interpret a range of experiments 
on polyolefin and polydiene alloys has been given by Schweizer.12' 

2 
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The second term in Eq. (6.17) can be viewed as a compressibility 
contribution, which is N independent and vanishes in the hypothetical 
incompressible limit where -CiA-+ 00. For long chains it is generally 
expected to be a minor correction. 

We also note that in principle, Eq. (6.17) is really a transcendental 
equation for the spinodal temperature if the polymer density and/or  
statistical segments length depend on temperature as generally true for 
real systems. This aspect can lead to apparent N dependences of the 
spinodal temperature, which do not follow the classic Flory scaling 
relation of T ,  0~ N .  A liquid-gas-type transition is also predicted:” but 
since it is driven by density, not concentration, fluctuations the relevant 
temperature scale is independent of N ,  and thus is expected to be well 
below T, for macromolecules. 

Numerical PRISM studies based on finite thickness SFC models of the 
stiffness and interaction binary blend, and molecular closures and 
compressibility route, have not yet been widely pursued. Preliminary 
blend calculations by David and S ~ h w e i z e r ’ ~ ~  using the R-MPY/HTA 
closure do find trends qualitatively consistent with the analytic thread 
predictions. These studies also suggest that for chains in the range of 
N = 500-5000 that temperature-induced changes in local packing in the 
homogeneous phase blend are quite weak, thereby providing some 
support for the use of the perturbative HTA approach to thermodynamics 
discussed in Section V. 

D. Other Physical Problems and Systems 

There are many other physical systems and fundamental questions 
involving the role of attractive forces in macromolecular fluids that have 
begun to be addressed. 

1. The effect of attractions on the structure of dense one-component 
polymer melts. According to the van der Waals ideas, attractions should 
have very little effect. Surprisingly, we are unaware of simulations that 
have probed this question, although they are now in pr~gress.’~’ Recent 
PRISM studies by Butler and S c h w e i ~ e r ‘ ~ ~  using atomic and molecular 
closures have been carried out. Repulsive force “screening” of the effects 
of attractions on structure is recovered for many, but not all, closure 
approximations. 

2. The effect of attractions on  solvent quality (good, theta, poor), and 
low temperature polymer-solvent phase separation. Some tentative 
analytic work has been done on the latter problem by Schweizer and 
Yethiraj based on the molecular closures.’ lY Non-mean-field dependences 
of the critical polymer volume fraction on N have been found. 
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3 .  Liquid-vapor equilibrium of chain molecule fluids. Both analytic 
and numerical work has been recently done by Schweizer and co- 
workers . I  19,134 The compressibility route predictions of PRISM for this 
problem are extremely sensitive to closure approximation since the 
relevant fluid densities are very low and large-scale density fluctuations 
are present.134 The atomiclike MSA closure leads to qualitatively incor- 
rect results as does the R-MMSA closure. However, the R-MPY/HTA 
approximation appears to be in excellent accord with the computer 
simulation studies of n-alkane~’~’” and model chain polymers,’35b includ- 
ing a critical density that decreases weakly with N and a critical 
temperature that increases approximately logarithmically with N .  

4. Physical clustering, long-wavelength concentration fluctuations, and 
microphase separation of self-assembling block copolymers and surfactant- 
like chain molecules. These systems are discussed in the next section. 

5.  Heating-induced phase separation (the so-called lower critical solu- 
tion temperature case) often occurs in nonaqeous polymer solutions and 

The physical origin of this phenomenon, and the degree of 
universality of mechanism, remains largely a mystery. One possible 
mechanism for chemically complex monomers is a competition between 
dispersive forces, which favor low-temperature demixing, and “specific,” 
more rapidly varying attractive forces (e.g., hydrogen bonding or charge 
transfer) between A and B monomers, which favor low-temperature 
miscibility. In such a situation, thermally induced structure changes in the 
blends may be very important and could lead to a lower critical solution 
temperature (LCST). Such a mechanism is presently under study using 
PRISM theory and the molecule closures. An alternative mechanism 
based on nonadditive hard-core volumes has been explored by Honeycutt 
using PRISM t h ~ o r y . ” ~  

blends. 93.943 101 

VII. SELF-ASSEMBLING BLOCK COPOLYMERS 

Block copolymers are molecules composed of two or more distinct 
monomers chemically bonded in the same  hai in.^'.'^^ We consider the 
simplest case where there are two types of elementary units A and B. 
These units are arranged into bonded linear sequences, or blocks, of 
variable length that are then repeated a variable number of times. To 
date, only one-component fluids composed of “periodic” block copoly- 
mers where the A and B block lengths are unique have been studied 
based on PRISM theory. However, random or statistical copolymers 
where there is quenched chemical or sequence disorder associated with 
the polymerization process are also of great i n t e re~ t . ’~ ’ . ’~~  
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For simplicity, we focus on the simplest linear diblock copolymer, 
which consists of one chain of NA units connected at a junction to one 
chain of N,  units forming a polymer of N = NA + NB units. The co- 
polymer composition is denoted by a variable f = NA lN. Simple diblock 
copolymers are macromolecular versions of classic surfactant molecules 
composed of chemically distinct head and tail portions. 

Within the PRISM approach, one can formally view a block copolymer 
as a special case of the multisite systems discussed in Section 1II.B. 
However, the block structure results in novel physical phenomena, not 
displayed by simple polymer melts, which is important both scientifically 
and from a materials engineering viewpoint .y5.136 The most prominent 
feature is the ability of such a fluid to spontaneously self-assemble into 
microdomains of variable purity, spatial symmetry, and N-dependent 
size. Ultimately a first-order microphase separation transition, or weak 
crystallization, into an ordered superlattice-type structure can occur 
where the characteristic domain size or lattice constant is typically 50- 
500 A. Such microscopic segregation represents a dramatic structural 
reorganization of the fluid and can be driven by changing temperature, 
increasing degree of polymerization, or increasing copolymer density in 
solution. 

To treat in a general manner the self-assembling block copolymer fluid 
using PRISM theory requires developing appropriate macromolecular 
closures for describing the structural consequences of both repulsive 
(hard core) and attractive intermonomer interactions. From a theoretical 
polymer physics perspective, fundamental questions include (i) the 
existence (or nonexistence) of a critical point or spinodal instability on a 
finite length scale (microphase separation), (ii) possible breakdown of the 
conformational ideality approximation as physical clustering of like 
species and microdomain formation emerges, and (iii) the proper treat- 
ment, and physical origin, of fluctuation processes that stabilize a 
disordered, but highly correlated, liquid phase against microphase sepa- 
ration. 

In this section we summarize progress made over the past few years by 
David and Schweizer~3"333.'"""o including ' both the basic theoretical 
modifications of PRISM theory that have been proposed and examples 
of specific predictions and their relationship to experiments, 
phenomenological field-theoretic s t ~ d i e s , ' ~ ~ - ' ~ '  and computer simula- 

The application of the new molecular closures that describe 
structure and thermodynamics in a qualitatively correct manner are 
emphasized, along with addressing points (i) and (iii) listed above. Point 
(ii) requires a fully "self-consistent" treatment, which is briefly addressed 
in Section VIII. Here, we retain the conformational ideality approxi- 

136.141.142 

tions.14h- 148 
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mation. Recent self-consistent block copolymer PRISM studies 14' suggest 
corrections to the ideality assumption are a small, second-order effect for 
macromolecular systems in disordered fluid states. Description of first- 
order microphase transitions into ordered structures of various symmet- 
ries have been addressed within phenomenological field-theoretic 
approaches .l 43- 4 5 ,  ' 49 However, the treatment of this aspect within a 
liquid-state framework remains a largely unsolved problem, although 
promising density functional schemes are presently being developed by 
Nath et al.15" Such density functional approaches necessarily require the 
homogeneous phase correlations as input. 

As was true for the homopolymer melt and blend problems, mathe- 
matical tractability requires greatly reducing the number of coupled 
integral equations of order N 2 .  At the simplest level for the block 
copolymer case, both chain end and AB junction effects are 
p r e a ~ e r a g e d . ~ ~  That is, the site-site direct correlation functions are 
assumed to depend only on species type, not location within the block 
copolymer molecule. For the single-site models of present interest, only 
three distinct direct and intermolecular site-site pair correlation functions 
are required for an AB copolymer. The PRISM equations are again given 
by Eq. (2.2), with an effective i2 matrix given by138 

where p, is the total site number density. Various fluid densities and 
copolymer chain models have been studied (Gaussian thread, freely 
jointed, semiflexible) . 3 3 . 1 3 3 , 1  3y,14" The theory is general, but the numerical 
examples discussed here are for diblock melts (7 = 0.5) .  

A. Athermal Limit 

For the athermal diblock copolymer fluid the intersite potential is given 
by a hard-core potential between sites M and M' with associated hard- 
sphere diameter dMM., and the site-site PY closure of Eq. (2.5b) has 
been employed. Here, we focus on the 1,ld = 0.5 overlapping site SFC 
model for the linear chain blocks, which has been constructed to mimic 
the packing of real polymers as discussed in Section 1II.A. For simplicity, 
the hard-core diameters of the A and B sites are taken to be equal. 
Results for a series of four, f =  1 (compositionally symmetric), N = 500 
copolymers melts, which have a "common" A block with an aspect ratio 
of unity, are considered."' The relevant single-chain parameters are 
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TABLE I1 
Aspect Ratios, rM = a, id ,  of the Blocks That Compose the l id  = 0.5 Semiflexible Co- 

polymer Systems Studied (labeled as A-D)“ 

Copolymer r A  r.B = rBirA Rx A R8.* D = 2.rr/k* 

€3 1 1 1 6.38 6.38 29.2 

4 4 - - A 1 5 5 6.38 5.13 26.3 

C 1 4 4 6.38 7.92 32.8 
D 1 2 2 6.38 9.43 36.6 

5 5 

3 i 

- - 

- - 

L? Also listed in units of the site diameter are the block radii of gyration and microdomain 
size, D ,  for the f= 0.5, N = 500 athermal copolymer melts studied in Figs. 24 and 25. 

listed in Table 11, and the aspect ratios chosen are representative of the 
range appropriate for flexible polymers of experimental interest. 
Conformational asymmetry is characterized by the variable y = rB /r,. 

Typical results’39 for the common block partial structure factors, 
j A A A ( k ) ,  are shown in Figure 24. Only the low-angle regime is plotted to 
emphasize the prominent “correlation hole” maximum at k = k*.  Such a 
peak is a general consequence of the diblock architecture and is often 
characterized by a microdomain length scale of D = 25-/k*, which is 

52,139 
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Figure 24. Predictions of PRISM theory with the PY c l~su re ’~ ’  for the low wave vector 

common block collective structure factor for the athermal copolymer models listed in Table 
11. Note that the common block structure factor intensifies monotonically as the overall 
copolymer stiffness stiffness increases due to increasing B-block aspect ratio. 
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roughly equal to three times the overall copolymer radius of gyration. The 
curve labeled y = 1 represents a homopolymer melt in which the two 
halves of the molecule have been artifically labeled. For this case the A 
and B monomers arc obviously randomly mixed by construction. Thus, 
Figure 24 shows that if the A block is attached to a stiffer B block (higher 
aspect ratio), then collective fluctuations of the concentration of A 
monomers are enhanced, while if the B monomer is more flexible, the A 
collective fluctuations are suppressed relative to the random mixing 
behavior. In all cases, the changes relative to the random mixing situation 
are small, and no indications of incipient microphase separation are 
apparent in this athermal limit. Predictions for the wide-angle scattering 
regime arc also obtainable, and subtle modifications of the local fluctua- 
tion regime relative to the homopolymer melt situation arc found.’39 

The analog of Figure 24 for the variable block have also been obtained 
(not shown here).’39 Significant differences are found relative to the 
common block behavior. In particular, the peak partial scattering inten- 
sity is always found to be largest for the more flexible block. This 
nonequivalence of partial compressibilities on a length scale 25rlk* is a 
result of the microscopic differences in packing (or direct correlations) of 
the A and B monomers. Such behavior is not captured by phenomeno- 
logical field-theoretic appro ache^,'^'-'^^ which describe long-wavelength 
concentration fluctuations by enforcing a literal incompressibility con- 
dition that introduces an artificial symmetry corresponding to jAA ( k )  = 

The common block site-site pair correlations on the local scale are 
shown in Figure 25. Relative to the homopolymer behavior, the local 
packing of A segments is enhanced (reduced) when the variable B block 
is stiffer (more flexible) than the A chain. This trend is physically sensible 
and corresponds to an “induced” change in common block packing due to 
the diblock connectivity. However, beyond separations of two or three 
site diameters in the longer distance scale “correlation hole” regime this 
trend reverses, for example, the packing of A segments is enhanced when 
the B block is more flexible than A. This behavior is largely a conse- 
quence of the fact that as the B block becomes more flexible, the overall 
diblock copolymer size decreases and the spatial range of the correlation 
hole is reduced, and thus gAA(r) approaches its random value of unity 
more quickly. Locally, packing trends for the variable block, gBB(r) ,  are 
weakly perturbed’39 from the corresponding homopolymer melt behavior 
shown in Figure 2. 

For a diblock copolymer fluid approaching a microphase separation 
transition, one expects long-distance oscillations in the g(r)’s to develop 
with a period given by the microdomain size D = 2rr/k* (see Table 11). 

jBB(k) = -jAB(k).  
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- y = 514 
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Figure 25. Common block intermolecular radial distribution function for the same 
athermal conditions stated in Figure 24. Note the monotonic increase of local packing as the 
B-block stiffness is increased. 

For the athermal diblock melts such oscillations are found to be extreme- 
ly low amplitude. In addition, the difference correlation function Ag(r) as 
defined in Eq. (4.1) has also been studied, which is a spatially resolved 
measure of physical clustering into microdomains. It has been found to be 
extremely low amplitude (typically, 0.02-0.04 for the cases considered), 
indicative of very little segregation of the A and B segments."' These 
structural features emphasize the high degree of miscibility predicted by 
PRISM theory for conformationally asymmetric diblocks of experimental- 
ly relevant N values in the purely athermal limit. Thus, to properly 
describe microphase separation and physical clustering of block co- 
polymer fluids, it is necessary to include thermal effects and attractive 
 interaction^.^'"^^"^^ 

B. Thermally Driven Assembly 

Consider the same model system as above, but where there are attractive 
tail potentials, uMM.(r), between sites of type M and M' on different 
copolymers. In the numerical examples presented later, the shifted 
Lennard-Jones attraction of Eq. (5.10) is appended to the SFC diblock 
model of Section VI1.A. For simplicity, the Berthelot potential model is 
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1 /2  again adopted: E,, = , and thus the chemical or interaction 
asymmetry between the A and B monomers is contained in the energy 
ratio parameter s,,/e,, 7 A * .  The temperature is nondimensionalized in 
units of E,,. Within the simplest, incompressible mean-field theory based 
on random mixing, the relevant "bare" energetic quantity for controlling 
thermodynamic incompatibility, and hence microphase segregation, is the 
Flory chi parameter of Eq. (5.lb). 

As was found for the analogous blend, the application of site-site 
atomiclike closure (e.g., MSA) to the diblock copolymer fluid problem 
predicts a qualitatively incorrect N dependence of the long-wavelength 
thermal concentrations  fluctuation^.^^ Thus, use of the molecular closure 

are necessary. For the AB diblock copolymer fluid approximations 
of present interest, there are three closure equations of the form of Eq. 
(6.5). It is important to note that the closure approximations utilized are 
identical in form for diblock copolymers and homopolymer blends, even 
though the physical processes involved (microphase separation versus 
liquid-liquid macrophase separation) are very different. The matrix 
structure of the molecular closures implies the direct correlation functions 
outside the hard core are not explicitly given by the closure 
appr~xirnat ion.~~ Within the interaction site model approach, it is well 
known that in such cases the site-site direct correlation functions acquire 
a low amplitude, very small k ,  divergent part as a necessary consequence 
of the defining generalized Ornstein-Zernike-like  equation^.'^' For the 
block copolymer problems this peculiar mathematical feature has been 
shown to be essentially irrelevant in that it has no discernable effect on 
the physically relevant theoretical predictions obtained n~rnerically."~ 

The basic qualitative features of the numerical PRISM predictions for 
nonzero hard-core diameter models are similar for all the closure 
approximations, although significant differences can occur for certain 
proper tie^.^' We defer discussion of the latter point to Section VI1.C and 
here present numerical resu1tsl3' based on the linearized R-MPY/HTA 
closure defined in Eqs. (6.4) and (6 .5) .  Qualitative  comparison^^^,'^^ with 
the idealized structurally and interaction symmetric diblock model lattice 
(continuum) simulations of Binder and c o - ~ o r k e r s ' ~ ~  ( G r e ~ t ' ~ ~ )  show 
good agreement with the PRISM predictions. 

Consider first the f = + compositionally symmetric diblock models of 
Table I1 and the simplest situation of no (bare) chemical symmetry, that 
is, A = 1. For this case mean-field theory predicts that thermal energetic 
effects vanish, xo = 0. On the other hand, within liquid-state theory since 
the A and B monomers form chains of different aspect ratios, nonrandom 
correlations exist that result in a correlated contribution to the fluid 
enthalpy. As the diblock melt is cooled, further structural reorganization, 

118.1 19 
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driven by the attractive tail potentials, occurs in order to reduce ener- 
getically unfavorable contacts. 

Explicit examples of thermal PRISM predictions”3 are shown in 
Figures 26-29. The growth of the peak in the long-wavelength partial 
structure factors upon cooling is shown in Figure 26. There are several 
important features: (1) The peak intensity grows very strongly with 
cooling but does not diverge. Initially, the behavior is mean-field-like, 
that is, a nearly linear decrease of the inverse peak intensity with inverse 
temperature. However, at very low temperatures a new “fluctuation” 
regime is entered characterized by nonlinearity of the plot and the 
avoidance of a true spinodal divergence. (2) As was true in the high- 
temperature (athermal) limit, the more flexible species exhibits larger 
microdomain scale fluctuations. This feature is interpretable in several 
ways. For example, since the more flexible block packs more poorly in 
the liquid, it can more easily undergo large-scale concentration fluctua- 
tions since the A-rich domains are more compressible. ( 3 )  An apparent 
spinodal can be defined by extrapolation of the peak scattering curves in 
the vicinity of the nonlinear regime. The deduced temperature is 

133 

135 140 145 150 155 
NE / k,T 

Figure 26. Reciprocal partial peak scattering inten~ities’~’ as a function of dimension- 
less inverse temperature for an asymmetric diblock melt (model C) with N = 2000 and 
f = 0.5. High-temperature linear (mean-field) extrapolations, shown as dotted lines, con- 
verge to a unique apparent spinodal temperature. 
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essentially identical for all three partial scattering functions consistent 
with an extrapolated microphase spinodal interpretation. 

The example of Figure 26 is for a single choice of N ,  f, and 
conformational asymmetry y = rB ir,. Systematic numerical calcula- 
t i o n ~ ” ” . ’ ~ ~  and the thread model analytic analysis33 (see Section VI1.C) 
reveal that (i) the extrapolated spinodal temperature grows strongly with 
N (roughly linearly), (ii) the temperature interval over which the 
nonlinear behavior of the inverse peak scattering intensity versus T-’ 
decreases as the chains get larger, and (iii) at fixed N and f the apparent 
(extrapolated) microphase spinodal transition temperature increases 
strongly as the conformational asymmetry increases. All these trends are 
in qualitative accord with experiments on polyolefin diblock 

and point (ii) implies that the fluctuation stabilization of 
the disordered phase is a finite size ( N )  process. 

An example of point (iii) is shown in Figure 27 for two values of the 
chemical asymmetry variable A .  This figure illustrates that conformational 
mismatch strongly destabilizes the homogeneous diblock phase. This 
effect arises from block-dependent packing differences that result in a 

me~ts,1366.141,142 

Analytical Model, h= 1 

N=2000, f=0.5, rA=l 

0.6 0.8 1.0 1 . 2  1.4 1 .6  1.8 

y = rc/rA 
Figure 27. Apparent spinodal phase diagram for N = 2000, f = + stiffness asymmetric 

diblock copolymer melt.’33 Here r, = 1, while rB was varied. Numerical results (SFC) are 
shown for two choices of the bare attractive energy asymmetry variable A .  The dashed curve 
shows the corresponding analytical thread predictions discussed in Section VI1.C. 
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correlated contribution to fluid enthalpy. In addition, Figure 27 clearly 
shows that the bare energetic and conformational asymmetries do not 
influence the spinodal temperature in an additive manner. The 
asymmetry factors, which individually tend to destabilize the randomly 
mixed state, can either “reinforce” or tend to “compensate” each other 
thereby giving rise to novel mechanisms of copolymer miscibility and 
immiscibility. The curve labeled “analytic” arises from PRISM theory for 
the Gaussian thread model as discussed in Section V1I.C. 

Species-dependent interchain pair correlations at low temperatures are 
shown in Figure 28 and significant changes from the high T athermal 
behavior are found (see, e.g., Fig. 25). As expected physically, on a 
spatially local and global scale as the temperature is lowered there is an 
enhancement (reduction) of like (unlike) contacts due to emerging 
microdomains and AB interfaces. The flexible block reorganizes more 
upon cooling since its microdomains are more compressible. This is 
dramatically illustrated by the crossing of the stiff-stiff and flexible- 
flexible pair correlations with increasing site separation. On macro- 
molecular length scales, strong oscillations develop indicative of phase 
separation on the microdomain length scale D. Consistent with the long 
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Figure 28. Low-temperature radial distribution functions’?’ for model C melt with 
N = 500 and f= 0.5. 
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wavelength scattering peaks of Figure 24, the flexible block displays larger 
amplitude long-wavelength fluctuations. 

The influence of block aspect ratios and overall degree of poly- 
merization on the physical clustering at a fixed melt packing fraction, 
fixed ratio of aspect ratios, and fixed distance from the (extrapolated) 
spinodal temperature is displayed in the form of Ag(r) in Figure 29 
[defined here to be one-half the quantity given in Eq. (4.1)]. There are 
two key trends.133 (i) Segregation is enhanced when the B block is more 
flexible or equivalently when the average diblock copolymer aspect ratio 
is smaller. This is again due to the enhanced compressibility of the lower 
mean aspect ratio fluid and emphasizes that the absolute value of both 
block aspect ratios, not just their relative value or difference, are 
important. (ii) Segregation or physical clustering monotonically decreases 
with increasing N .  This trend clearly establishes that the physical process 
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Figure 29. Influence of degree of polymerization and chain aspect ratio asymmetry on 
the pairing f ~ n c t i o n , " ~  defined here as Ag(r) = 0.5[gAA(r) + gBB(r)] - gAB(r) ,  at a relatively 
low-temperature.'32 Results are shown at a fixed (low) temperature relative to the apparent 
microphase spinodal point for model C and for several values of overall degree of 
polymerization. One case for model A (r, = $ )  is shown to demonstrate the effect of overall 
copolymer backbone stiffness. The inset shows a reduced or  scaled plot for the three 
different N cases of model C. Optimum collapse of the different curves occurs when the 
exponent v 0.275. 
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responsible for generating concentration fluctuation phenomena is of a 
“finite size” nature, which would appear to vanish in the hypothetical 
N +  ~0 limit. The possibility of simple N scaling of this fluctuation process 
is explored in the inset of Figure 29, which shows that, surprisingly, a 
near superposition of different N cases is obtained over all length scales. 
This observation suggests a tight correlation, and common origin, for the 
local and global thermally induced structural changes in the diblock 
copolymer liquid. The apparent scaling exponent, v, is roughly 0.275. The 
interpretation of this value is postponed to Section VI1.C. 

Another interesting spatially resolved measure of segregation and 
microdomain formation is a “length-scale-dependent composition” of 
species M’ in a spherical volume of radius R surrounding a tagged 
monomer of type M defined as133.139 

In either the large R limit or the random mixing limit of gMM,(r) = g(r)  for 
all M and M’, these functions reduce to the stoichiometric values defined 
by the copolymer composition. Indirect experimental measurements of 
such local compositions have recently been attempted (with the help of a 
model) by several methods that probe equilibrium and/or dynamic 
structure on length scales varying from a few monomer diameters (light 
scattering, nuclear magnetic resonance (NMR); relevant to the glass 
transition), to the block size (dielectrics for polar polymers), up to the 
microdomain length scale (small-angle neutron scattering). This definition 
is constructed to count only segments on different chains surrounding a 
tagged monomer. Such a definition would seem the most relevant one for 
describing length-scale-dependent interchain friction in condensed phases. 
Inclusion of the self, intramolecular contribution is trivial. 

An e ~ a m p l e ” ~  of the predictions of PRISM for these effective 
compositions is shown in Figure 30 for f = + and a range of length scales 
R .  At high temperatures, deviations from the random mixing, stoichio- 
metric value of is small, consistent with the discussion of the athermal 
limit in Section VI1.A. A rapid growth occurs as the extrapolated 
spinodal temperature is approached with increasingly pure domains 
emerging on short length scales. The flexible block reorganizes more than 
the stiff block due to its enhanced compressibility. As expected, the 
segregation decreases as the correlation volume examined increases. On 
the microdomain length scale, D 33d, probed by SANS there is roughly 
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Figure 30. Diagonal values (flexible-flexible and stiff-stiff) of the effective com- 
position"' as a function of reduced inverse temperature for various choices of the 
correlation radius R and f = 4 for model C. The size of the flexible block is R,, = 6.4d, the 
overall diblock size is R, = 10.2d, the microdomain length scale is D = 32.8d. 

a few percent enrichment. Consistent with the results of Figure 30, such 
segregation does decrease with increasing N (at fixed but does 
so very slowly. For experimentally relevant values of diblock copolymer 
N < 1000 strong fluctuation effects are always predicted. 

Results (not shown) for the very compositionally asymmetric case of 
f = have also been ~b ta ined . "~  As opposed to the f = + case, which is 
known to organize into lamellar or "sheetlike" domains, the f = & case 
generally acquires a body-center-cubic-type structure at low T corre- 
sponding to spherical domains of the minority components dispersed in 
the continuous majority phase. Thus, very weak perturbations of the 
effective composition from its bulk value is found for the majority 
domain, and very strong deviations emerge for the minority domain (e.g., 
@ = 0.2 - 0.4 for T = 0.97's,app). We note that PRISM theory does not 
predict microdomain symmetries of ordered phase but rather the pair 
structure of the highly fluctuating precursor or supercooled fluid. 

Detailed and successful applications of the PRISM theory of diblock 
polyolefin melts to interpret the strong experimental correlation9' of the 
microphase ordering temperature with polyolefin monomer structure 
(e.g., chain stiffness and monomer branching) have been ~ r e s e n t e d . ' ~ ~  
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Finally, we make three general comments about PRISM theory in the 
low-temperature limit where convergence of the numerical algorthim 
becomes increasingly d i f f i~ul t .~’ . ’~~ (1) At very low temperatures, defined 
as T << Ts,app, the cross term gAB(r) can attain unphysical negative values 
for small r .  This is perhaps not surprising since nothing in the integral 
equation approach explicitly forbids such behavior, and at low tempera- 
ture the true physical system does try to mimimize contact between the A 
and B segments (narrow interface limit). (2) There are indications that at 
very low temperatures PRISM predicts the emergence of a highly 
correlated, but globally disordered, fluid phase that attains a ground-state 
structure. By the latter term we mean the peak scattering intensity, 
indicative of the purity and spatial coherence of microdomains, and the 
interchain pair correlations, approach limiting low T values. Analytic 
support3’ for this assertion is given in Section VI1.C. As a purely 
speculative remark, for f such a diblock copolymer fluid phase may 
have the form of a quenched, spinodally decomposed fluid (perhaps of 
random bicontinuous morphology). Such an idea has been previously 
advocated based on experimental studies by Bates, Fredrickson, and 
c o - w o r k e r ~ . ~ ~ ~ ~ ’ ~ ’  (3) At very low temperatures one expects136 the diblock 
copolymer will “stretch” in order to further reduce AB contacts, thereby 
violating the assumed “Flory ideality” conformational behavior. PRISM 
theory has been generalized to treat this aspect, although the amount of 
stretching appears small for long chains not too far below the extrapo- 
lated spinodal temperat~re.’~’ 

C. Analytic Predictions in the Gaussian Thread Limit 

In the Gaussian thread limit analytic results have been derived for 
copolymer fluids using the molecular c10sures.33~128~140 The analytic results 
provide insights to several key questions and behaviors that emerge from 
the numerical PRISM studies. These include: (1) the role of nonzero 
monomer hard-core diameter, density fluctuations, and concentration 
fluctuations on diblock liquid-phase behavior and structure; (2) relation- 
ship between phenomenological field-theoretic a p p r o a ~ h e s ’ ~ ~ - ’ ~ ~  and the 
molecular closure-based versions of PRISM theory; and ( 3 )  the influence 
of molecular weight, composition, solution density, and chemical and 
conformational asymmetries of the blocks on copolymer microphase 
separation temperatures. 

Most field-theoretic work,’43-145 and all computer simulation studies to 
date >46-148 have focused on the idealized “structurally and interaction 
symmetric” AB copolymer model. As was true for the blend (see Section 
VI.B), in the high-temperature athermal limit this model diblock reduces 
to a homopolymer fluid. This oversimplified model has the symmetry- 
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related virtues of near decoupling of density and concentration fluctua- 
tions and allows the cleanest study of the polymer physics aspects of 
points ( I )  and (2) listed above. Thus we consider it first. 

1. Idealized Symmetric Model 

For simplicity, we consider the S-ordering tail potential choice: uMM = 0 
and u,, > 0. The R-MMSA and linearized R-MPY/HTA expressions for 
the direct correlations functions and effective chi parameter are identical 
to the blend cases and hence are “deterministic.” Thus, at low tempera- 
ture the reduced repulsive tail potential, PuAB(r) ,  can become arbitrarily 
large leading to a microphase separation spinodal instability defined as 
iMM,(k*)+ w. The latter condition is precisely given by33 

ii(k*) = 0 = 1 - pA&AA(k*)cAA(k*) - PBABB(k*)CBB(k*) 

- 2p,kAB(k*)CAB(k*) + pApe 6&(k*) 6C(k*)  (7.3) 

where prnGMMt(k*) = hMM,(k*)  from Eq. (7.1), and k* is implicitly 
defined as the wave vector for which the diveregence first occurs. One can 
easily show33 that for this symmetric thread diblock model at high 
meltlike densities, PRISM plus the R-MMSA closure reduces precisely to 
the incompressible mean-field theory of homogeneous block copolymers 
derived by L e i l ~ l e r ’ ~ ~  with xeff = xo. The R-MPY/HTA closure leads to a 
nearly identical theory;i3 but the chi parameter is corrected for local 
density fluctuations via the athermal pair correlation function in a manner 
essentially identical to the analogous blend result of Eqs. (6.12). 

The reduction of thread PRISM with the R-MMSA closure for the 
idealized fully symmetric block copolymer problem to the well-known 
incompressible RPA approach’43 is reassuring. However, in contrast with 
the blend case, for copolymers that tend to microphase separate on a 
finite length scale, the existence of critical or spinodal instabilities is 
expected to be an artifact of the crude statistical mechanical approxi- 
mations. That is, finite N “fluctuation effects” are expected to destroy all 
such spinodal divergences and result in only first-order phase transitions 
in block copolymers [i.e., Eq. (7.3) is never satisfied]. Indeed, when 
PRISM theory is numerically implemented for finite thickness chain 
models using the R-MMSA or R-MPY/ HTA closures spinodal diver- 
gences do not occur.33 Thus, one learns that even within the simpler 
molecular closures, the finite hard-core excluded volume constraint 
results in a “fluctuation effect” that destroys the mean-field divergences. 
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Thus, taking the thread limit results in an “ideal” phase transition that 
allows a precise microphase separation transition temperature to be 
defined which is relevant to extrapolated spinodals that can be measured 
experimentally and via simulation. This aspect is exploited in the next 
subsection. 

Although the nonzero hard-core diameter constraint itself is sufficient 
to destroy spinodal and critical instabilities, one suspects this may not be 
the dominant mechanism for fluctuation stabilization of the low-tempera- 
ture copolymer fluid.33 The enthalpic feedback mechanism contained in 
the R-MPY closure, which as discussed in Section V1.B correctly de- 
scribes the concentration fluctuation effects in the macroscopically phase 
separating symmetric will also result in an arrest of the divergent 
concentration fluctuations on the microdomain length scale. Although 
these two sources of fluctuation stabilization are not rigorously separable, 
comparison33 of numerical PRISM studies with the simulations of Binder 
and Fried 146 suggest the enthalpic feedback mechanism is dominant, at 
least for the idealized symmetric diblock model. 

The linearized R-MPY version of the thread molecular closure con- 
dition of Eq. (6.7) can be shown to result in a nonlinear, self-consistent 
integral equation for the effective chi parameter33 [or equivalently the 
concentration fluctuation part of the collective structure factor s ( k ) ]  

(7.5) 

where xHTA is the R-MPY/HTA closure prediction, $(k) is of the 
incompressible random phase approximation (IRPA) form 

and F(k) is defined as 

(7.7) 

Analytic expressions for F are available for Gaussian chain m0de1s.l~~ 
The self-consistent fluctuation correction arises from the (finite size) 
coupling of local, thermally driven changes of gAB(r) with the micro- 
domain scale concentration fluctuations. Such a coupling is mediated by 
the chain and block connectivity constraints, and vanishes if the HTA 
becomes exact, that is, gAB(r) - g,,(r)+O. This condition can be achieved 
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in many ways: T - x  (or x,,,-+O>, f + O  or 1 (homopolymer limit), 
p + 0~ (incompressible limit), N-+  =, or the “infinitely weak, infinitely 
long range” Kac tail potential limit (a -+ a). 

Equations (7.5)-(7.7) have been solved numerically for diblock 
 copolymer^,^^ but their mathematical form alone guarantees there is no 
k * f O  divergences. The general form of Eq. (7.5) is similar to that 
derived based on the incompressible phenomenological field-theoretic 
treatment of fluctuations of Brazovskii (a self-consistent harmonic or 
Hartree approximation) as applied to diblock copolymer problem by 
Fredrickson and Helfand .144 However, the physical origin of the feedback 
stabilization effect in the field theory is coupling to nonlinear (quartic and 
cubic) purely entropic single-chain corrections to the Landau free energy 
expansion, and thus is entirely distinct from the PRISM/R-MPY corre- 
lated enthalpic mechanism.33 These differences have many consequences, 
including the very different conditions under which fluctuation effects are 
“turned off” in the two theories. Recent diagrammatic field-theoretic 
analysis by S t e p a n ~ w ‘ ~ ~  has argued that a non-RPA-based approach leads 
to results very different than the Brazovskii analysis. Stepanow’s main 
results appear to be qualitatively consistent with the PRISM predictions. 

Further analytic progress can be made by approximating the form of 
the structure factor in Eq. (7.5) as a delta function, that is, a dominant 
wave vector approximation. The resulting self-consistent equation can be 
written as a cubic equation for the square root of the peak intensity 
variable33 

- 0  (7.8) xo 2 x s  20x0 

where xs is the critical (but unattainable) value required for a spinodal 
divergence in Eq. (7.6) (e.g., x, = 10.495iN for f=+). The factor 0 is 
known and approaches an N-independent value for long chains. It is 
given by 

(7.8a) 

2 2 143.144 where (Y = (i)x*[a F / ~ X ~ ] ~ , ~ * U ~ ,  which is tabulated elsewhere, 
x = (kR,)’ ,  and u is the statistical segment length. 

Analytic solution of Eq. (7.8) can be obtained in three special re- 
g i m e ~ . ~ ~  Here we focus solely on the N-scaling behavior of the maximum 
concentration fluctuation amplitude, that is, $ k * )  0~ N u .  (i) The high- 
temperature, or low N ,  “mean-field” limit of xnN << (,yoN),,,,, where 
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the latter is the spinodal value within the PRISMIR-MPYIHTA theory. 
Here v = 1, xerf a $ - l ( k * )  a T - * .  (ii) A second case is at the spinodal 
predicted by the R-MPY/HTA level theory where one can show that 
$(k*)  N413. The predicted N-scaling exponent agrees with the Brazovski 
field-theoretic approach‘44 at the order-disorder microphase transition or 
its extrapolated apparent spinodal. The amplitude of Ag(r) is predicted to 
scale as N-’13. The latter scaling law is close to the behavior found 
numerically in Figure 29 for a finite thickness chain model (d  # 0) and 
R-MPY/HTA closure. (iii) In the very low temperature or high N limit, 
x,,N >> ( X ~ ~ N ) ~ , ~ ~ ~ ,  Eq. (7.8) predicts a limiting “ground-state” behavior 
given by S ( k * )  N 2 .  This prediction is very different than the corre- 
sponding field-theoretic result’44 for the (metastable) disordered fluid 
phase of $k*)  ~ N * ( X ~ N ) ~ ,  which displays a different N scaling and 
continues to grow without bound as the temperature is lowered. This 
striking difference again highlights the fundamentally different origin of 
the predicted “fluctuation” stabilization effect: correlated enthalpic in 
PRISM theory and entropic in the field theory. In practice, one expects a 
first-order phase transition to occur in the vicinity of the extrapolated 
spinodal, so the above low-temperature results are appropriate for a 
(metastable) supercooled fluid phase. 

Examples33 of the predictions of Eq. (7.8) for f = + symmetric diblocks 
are given in Figure 31. The high-temperature linear part of the curves is 
well described by the R-MPY/HTA theory. At lower temperatures, 
concentration fluctuations become manifest and nonlinear behavior 
emerges. With increasing chain length, the fluctuation regime becomes 
narrower. These features are in accord with numerical PRISM 

and experimental SANS meas~rernents . ’~”’~~ The inset of 
Figure 31 shows the growth of the effective N-scaling exponent over the 
entire temperature regime. The exponent crosses over from the mean- 
field value to the strong coupling behavior in a rather small interval of 
temperature (or N ) .  

The results in Figure 31 are for f = + ,  a meltlike fluid density, a 
particular choice of spatial range of the tail potential, and variation of 
xoN was achieved by cooling. Very similar results33 are found a constant T 
by increasing N ,  and for asymmetric diblock compositions f # 4. How- 
ever, at fixed temperature (but not fixed distance from the extrapolated 
spinodal), the effective chi parameter increases as the diblock com- 
position becomes purer. This is similar to the blend situation where 
xCff(4) is roughly parabolic and concave-upward, but there are distinct 
differences in the shape of the block copolymer xeff(f), and significantly 
larger amplitudes are predicted since the relevant phase separation length 
scale is finite?3 The characteristic microdomain length scale, D = 2rr/k*, 



INTEGRAL EQUATION THEORIES OF POLYMER FLUIDS 101 

1 . 0  

0 . 8  

0 . 6  

0.4 

0.2  

0.0 
0 5 10  15 20 25 

XoN 
Figure 31. PRISM plus linearized R-MPY closure predictions” for the normalized 

inverse peak scattering intensity of the f = i symmetric Gaussian thread diblock copolymer 
model. Results (top to bottom) for N = 201 200, 2000, and 20,000 are shown at fixed melt 
density and a Yukawa tail potential range parameter of a = 0.5. Here, the bare driving force 
for microphase separation, ,yoN N T - ’ ,  is varied by changing temperature. The inset shows 
the apparent exponent that describes the scaling relation between peak scattering intensity 
and N as a function of inverse temperature (as extracted from the three largest chain 
lengths). 

is predicted to increase upon cooling even under the conformational 
ideality condition of fixed block copolymer chain dimensions. Although 
this is a finite size fluctuation effect, it emphasizes the physical fact that 
k* is affected by both single-chain size and collective  correlation^.'^^ 

As the overall fluid density is decreased (corresponding to diblock 
copolymers in a nonselective solvent), the fluctuation regime of the peak 
scattering intensity curve becomes broader and begins farther away from 
the extrapolated spinodal t e m p e r a t ~ r e . ~ ~  Physically, this is because the 
lower density solution is more compressible, and hence thermally driven 
clustering and segregation of like monomers is more easily achieved. A 
qualitatively equivalent explanation is that the separation between the 
microdomain scale and the density correlation length scale is smaller at 
lower copolymer densities, and thus the finite size coupling mechanism is 
more efficient. Similarly, if the spatial range of the attractive tail 
potential, a ,  is reduced, then thermally driven local clustering of like 
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segments is enhanced and the fluctuation stabilization mechanism on the 
microdomain scale is enhanced.33 

2. Role of Block Asymmetries 

In analogy with the conformationally and interaction asymmetric thread 
blend analysis discussed in Section VI.C, Schweizer has derived analytic 
results for the microphase spinodal based on the R-MMSA and R-MPYI 
HTA closures.'28 The focus here is not on the rather universal fluctuation 
stabilization phenomenon discussed above but the influence of system- 
specific block stiffness and attractive interaction differences on the 
location of the (spinodal) microphase separation temperature. 

One extra approximation must be invoked for the block copolymer 
case relative to the blend. The reference athermal system is not a mixture 
of A and B chains, but a connected block copolymer of A and B 
segments. Analytic solution of the thread PRISM equations has not been 
achieved for this case. Thus, as a technical approximation the reference 
hard-core direct correlations functions have been approximated by their 
blend values given in Section 1V.D. Such an approximation should be 
excellent for large N and the diblock architecture, but will deteriorate in 
accuracy for muitiblock architectures. 

model is given by'** 
The predicted spinodal temperature for the Berthelot A tail 

G(k*,  f, r )  
Pm IHA.4 I (-pC",) 

kB-Ts = f ( l  - f)N(y2 - A)'f((k*, f, y )  + 

potential 

(7.9) 

where the symbols have the same meaning as for blends (see Section 
V1.C). The functions F and G are explicitly given elsewhere."* These 
functions are independent of N in the long-chain limit; for example, for 
the stiffness symmetric ( y  = l), f = + diblock case F = 2/10.495. The 
ordering wave vector k* is determined (numerically) by maximizing the 
right-hand side of Eq. (7.9). 

For diblock copolymers, all the general trends predicted by Eq. (7.9) 
are qualitatively the same as the blend case discussed in Section V1.C. A 
fit'33 of an equation of the form of Eq. (7.9) to the numerically 
determined apparent spinodal temperatures for the finite thickness SFC 
model of Section VI1.B is shown in Figure 27. The simple analytic form 
qualitatively captures the numerical PRISM results, although quantitative 
deviations occur as expected. 

Since thread PRISM theory at the R-MMSA or R-MPYIHTA closure 
level predicts a spinodal instability, its description of the disordered phase 
can be combined with field-theoretic Landau expansion and Brazovskii 
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methods to construct an analytic theory for the first-order microphase 
separation transition. Such a hybrid PRISM/field theory approach has 
been developed by Tang and S~hweize r”~  and includes both global 
fluctuation and local correlation and asymmetry effects. 

VIII. SOLVATION POTENTIALS AND SELF-CONSISTENT PRISM 

All the theoretical work described so far has assumed conformational 
ideality. That is, the intramolecular pair correlations are presumed to be 
independent of fluid density (and composition in an alloy) and can be 
computed based on a chain model that only accounts for “short-range’’ 
interactions between monomers close in chemical sequence. This assump- 
tion can fail spectacularly in dilute “good” solution where the effective 
intrachain monomer-monomer interaction is repulsive in a second virial 
coefficient For such good solvent conditions, the polymer mass/ 
size relationship no longer obeys the ideal random walk scaling law 
R 
corresponding to the “swollen” coil behavior. As the dilute solution is 
concentrated by increasing a dimensionless measure of monomer con- 
centration (e.g., p ) ,  the polymers begin to interpenetrate, and the 
excluded volume swelling effect is progressively screened. The precise 
manner this occurs is predicted by scaling theories‘ to be of a power law 
form under large N ,  semidilute solution conditions, R x p - l I 8 ,  for p*  << 
p << 1. Here, p = 1 corresponds to the neat melt, and in good solvents 

p* 0~ N - 4 1 5 ,  which represents the semidilute overlap density when differ- 
ent chains just begin to touch. The semidilute regime is characterized by 
strong interchain overlap conditions, but still small overall concentration 
of polymer. At high melt concentrations the polymer behaves as an ideal 
random walk, and it is widely believed (but not proven) that chain 
dimensions “saturate,” that is, become p independent.’-3 

Phenomenological scaling theories, based on analogies with critical 
phenomena, have been developed to qualitatively describe semidilute 
solutions in the asymptotic long-chain limit (it- c ~ ) . ~  Self-consistent 
field-theoretic approaches have also been constructed by Edwards and 
co-workers to describe the physical behavior summarized above.3 How- 
ever, such theories are based on the most idealized Gaussian thread chain 
model, and integrable delta function two- and three-body psuedopoten- 
tials between monomers. The latter can loosely be identified as describing 
effective monomer-monomer interactions in solution at the second and 
third virial coefficient level; in practice they are treated as empirical 
parameters. Neither scaling nor field-theoretic approaches are appro- 
priate for dense solutions and melts. 

but follows the self-avoiding walk (SAW) law R 0~ N u  with Y 
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As Edwards has recently e m p h a ~ i z e d , ’ ~ ~  a truly microscopic theory of 
phenomena such as discussed above would be very valuable since it would 
provide not only quantitative system-specific information but also could 
establish the range of validity of phenomenological scaling ansatzes. In 
this section we summarize recent progress toward this goal in the 
framework of PRISM and liquid-state theory. We note that Chandler and 
Pratt carried out pioneering work in this area by developing a statistical 
mechanical framework for the self-consistent calculation of a single 
molecule conformation within the RISM f o r m a l i ~ m . ~ ” ~  

The effective single macromolecule potential surface, U( g ), consists 
of three physically distinct  contribution^^^ 

U ( g )  = u, + u, + w(g) (8.1) 

where g denotes a complete set of coordinates required to specify the 
configuration of a polymer molecule composed of N sites. The first term, 
U,, describes the “bare” local intramolecular interactions that specify 
chemical bonding constraints (e.g., fixed bond length and bond angle) 
and local chain flexibility (e.g., dihedral angle rotations in an atomistic 
model or bending energy in a SFC model). All the “ideal” models 
discussed in Section 111 contain only this type of energy term. The second 
contribution, U,, describes nonbonded “long-range” (in chemical se- 
quence) excluded volume-type intramolecular interactions that are taken 
to be pair decomposable. Under good solvent conditions, U ,  favors chain 
swelling to reduce intramolecular repulsive contacts. The third term, 
W ( e ) ,  describes the “solvation free energy,” that is, the reversible work 
required to achieve a configuration 5 in the condensed phase due to 
intermolecular solute-solvent potentials only. In principle, this solvation 
potential is an N-body function. However, mathematical tractability 
would seem to require reduction to an (effective) pair-decomposable 
form, that is, 

All work to date has employed this simplification. 
Pratt, Chandler, and others have developed and applied approximate 

solvation potentials for flexible n-alkane fluids such as butane and decane 
and other relatively small  molecule^.^^"^^'^^ The original approaches 
invoked a “superposition” approximation,” which in its most naive form 
corresponds to assuming pair decomposability of W ( g )  and calculation of 
the effective pair potential based solely on consideration of the two sites. 
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A more accurate solvation potential approach was then developed by 
Chandler and ~ o - w o r k e r s ~ ~ . ~ ~  in the context of a quantum electron in 
dilute (classical) solution that led to new and more accurate self-con- 
sistent approximations for the effective pair potential in W(5).’55 This 
work represents the starting point for our self-consistent PRISM-based 
studies of polymer fluids and the development of novel solvation potential 
approximations required for an adequate qualitative treatment of some 
macromolecular systems. 

A. Solvation Potential Theories 

Chandler and c o - ~ o r k e r s * ~ ~ ~ ~  have proposed a self-consistent pair inter- 
action, called the Gaussian fluctuation (GF) potential, of the form 

PW,,,(r) = -c / dr’ / dr”C,,(lr - r’l)SAs(/rt - r”l)CsY(r”) (8.3) 

where Say(r) is the total density-density correlation function between 
sites (Y and y separated by a distance r .  For molecules composed of 
symmetry equivalent sites, Eq. (8.3) simplifies in Fourier space to 

AS 

-pG(k) = -C2(k)$(k)  (8.4) 

This approximate form can be derived many ways: from renormalized 
second-order perturbation theory:3 Gaussian (linear response) density 
field theory:3 or via density functional  expansion^.^^,^^^ Pictorially, the 
medium-induced potential between a pair of tagged sites is determined by 
coupling to the surroundings via an effective potential (direct correlation 
function), which is mediated by density fluctuations of the condensed 
phase. The integrated strength of the medium-induced potential is 

1 
*(0) = -k,Te2(0)$0) = -2 

P KT 

where the second equality follows from use of the PRISM Eq. (2.2). 
Equation (8.5) shows W(r) is (on average) attractive, favoring com- 
pressed polymer conformations, and hence will tend to cancel or “screen” 
the expansive consequences of the bare intramolecular repulsions. Thus, 
the effective attraction is expected to become stronger as fluid density 
increases, chain length decreases, and/or polymer backbone stiffness 
increases, since all these changes enhance intermolecular packing and 
reduce bulk compressibility. Moreover, W(r) becomes increasingly struc- 
tured (e.g., oscillatory) as the above changes are made.24,43 

The basic feature of a self-consistent mean pair approximation such as 
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Eqs. (8.2) and (8.3) is that the effective interaction between two sites on 
the polymer depends on their instantaneous position, and only on the 
entire macromolecule conformation in an average (implicit) sense via the 
direct and collective pair correlations. This simplification does not 
preclude describing situations of broken conformational symmetry, such 
as polymer collapse, solvated electron localization, or spatially inhomoge- 
neous conformational characteristics such as occur in star polymers (see 
Section I X ) . ~ ~ ~ ~ ~ , ~ ~  

Grayce and SchweizerP6 based on graph-theoretic and hueristic argu- 
ments, suggested a modified form for the solvation potential ("PY style") 
that is in the spirit of the Percus-Yevick closure 

pW::(r) = -In 1 + c dr' dr"C,,(lr - [ A,8 

Equation (8.3), by contrast, was argued to be in the HNC closure spirit 
(HNC-style solvation potential). On general grounds, one expects the 
PY-style solvation potential to be weaker (e.g., less compressive) than its 
HNC-style analog (see Fig. 32). However, the two solvation potentials do 
become equal in the limit of weak interactions, p W ( r )  << 1. This limit 
may occur for many reasons such as high temperature, low fluid density, 
and/or large intersite separations. Moreover, the theoretical model 
adopted (e.g., thread, SFC, RIS) and/or the statistical mechanical 
approximations invoked may result in such a weak coupling regime for 
differing regimes of thermodynamic state. 

For simple fluids: the PY and HNC closure approximations are useful 
in different contexts, and this is probably also true of the corresponding 
solvation potentials. Based on analogies with atomic and small-molecule 
liquids, and homopolymer fluids, one might expect the PY potential is 
better for bare interactions, which are spatially short ranged and 
rep~lsive.~'  This is the situation for the polymer/good solvent system of 
present interest. However, one might expect that the HNC-style potential 
is useful for longer-range, more slowly varying potentials such as 
Coulombic or possibly Lennard-Jones attractive tails. The role of macro- 
molecular architecture (or precise single-polymer model) in such quali- 
tative ideas may be subtle and is not well understood at present. 

B. Self-Consistent Solution of Single Macromolecule Problem 

Implementation of self-consistent PRISM theory requires addressing the 
difficult technical question of how to iteratively solve the effective N-body 
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Figure 32. Typical high-density (pa : ,  = P F ~ ,  = 1) medium-induced potential between 
monomers of a repulsive Lennard-Jones N = 100 chain as predicted by self-consistent 
PRISM theory based on the HNC-style and PY-style solvation potentials and the variational 
generating functional method.” 

single-polymer problem with ‘‘long-range’’ intramolecular interactions, in 
conjunction with PRISM theory for interchain pair correlations and hence 
the solvation potential itself. For the homopolymer/good solvent prob- 
lem, successful field-theoretic approximate approaches have been 

However, these methods explicitly rely on the use of an 
integrable, delta-function psuedopotential description of segment-seg- 
ment interactions within an effective Gaussian thread framework. The use 
of more realistic models with local chemical constraints and a finite chain 
thickness (hard-core constraint) requires the development of different 
approaches. 

Over the past several years, we and our collaborators have constructed 
and applied several a p p r o a ~ h e s ~ ~ - ~ ’  that vary greatly in both computa- 
tional convenience and level of statistical mechanical approximation. 
These various approaches often have distinct (and often limited) regimes 
of applicability and level of accuracy. Here we sketch the essential 
physical features and statistical mechanical approximations of the differ- 
ent numerical approaches. 
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1. Single-Chain Monte Carlo Simulation 

The most rigorous and computationally demanding approach to solving 
the statistical mechanics of an effective Hamiltonian given by Eqs. (8.1) 
and (8.2) is to perform a single-chain Monte Carlo simulation in the 
framework of a self-consistent PRISM calculation. This approach was first 
explored by Melenkevitz et alP4 using a standard “kink-jump” algorithm 
and subsequently by Grayce and co-workers4’ using the more accurate 
“pivot algorithm”.’” 

Although straightforward in principle, and simpler than a many-chain 
simulation, there are several practical difficulties associated with proper 
sampling and equilibration. For example, at high fluid densities the 
solvation pair potential is strong and oscillatory (see Fig. 32), which 
makes sampling and equilibration difficult. Early work using the kink- 
jump method was found to fail at such high densitiesP4 and the pivot 
algorithm with its “long-range moves” was required for proper statistical 
sarnp~ing.~’ 

2. Free Energy Variational Approaches 

A simpler, analytic approach is to employ the standard idea of replacing 
the real system with a computationally tractable “reference system” 
(polymer chain model in our case), the parameters of which are variation- 
ally optimized using an approximate single-chain free energy expression. 
Two such schemes have been e ~ p l o r e d ~ ’ , ~ ’  that differ in both the choice 
of reference chain model and the form of the approximate free energy. 

Earlier work by Melenkevitz et alP5 was based on the standard 
Gibbs-Bogoliubov inequality for the single-chain free energy: 

where w:y(r) is the reference system intrachain pair correlation function 
matrix, and A+ay(r) is the difference in single-chain effective interaction 
pair potential between the real and reference systems. 

In numerical applications, the “solvent” is treated as a vacuum, that is, 
it enters solely in determining the polymer concentration or  packing 
fraction 7. Thus, the real two-component polymer/solvent mixture is 
abstracted to a one-component polymer fluid of variable density. For the 
hornopolymer/good solvent system, the reference system is chosen to be 
an ideal SFC (as computed with the discrete Koyama appro~imation)~’ 
with an effective, or “renormalized,” bending energy E,. The repulsive 
interactions between sites separated by two bonds +2(r ) ]  is also 0 



INTEGRAL EQUATION THEORIES OF POLYMER FLUIDS 109 

included in the reference system and treated exactly. Thus, the effective 
bending energy describes both the bare bending efficiency of the real 
chain, plus the combined consequences of the bare intramolecular 
repulsions and medium-induced potential. Since the explicit effect of 
intrachain excluded volume is absent in the ideal SFC model, it is 
introduced approximately by defining an effective bond length, leffr 
determined such that in the dilute solution limit SAW scaling for ( R ’ )  is 
recovered. This approach is in the spirit of field-theoretic studies3 and is 
capable of treating the entire polymer concentration regime in good 
solvents. Values of the density-independent quantity leff as a function of N 
are determined from Monte Carlo simulation of a single self-avoiding 
chainP5 Explicit forms of Eq. (8.7) for this model and variational theory 
are given el~ewhere.~’ It is important to mention that the bare (singular) 
intrachain repulsions are omitted in the evaluation of A+a,,(r) in Eq. 
(8.7). 

More recently, a second free energy variational approach has been 
developed by Grayce and c o - w o r k e r ~ . ~ ~  An approximate single-chain free 
energy is constructed in the spirit of a functional expansion about an ideal 
reference state with an explicit accounting of intrachain excluded volume. 
The latter cannot be naively treated via perturbation theory since it is 
singular and nonintegrable for the finite hard-core diameter models of 
interest. Rather, a virial-like treatment of the nonbonded intrachain 
repulsions and medium-induced potentials is employed by carrying out an 
expansion about an ideal reference system through second order in the 
appropriate Mayer f bonds. 

In applications, the reference system is again chosen as an ideal SFC 
with renormalized bending energy E ,  and next nearest neighbor pair 
correlations, w ! , ,  +’(r ) ,  exactly computed. The resulting approximate 
single-chain free energy is47 

where A+*?(r) = u(r) + W(r;  F , ~ )  for la - yI 2 3 (where u is the bare 
intrapolymer “excluded volume” potential), and A4m,,(r) also includes the 
difference between the bare and renormalized bending potential for 
la - yI = 2. Here, E , ~  and E, must be determined self-consistently by free 
energy minimization and a recursive generating functional p r0~edure . j~  
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Under certain conditions it is possible to bypass this process by treating W 
not as an external field but as a functional of the intrachain correlations, 
and therefore directly minimizing F. That is, E , ~  = E, is enforced at the 
start of the self-consistent iteration procedure and F(E,)  is mimimized. 
Such a “direct” method4’ is generally much faster to numerically 
implement than the full recursive procedure. As a matter of principle, it 
does not yield the same predictions as the recursive approach, but in 
applications studied to date based on the PY-style solvation potential the 
results are quite similar (see Section VII1.C). 

Both the accuracy of variational approaches and their range of 
applicability are expected to depend strongly on the physical problem, 
thermodynamic state conditions, and the choice of reference system and 
form of the approximate free energy. The approach of Melenkevitz et 
alPS is relatively crude but is expected to be qualitatively useful over the 
entire range of polymer concentration and degree of polymerization. The 
approach of Grayce et alP7 is more general with regards to describing the 
chemical structure of macromolecules, but by construction is not capable 
of recovering the SAW dilute solution behavior due to the perturbative 
(in an f-bond sense) treatment of intrachain excluded volume interac- 
tions. Thus, this approach is expected to be most appropriate for dense 
solutions and melts and hence is complementary to the heavily coarse- 
grained scaling and field-theoretic appro ache^.^-^ 

3. Optimized Perturbation Theory 

The first self-consistent PRISM studies by Schweizer et al.43 considered 
only the HNC-style solvation potential and were based on an optimized 
perturbative, not variational, determination of the ideal reference system 
effective bending energy. The starting point is a simple functional 
expansion of the true single-chain free energy about an ideal reference 
system43 

(8.9a) 
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where E” is the bare SFC bending energy that quantifies the potential ub ,  
and F,  is the corresponding renormalized value of the reference system. 
The required functional derivative (evaluated in the reference system) is 
easily determined. The reference system effective bending energy is 
chosen by requiring the first correction to F - F” vanishes. This scheme is 
analogous to well-known “blip-function’’ theories of Chandler and co- 
workers5”’ for determining a hard-core diameter of soft repulsive force 
simple fluids. Such a simple approach is not adequate for low polymer 
densities and does not recover SAW scaling in the dilute limit. It is 
believed to be most adequate for describing “small” nonideal conforma- 
tional corrections, for example, nearly meltlike conditions. Moreover, 
this nonvariational approach can only be implemented for ideal reference 
systems characterized by only one parameter, and it has been shown to 
not properly describe the rigid rod limit where all condensed phase 
modifications of chain conformation must vanish.43 

C. Theory / Simulation Comparisons for Homopolymer Good Solutions 

The best test of self-consistent PRISM theory and the different solvation 
potential approximations is via comparison of its predictions against exact 
computer simulation studies of the same model.  The drawback is that 
present computer power limits such comparisons to short and inter- 
mediate length chains ( N  less than roughly 200). Many detailed com- 
parisons have been carried out at all levels of approximation discussed in 
Section VII1.B. Here we give a few examples along with summarizing 
remarks. The reader is referred to the original studies for details and a 
complete discussion. 

Two similar freely jointed (zero bare bending energy) models of a 
homopolymer/solvent system have been studied by many-chain simula- 
tion. Yethiraj and Hall6” investigated a purely hard-core, tangent bead 
model for N = 20-100 and monomer packing fractions of 7 = 0.1 - 0.35 
(concentrated solution). A shifted repulsive Lennard-Jones model of 
nearly tangent chains has been studied by Kremer and Grest (N = 20-200 
at fixed 7 0.45) and by Gao and W ~ i n e r ’ ~ ~  ( N  = 16, 7 = 0.1-0.47). The 
intramolecular structure factor &(k) and chain-averaged g(r)  were moni- 
tored, along with average chain dimensions R and R,. Here we focus on 
R,, which for dense solutions is also a direct measure of the chain 
persistence length or stiffness. 

We begin with the most “rigorous” version of self-consistent PRISM 
based on a Monte Carlo evaluation of the effective single-chain problem. 
Theoretical predictions of Grayce and co-workers4’ are compared with 
many-chain simulation results for the mean-square end-to-end distance of 
the hard-core chain model as a function of polymer packing fraction in 
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Figure 33 for N =20 and 100. (The corresponding estimates of the 
dilute-semidilute crossover points are q* 0.06 and 0.015, respectively). 
Over the many-chain simulation range of density studied, the PRISM/ 
Monte Carlo results based on the pivot algorithm and full self-consistent 
evaluation of d(k)  are in good (but not perfect) agreement with the 
simplified self-consistent PRISM/Monte Carlo approach of Melenkevitz 
et al.45 based on the kink-jump algorithm. Moreover, the theoretical 
predictions based on both the HNC-style and PY-style solvation potential 
are in qualitative agreement with the exact results. Motivated by blob 
scaling arguments for semidilute solutions: the density dependence of 
( R ' )  was fit to a power law form: ( R 2 ) ~ q - "  for 0.1<q<O.35. Over 
this very limited range, the power law form is adequate and an exponent 
in agreement (to within statistical error) with the many-chain simulation 
value6" of 0.25?0.1 was found. The latter value is consistent with the 
long-chain blob scaling prediction, but the agreement may be accidental 
since the chains studied are rather short and the density regime very 
limited. 

Quantitatively, the calculations based on the HNC-style solvation 
potential appear to be superior f o r  the density range studied b y  the full  
many-chain simulations. This is misleading, however, since (as seen in 
Fig. 33) the more compressive HNC-style solvation potential leads to a 
very strong, rapidly varying reduction of chain dimensions at high 
concentrations. This behavior conflicts with basic Flory arguments'-3 and 
the limited experimental data available suggesting that chain dimensions 
tend to saturate, or at least become very slowly varying in dense 
me~ts . '~ '"~" Examination of typical chain configurations in the PRISM 
Monte Carlo calculation based on the HNC-style solvation potential 
reveals a form of local collapse, or condensation, of closely bound sites 
along the 

Further comparisons are given in Table I11 for relatively dense 
solutions and two values of N .  Note that the polymer size is very different 
than the ideal freely jointed, ideal Koyama with local swelling, or the 
self-avoiding walk behavior. The accuracy and predicted trends of the 
HNC-style and PY-style approaches are relatively (but not completely) 
insensitive to N over the range of 20-100 for the choice of purely 
hard-core interactions. Summarizing, it appears the HNC-style solvation 
potential predicts too strong a compressive solvation force at high 
densities and is inadequate in this regime. Based on all the studies to 
date,44*47 the PY-style solvation potential coupled with PRISM/Monte 
Carlo seems qualitatively sensible under all conditions, and typically 
makes errors of 10-20% in the prediction of the absolute magnitude of R2 
and Ri .  Relative trends seem to be predicted significantly more accu- 
rately. 
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Figure 33. The change with polymer density of the mean-square end-to-end distance of 
hard-core chains of length (a) N = 20 and (b) N = 100. The data points are exact many-chain 
simulation results'" and the solid (dash-dot) lines are the self-consistent PRISMiMonte 
Carlo (free energy generating functional) predictions using the two solvation  potential^.^' 
The dashed horizontal line is the value of R' for an ideal freely joined chain with a 
minimum next nearest neighbor bending angle of 60", which mimics the local hard-core 
repulsion 



114 K .  S. SCHWEIZER AND J .  G .  CURRO 

TABLE 111 
Mean-Squared End-to-End distances, R’ a 

IJ = 0.2, N = 100 7 = 0.3, N = 100 IJ = 0.35, N = 20 

Method R 2  % error R2 % error R 2  96 error 

Simulation 
MC (HNC) 
MC (PY) 
F (HNC) 

F (HNC)b 
F (PY)b 
SAW‘ 

SFC‘ 

F (PY) 

F J C ~  

242.5 
299.6 
305.4 
206.1 
206.5 
221.2 
220.8 
348.5 
99.0 

164.1 

k2.7 
23.5 
26.0 

-15.0 
- 14.9 
-8.8 
-8.9 
43.7 

-59.2 
-32.3 

220.1 
276.1 
288.3 
185.7 
188.4 
201.3 
200.6 
348.5 
99.0 

164.1 

k2.1 32.2 
25.7 35.1 
31.0 38.6 

-15.6 28.2 
- 14.4 29.6 
-8.5 30.4 
-8.8 30.7 
58.3 50.8 

-55.0 19.0 
-25.4 30.8 

k13.3 
10.7 
19.9 

-12.5 
-8.2 
-5.6 
-4.8 
51.6 

-41.1 
-4.5 

a In units of the hard-core diameter of N = 20 and 100 linear hard-core chains at several 
packing fractions 7. The many-chain simulation results of Yethiraj and Hallho are listed 
along with theoretical predictions based on various approximate implementations of the 
self-consistent PRISM scheme described in detail in the text.” MC refers to the single-chain 
Monte Carlo method and F refers to the variational generating functional method. The 
HNC or PY in parentheses refers to the style of solvation potential approximation 
employed. Percent error of the theoretical predictions relative to the simulation values are 
also listed. For the simulation data the percentage error gives the statistical margin of error. 

Using a direct minimization of F as described in the text and Appendix of Ref. 47. 
Value for a self-avoiding random walk. 
Value for an ideal freely jointed chain. 

‘Value for the SFC model with local intrachain repulsion between next nearest 
neighbors included. 

The predictions of the variational free energy method [see Eq. (8.8)] 
of Grayce et  al.47 are also listed in Table 111. Results are shown for both 
the rigorous generating functional approach and the more approximate, 
but computationally simpler, “direct” minimization scheme. Reasonable 
agreement between the two technical implementations are found. Gener- 
ally, the generating functional method predicts consistently smaller 
polymer sizes than found based on the Monte Carlo method. This is true 
for both the HNC and PY-style potentials, and presumably reflects 
nonideality effects lost by the truncation of the virial expansion in Eq. 
(8.8) and by the assumption of ideal trial conformations invoked by the 
generating functional approach. For the shifted repulsive Lennard-Jones 
models (not shown), the PY-style approach is much more accurate than 
the HNC style, and significantly more accurate (typical errors of 54%) 
in an absolute sense than for the hard-core models (typical errors of 
14-19%). 

The gross qualitative trend of the HNC-style potential predicting much 



INTEGRAL EQUATION THEORIES OF POLYMER FLUIDS 115 

too small, “collapsed” conformations at high density is again found based 
on the approximate variational/generating functional approach of Grayce 
et alP7 A more traditional polymer science demonstration of the origin of 
this fact is the trend with polymer density of the monomeric second virial 
coefficient, defined in normalized dimensionless form as 

(8.10) 

where u(r) and W(r) are the bare intrachain and solvation pair potentials, 
respectively, between nonbonded sites. Traditionally, uo is taken as a 
measure of “solvent quality,” with positive values indicating a good 
solvent and coil swelling, negative values indicating a poor solvent and a 
collapsed conformation, and a zero value defining an ideal, “theta” 

It has been shown based on the generating functional approach 
that u,, > 0 for the PY-style potential, and approaches zero gradually at 
high melt densities consistent with the Flory concept of the melt as a theta 
s~ lven t .~ ’  However, for the HNC-style potential uo changes from positive 
to negative around 7 0.4-0.45, consistent with the observation of overly 
compressed polymer dimensions. 

Comparisons between theory and exact many-chain simulations have 
also been carried for the structural properties g(r )  and &(k) by Grayce 
and co-workers4’ based on the PY-style potential and the variational 
generating functional method. An example is given in Figure 34 for 
N = 100 and the medium-density case of 71 = 0.3. The general shape of 
&(k) is well predicted by the effective SFC ideal model, although the 
“plateau” at intermediate wave vectors is too high since the theory 
underpredicts chain dimensions (see Table 111) and hence local stiffness. 
Other comparisons suggests improved agreement of both g(r)  and &(k) 
(see, e.g., Fig. 3) at higher, meltlike densities where the chains are 
conformationally more ideal, and where the differences between self- 
consistent and non-self-consistent PRISM predictions become increasing- 
ly small. 

Based on all the above results, and many others not shown, it has been 
demonstrated that the generating functional method (with PY-style 
solvation potential) is more accurate at high densities than the single- 
chain Monte Carlo/PRISM method when compared against the exact 
many-chain simulation results. This suggests the additional approxima- 
tions employed by the generating functional method compensate for 
other errors in the PRISM-based theory. Thus, the generating functional 
method at high density seems complementary to the PRISM/Monte 
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Carlo method since the computational demands of the latter become very 
heavy at high densities and/or high N .  

Application and generalization of the self-consistent PRISM theory to 
flexible trimer fluids, and detailed comparison with many molecule 
simulations, has also been performed by both Grayce and dePablo4’ and 
Yethiraj . I6’  

Finally, we briefly summarize the first application of self-consistent 
PRISM theory by Schweizer and c o - ~ o r k e r s ~ ~  based on the HNC-style 
potential and a simple optimized perturbation (“blip function”) ap- 
proach. Detailed comparisons of the predicted chain dimensions and g(r) 
for the N =50,  100 and 150 repulsive Lennard-Jones fluid model of 
concentrated solutions studied by Kremer and Grest” have been carried 
out. R 2  was predicted to be 3-7% too small, and in all cases deviations 
from ideal behavior (SFC with next nearest neighbor 1-3 repulsions 
explicitly accounted for) was extremely weak. The self-consistently 
determined g(r)  was in excellent agreement with simulations except near 
the first peak where the theory underestimated the maximum by roughly 
10% as a consequence of the underpredicted chain dimensions and hence 
local stiffness. A key finding here is that at very high meltlike densities, 
all but the most local aspects of intrachain repulsion (and concommitant 
swelling) are screened out consistent with the basic tenets of the Flory 
ideality ansatz. Thus, as expected, the need for a fully self-consistent 
theory becomes far less important under high-density conditions. How- 
ever, the fact that such “reasonable” behavior is found based on the 
HNC-style potential is again an indication of the subtle role played by the 
approximate single-chain theory, choice of reference system, and solva- 
tion potential in determining the theoretical predictions for the screening 
problem. 

D. Numerical and Analytic Model Calculations 

Besides benchmark comparisons with exact simulation results, model 
calculations have been performed to numerically explore additional 
issues. 

1. The large N behavior, inaccessible to many-chain simulation (and 
very difficult for PRISM/Monte Carlo), but relevant to experiments and 
field-theoretic and scaling predictions, has been studied numerically based 
mainly on the HNC-styleivariational approach of Melenkevitz and co- 
worker~.~’  For fixed large N of the order of lo3,  a power law scaling 
behavior of ( R 2 )  with density has been found for intermediate (semi- 
dilute) solution densities in rough accord with phenomenological scaling 
predictions.* The question of global screening of intrachain excluded 



118 K .  S. SCHWEIZER AND J .  G .  CURRO 

volume interactions, as quantified in the effective exponent v in the 
relationship (R’) E N “ ,  has also been studied. Over a range of N values 
less than or equal to 2000, Melenkevitz et alP5 find v 2 0.56 for 7 = 0.4 
(intermediate between the ideal 0.5 and SAW 0.6 values), v 0.51 for 
7 = 0.54 (meltlike), and v 0.50 for higher liquid packing fractions in 
agreement with the Flory ideality hypothesis. The latter result has also 
been derived based on the Edwards psuedopotential field-theoretic 
method: but is a highly nontrivial achievement for a microscopic theory 
based on nonintegrable, singular hard-core interactions between mono- 
mers. Thus, a truly microscopic basis for the ideality and semidilute 
scaling ideas has been established, and the nature of the corrections and 
limitations of these simple concepts can be elucidated. 

2. The subtle question of “incomplete” screening of the excluded 
volume swelling at very high densities has been studied by several 
PRISM-based appro ache^.^"'^*^' At issue is whether chain dimensions 
approach a density-independent value, and whether it is truly “ideal,” in 
the high packing fraction limit. Experiments are unclear on this point,’60 
and PRISM studies yield differing conclusions depending on solvation 
potential choice and approximate free energy based scheme to evaluate 
the effective single-chain problem. Benchmark simulations that address 
this question would be of great value. 

3. The subtle question of whether the relative changes in polymer 
dimensions as a function of solution density become N independent in the 
semidilute and concentrated regime has been considered by Grayce et 
a ~ ~ ’  within the PY-style/generating function framework. 

4. The influence of variable bare chain stiffness (aspect ratio) on the 
predicted nonideal conformational corrections. Predictions of the re- 
normalized persistence length, relative to its bare value, have been 
obtained by Grayce and Schweizer 16’ based on the PY-style solvation 
potential and the variational generating functional method, and also by 
Schweizer and c o - ~ o r k e r s ~ ~  based on the optimized perturbation ap- 
proach and the HNC-style potential. At high densities the predicted 
renormalizations are rather modest (typically ?lo% or  less). The most 
interesting feature is the nonmonotonic dependence of the renormaliza- 
tion ratio or bare persistence length, indicating a crossover from the 
condensed phase effects favoring chain compression (relative to the ideal 
limit) to a type of “induced rigidity.” The latter is a subtle consequence 
of the emergence of strong solvation shells in the liquid for stiff polymers 
at high density. However, we do not overaly emphasize this feature for 
two reasons: (i) For high aspect ratio chains nematic/orientational 
correlations are expected to become increasingly important, a physical 
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feature not properly described by RISM-based a p p r o a ~ h e s . ~ ~ ~ ~ - ~ ‘ ’  (ii) The 
t h e ~ r i e s ~ ~ . ~ ’  do not properly recover the “trivial” rod limit where the 
renormalization ratio should approach unity. Many-chain simulations 
would be particularly helpful in guiding the further development of the 
self-consistent approach for such semiflexible polymer systems. 

Finally, we point out that analytic results have been derived and 
discussed based on the HNC-style solvation potential in the idealized 
Gaussian thread limit.43 The variational free energy theory of Melen- 
kevitz et al.45 has also been worked out within the analytic thread model 
framework. Interesting connections and differences between the thread 
PRISM theory, the field-theoretic approaches3 of Edwards, Muthu- 
kumar, and others, and blob scaling arguments2 have been established. 
The work of Melenkevitz et al.4s is novel in the sense that it combines the 
liquid-state PRISM approach to effective interactions (direct correlations, 
solvation potentials) with field-theoretic schemes for solving the effective 
single-chain problem in a manner that is qualitatively correct for all 
density. The construction of “hybrid” liquid-state/ field-theoretic ap- 
proaches, applicable for large N macromolecular systems, is an attractive 
direction for future development. 

E. Other Applications 

There are many other physical problems and macromolecular systems for 
which the self-consistent PRISM approach should be useful. The follow- 
ing represents an incomplete list of problems for which preliminary work 
has been done or which appear to be attackable based on the present 
state of the art. 

1. Theta and Poor Solvents. A key question here is how to generalize 
the intermolecular closure approximation and the intramolecular solva- 
tion potential to simultaneously treat the competing repulsive and 
attractive bare forces. The problem of low-temperature polymer collapse 
in dilute solution is a classic problem in this area. 

2. Polymer Alloys. Perturbation of meltlike conformation upon trans- 
fer to a multicomponent environment is not understood. The influence of 
proximity to phase boundaries, coupled density and concentration fluc- 
tuations, and mixture composition on both single-chain dimensions and 
miscibility are problems that have begun to be addressed within the 
PRISM formalism for the simple “symmetric” blend model by Singh and 
Schweizer163 and symmetric diblock copolymer model by David and 
Schweizer,I4’ and other more coarse-grained field-theoretic appro ache^."^ 
Comparisons with the few available have also 
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been performed. However, the experimentally relevant conformationally 
and interaction asymmetric alloy cases 14” remains to be carefully consid- 
ered. 

3 .  Atomistic Models. Self-consistent conformational calculations at the 
atomistic level have not been studied although a tractable scheme for RIS 
models has been proposed.43 One might expect much less perturbation of 
single-chain structure at an atomistic level where there are constant bond 
lengths, bond angles and so forth. However, rotational isomers generally 
differ in energy only of order k,T, so a priori it is not clear what happens 
for specific polymer systems. 

4. Constrained Polymers. The conformation of polymers constrained 
in various ways, for example, grafted to a flat surface (“brush”), 
adsorbed on a spherical colloidal particle, or tethered to a central branch 
point as in star polymers.165 All such problems involve potentially large 
“nonideal” conformational effects and also introduce additional compli- 
cations associated with site inequivalence within the PRISM formalism. 
Progress for star polymers is briefly described in the next section. 

IX. STAR-BRANCHED POLYMER FLUIDS 

Star polymers represent an interesting and important class of macro- 
molecules of nonlinear global architecture. They consist off linear chains 
or arms (with N, monomers per arm) connected at a central branch 
structure, as schematically shown in Figure 35. This architecture is 
characterized by a spatially inhomogeneous single-molecule density that 
decreases as one moves away from the star center. Thus, relative to linear 
chains, a new and stronger form of site nonequivalency is present that 
results in spatially nonuniform screening of the intramolecular excluded 
volume interactions. In particular, the reduced exposure of the central 
“core” regions of the star to other polymers suggest less screening and 
hence more “swollen” conformations near the star center. However, very 
far from the branch point the star is still a low-density fractal object, and 
hence is expected to display conformational behavior similar to the linear 
chain case. 

The above physical features imply that a fully self-consistent treatment 
of intramolecular and intermolecular pair correlations is more important 
for star polymers than linear chains, and the concept of “ideality” is 
expected to be of much less utility even at high melt densities. The 
treatment of star polymers within a self-consistent PRISM formalism has 
been very recently pursued by Grayce and Schwei~er . ’~~’’~’  Here we give 
a brief description of some of the essential theoretical modifications 
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W 
Figure 35. The star-branched tangent SFC model of an “f X N,” star, where No is the 

number of sites per arm and the arm number f = 6 in the example shown. The total number 
of sites comprising the star is f ( N ,  + 1). The number of “core” sites is denoted N ,  and is 
determined variationally as described in the text. 

required to treat stars, and a few conformational and structural results 
that emphasize some of the distinctive new phenomena characteristic of 
the star architecture. We note that the star polymer fluid is a model for 
other physical systems such as spherical micellar fluids and sterically 
stabilized colloids.’65 

A. Basic Model and Theory 

The basic theory of star polymer fluids developed by Grayce and 
Schweizer is general in its ability to treat polymer models of variable 
chemical detail.’66 For simplicity, we discuss the theory in the context of 
the tangent, semiflexible chain model. As true for most of the results 
discussed in Section VIII, the bare bending energy is set equal to zero, 
and pure hard-core interactions (athermal or good solvent conditions) are 
employed in numerical studies carried out so far. 

A sketch of the model star polymer is shown in Figure 35. Site 
equivalence is clearly broken by the presence of the central branch point, 
and in principle one expects that the local stiffness of the arms varies 
continuously as one proceeds from the star core to its outer “corona” 
region. The development of a technically tractable theory requires some 
simplification, or “preaveraging,” of this complete site inequivalence. As 
indicated in Figure 35, a three-region scheme has been adopted motivated 
by both conceptual simplicity and by analogy with coarse-grained polymer 
physics type appro ache^.'^'.'^^ The model star has a rigid branch point 
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structure consisting off sites (site type 0), a core region of f N ,  sites (site 
type l ) ,  and an outer arm or corona region (site type 2, No - N ,  sites per 
arm). 

For the three site model there are six independent intramolecular 
partial structure factors, radial distribution functions, and solvation pair 
potentials that must be determined self-consistently. PRISM theory has 
been implemented at the level of the variational generating functional 
theory of Grayce et alP7 as described in Section VIII.B.2 using the 
PY-style solvation potential. However, two new features arise for star 
polymer. (i) Two distinct effective bending energies, and E ~ ,  associated 
with the core and corona regions, respectively, are required. (ii) The 
number of sites that comprise the core region is not a priori known, but is 
treated as a variational parameter in the free energy minimization 
process. Thus, there are three variational parameters to be determined 
seIf-consistentIy.‘66 

B. Conformation and Liquid Structure 

Detailed numerical predictions have been obtained for average conforma- 
tional properties such as the mean-square end-to-end distance of the core 
region, the overall star radius of gyration, the number of sites in the core, 
the effective persistence lengths of the core and corona regions, and the 
single-star structure factor G(k) .  The influence of variables such as 
number of arms (f = 4-12), arm degree of polymerization and fluid 
packing fraction on these properties has been established.166 In a rough 
qualitative sense, the chain segments that comprise the corona region 
behave similarly to the analogous linear chain case. However, the core 
region is always found to be strongly swollen relative to the “ideal” state 
even at melt densities and results in a transfer of monomer density 
outward from the central region of the star to the coronal region. As a 
consequence, there is an increase of overall star dimensions, and 
distinctive changes in the star collective structure factor and intramolecu- 
lar radial distribution function occur, relative to either the analogous 
linear chain case or the ideal Gaussian star model behavior.’66 

The predicted overall star dimensions as a function of (concentrated) 
fluid packing fraction and arm number is shown in Figure 36 for a 
macromolecule of modest size (N, = 100). A simple power law form, 
Ri z f  7) , fits the numerical results very well. Curiously, the pre- 
dicted density scaling exponent is rather close to the scaling theory2 
exponent of 0.25 for long chains in semidilute solution, although the 
significance of this near agreement is unclear. Note that no density- 
independent chain dimensions are attained, in conflict with common 
assumptions of ideal behavior at high meltlike densities. 

0 38 -0.3 
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Both the core swelling, and the fraction of arm sites in the core grow 
as the fluid density decreases, the number of arms increases, and/or the 
arm molecular weight increases.16' The latter trend is rather surprising 
since the core size appears to (weakly) increase without bound as arm 
degree of polymerization increases according to the power law 
( R ; )  = N:'3 .  Convincing physical interpretation of this intriguing be- 
havior is at present lacking. 

The fundamental origin of all the conformational trends discussed 
above is the strong reduction of the solvation potential, and hence 
screening effect, in the core region relative to the corona region. An 
example of the predicted self-consistent solvation pair potentials Wll(r) is 
given in Figure 37. 

The predicted nonideal conformational effects can be probed by SANS 
experiments, and theoretical / experimental comparisons are given 
elsewhere.'66 A detailed physical picture of the origin of the nonideal 
conformational behavior in terms of the thermodynamic forces a star 
experiences has been constructed. Comparison of the self-consistent 
PRISM theory results with phenomenological scaling, and other coarse- 
grained polymer physics approaches have also been presented, and 
distinctive qualitative and quantitative differences have been identified.'66 

The self-consistently determined intermolecular pair correlations, 
g , ] ( r ) ,  and collective partial structure factors, g, , (k) ,  also display several 
unique physical features due to the star-branched ar~hitecture."~ An 
example for the pair correlations is shown in Figure 38 for a meltlike 
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Figure 37. The six-pair components y,  ((i,;} = 0, 1,2) of the self-consistently deter- 
mined solvation potential W acting on a 8 X 100 star for two values of fluid packing fraction. 
The three “diagonal” (“off-diagonal”) components W;, (W;,, 1 # i) are drawn with solid 
(dashed) lines. The strengths of the components at contact ( r  = a)  are, from weakest (least 
negative) to strongest (most negative), {0,0}, {0, I}, {0,2}, (1, l } ,  {1,2}, and { 2 , 2 } ,  
respectively. Only the three strongest ( W , , ,  W, , ,  WZ2)  can be discerned on the lower density 
plot. 

density. The corona region is quite similar to the analogous linear tangent 
SFCSS case: a local solvation shell regime followed by a power law 
correlation hole region out to intersite separations of order R,. However, 
the central branch structure and core region pair correlations show 
reduced local ordering (as expected), plus two new structural features: (i) 
a broad intermediate region where h(r) grows in a nearly linear fashion 
with increasing site-site separation and (ii) a weak oscillation in the 
vicinity of the global chain dimension separation. The latter feature is 
hard to see on the scale of Figure 38, but is clearly visible on an expanded 
scale. Close examination reveals the characteristic oscillation wavelength 
scales as N : ’ 3 ,  a distance corresponding to the mean separation of cores 
on different stars within the correlation volume containing of order N;” 
interpenetrating star molecules. 

The macromolecular scale solvation shell feature is clearly seen in the 
partial and total structure factors in Fourier space. An example is given in 
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Figure 38. Diagonal components of the self-consistently determined intermolecular 
site-site pair correlation functions, h,,(r) = g, , (r)  - 1 for a dense melt (7 = 0.55) of 8 X 400 
star polymers. The overall star radius-of-gyration is indicated.’” 

Figure 39. The very small and high k regions are weakly dependent on 
arm number and are nearly identical to the analogous linear chain case. 
However, the low-angle broad maximum at k* K N , ’ ’ ~  is a unique star 
feature that becomes more intense, and shifts to slightly smaller wave 
vector, with increasing arm number. This feature implies there is a type 
of macroscale colloidal ordering in star polymer melts, which is also 
predicted to occur under semidilute and concentrated solution condi- 
tions.‘” 

0.01 
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Figure 39. 

logarithmic scales. 
Total collective structure factor of a dense melt o f f  X 100 stars. Note the 
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The signature of macroscale colloidal ordering in semidilute star 
polymer solutions has been found experimentally using SANS,"" and 
these measurements are in good agreement with the PRISM predictions. 
Moreover, phenomenological scaling-type arguments have been advanced 
by Witten and P i n c u ~ ' ~ ~  that also predict such a low-angle scattering 
maximum at k* 0~ Rg' N i 3 ' 5  but only under semidilute ( p  z p * ) ,  long 
arm, good solvent conditions. In the latter situation, the stars do not 
interpenetrate appreciably and hence behave roughly as fuzzy spheres. 
However, PRISM theory predicts the colloidal ordering feature is a 
generic consequence of the star architecture and persists in dense 
solutions up to the melt state. As a cautionary remark, the latter 
conclusion is sensitive to small quantitative theoretical errors since the 
low angle peak in S(k)  emerges as a small difference between partial 
structure factors which are large and of opposite sign. Appropriate 
experiments to test the melt PRISM predictions have apparently not yet 
been carried out. 

X. OTHER INTEGRAL EQUATION APPROACHES 

There has been an explosive growth, particularly over the past couple of 
years, in developing continuum space integral equation theories for chain 
molecule and polymer fluids that are not based on the RISM formalism. 
There are at  least three distinct classes of new theories. Our goal is to 
briefly summarize the various approaches and cite relevant references. A 
more detailed description of the technical aspects of the various theories, 
and the distinctive similarities and differences between them, will be the 
subject of a future review.' We also point out that much progress has 
recently been made in developing statistical thermodynamic theories of 
sophisticated polymer lattice models by Freed and co-worker~, '~ '  and 
continuum polymer fluids by Hall and coworkers.79 Description of these 
advances are beyond the scope of this chapter. 

The first and earliest class of new approaches to polymer fluids is the 
associating fluid model pioneered by Wertheim.'729'73 In the associating 
fluid model one considers a liquid of particles interacting with a potential 
given by 

where uR(r)  is a hard-core interaction between the centers of particle 1 
and particle 2. Each particle is taken to have two attractive sites or "glue 
spots" A and B located randomly on its surface. Sites A and B interact 
with an attractive potential u A B ( r y B )  where rYB is the distance between 
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site A on particle 1 and site B on particle 2. In practice the range of the 
attractive interactions is taken to zero such that fAB(ryB) = exp[ -pu,,] - 

1 S(r  - F). Because of steric restrictions, an attractive site cannot form 
more than one bond with a site on another particle. Thus the potential in 
Eq. (10.1) leads to a polydisperse mixture of freely jointed, tangent 
hard-sphere chains. A somewhat different model for asssociating par- 
ticles, but in the same spirit, was suggested by Smith and N e ~ b e d a . ’ ~ ~  

Wertheim17’ developed a novel graph-theoretic expansion for the 
grand canonical partition function of an associating fluid. Unlike the 
conventional Mayer cluster expansion, which involves only the overall 
density, the Wertheim expansion involves the four singlet densities po, pA, 
p B ,  and pAB where the subscript denotes the bonded sites. Using first- 
order thermodynamic perturbation theory (TPT1) about the hard-sphere 
fluid, Wertheim found an analytical expression, via a compressibility 
route, for the equation of state of the polydisperse chain liquid 

pp 1+77+772-773 3 

P, (1 
-- - -(1-+)(1-- 77 +-) (10.2) 

where v is the average chain length in the mixture. Equation (10.2) 
employs the well-known Carnahan-Starling equation of state’ for the 
hard-sphere reference system as the first term on the right-hand side. The 
TPTl equation of state is in remarkably good agreement with Monte 
Carlo simulations of Dickman and Hall”’ for monodisperse chain liquids 
of 4, 8 and 16 units. Somewhat improved results were found by carrying 
out the perturbation expansion to second order.173 These ideas were 
extended to chain mixtures by Chapman and c o - ~ o r k e r s . ’ ~ ~  Most recent- 
ly, Kalyuzhnyi and Cumming~”~  obtained an analytic solution of the 
general multicomponent version of Wertheim’s model based on the 
Baxter factorization method. 

Wertheim has also formulated an integral equation for the structure of 
chain molecule liquids using the associating fluid m0de1.l~’ This formula- 
tion involves an Ornstein-Zernike-like equation that incorporates bond- 
ing between attractive sites; various closures such as the Percus-Yevick 
and HNC closures can be used. Analytical s o l ~ t i o n s ~ ~ ~ ~ ’ ~ ~  to the integral 
equations are possible for the PY closure for hard-sphere chains. Chang 
and Sandler17’ found good agreement between the Wertheim theory and 
Monte Carlo calculations for the intermolecular radial distribution func- 
tion for short-chain liquids of N = 4 at high packing fraction. As the 
chains become longer ( N  = 8 and 16), the theory tends to overestimate 
g ( r )  ’ 

Chiew’80.181 has also developed an integral equation approach to 



128 K .  S .  SCHWEIZER AND J .  G .  CURRO 

describe chain molecule liquids in the spirit of the associating particle 
theory. Chiew views the collection of particles as a multicomponent 
system in which the particles interact with species-dependent attractive 
interactions to generate a mixture of chain molecules. The multicom- 
ponent Ornstein-Zernike equation is then solved (with the PY closure), 
subject to a chain connectivity constraint, for the structure of the liquid. 
Chain connectivity is maintained at the level of the correlation functions 
(rather than through the potentials as in Wertheim theory), by requiring 
that g i , i + l ( r )  0~ 6(r  - u) between adjacent particles making up the chain 
backbone. Analytical solutions have been obtained by Chiew. The 
equation of state from the Chiew theory:" via the compressibility route, 
has a similar form to that of TPTl in Eq. (10.2). 

As in the Wertheim equation of state, Chiew also made use of the 
Carnahan-Starling expression for the pressure of the corresponding hard- 
sphere liquid. Similar agreement between TPTl and the Chiew theory 
was found with Monte Carlo simulations of Dickman and Hall175 for the 
pressure. 

The contact value of the intermolecular radial distribution function 
from the Chiew theory is i den t i~a l "~  to the Wertheim prediction although 
differences occur for larger values of r .  Comparisons have been made 
between the Chiew theory and simulations of Yethiraj and co-workersI8* 
(N  = 4, 8),  and the simulations of Chang and Sandler'79 (N  = 4-16). Both 
the Wertheim and Chiew integral equations predict radial distribution 
functions somewhat higher than seen from simulations. As in the case of 
PRISM theory, better agreement with simulation is found as the density 
increases. To our knowledge, no direct comparisons between PRISM 
theory and the integral equations of Wertheim and Chiew have been 
made as yet. Based on agreement with the Chang and Sandler179 
simulations for N=4-16, and the Grest and Kremer simulations in 
Figure 3 for N = 50-150, we tentatively conclude that PRISM theory is 
more accurate for the structure of long-chain molecule athermal liquids at 
high densities. On the other hand, the Wertheim and Chiew theories give 
significantly better predictions for the hard-core fluid equation of state 
than the PRISM based results. 

Wertheim's predictions for athermal binary mixtures have been tested 
against simulation by Chang and Sandler.lS3 Prausnitz and c o - ~ o r k e r s ' ' ~  
have developed modified versions of Chiew's equation of state for 
athermal mixtures to treat hard-core copolymer mixtures. The thermo- 
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dynamic consequences of attractive interactions are treated in the HTA 
spirit. Phase diagram and miscibility map predictions have been made. 

An important distinction between PRISM theory and the associating 
fluid approaches is that the latter treats intramolecular and intermolecular 
correlations on the same footing. It is not obvious, however, that the PY 
closure is equally valid for both intramolecular and intermolecular 
correlations. Many years ago PY calculations on a single athermal chain 
polymer (dilute, good solvent case) by Curro et al? suggested that the 
PY closure leads to unphysical results. PRISM theory, by contrast, treats 
correlations between sites on the same chain and between sites on 
different chains separately. In Section VIII we discussed the self-con- 
sistent calculation of intramolecular correlations with PRISM theory. For 
realistic polymer chain models at liquidlike densities, the excluded 
volume along the chain appears to be effectively screened out for 
interaction sites separated by few backbone bonds. This allows one to 
determine intramolecular correlations for realistic polymer models from a 
separate single-chain calculation, which can then serve as input to PRISM 
theory to calculate interchain packing effects. 

A second, entirely different class of new polymer integral equation 
theories have been developed by Lipson and co-workers:s6-’88 Eu and 
  an,'"-^'' and Attard’93 based on the site-site version of the Born- 
Green-Yvon (BGY) equati0n.j The earliest work in this direction was 
apparently by Whittington and D ~ n f i e l d , ’ ~ ~  but they addressed only a 
special aspect of the isolated polymer problem (dilute solution). The 
central quantity in the BGY approaches is the formally exact expressions 
that relate two and three (or more) intramolecular and intermolecular 
distribution functions. The generalized site-site Ornstein-Zernike equa- 
tions and direct correlation functions do not enter. In the BGY schemes 
the closure approximation(s) enter as approximate relations between the 
two- and three-body distribution functions supplemented with exact 
normalization and asymptotic conditions. In the recent BGY work of 
Taylor and Lipson’88 a four-point distribution function also enters. 

A polymeric complication of all BGY approaches is the need for 
several different types of three-point correlation functions. For the purely 
intermolecular distribution function the standard Kirkwood superposition 
a p p r o x i m a t i ~ n ~ , ~  is invoked, that is, a real space product of the three 
corresponding intermolecular pair functions. However, for the “intra- 
molecular triplet” distribution functions (involving one, two, or three 
sites on the same polymer), there are many alternative schemes invoked 
by the different  author^.'^^-'^^ These can be viewed as different closure 
approximations. Eu and Gan’s9-192 have focused on analyzing the 
Kirkwood hierarchy based on Kirkwood-like and Markov-like approxi- 
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mations for the intramolecular and intermolecular distribution functions. 
The technical treatment of site inequivalency , or the “too many equations 
problem,” also varies among the different workers. 

Intramolecular correlations are handled in different approximate 
manners in the various BGY approaches. Taylor and LipsonIs8 treat pair 
correlations on the same chain as input to the theory in a manner similar 
to PRISM theory. In contrast, the formulations of Eu and  gar^,"'-'^^ and 
also Attard,’93 yield closed integral equations for both the intra- and 
intermolecular pair distribution functions. Thus, in a sense the intra- and 
intermolecular pair correlations are treated on an equal footing, and a 
“self-consistent” integral equation theory is naturally obtained. Eu  and 
Gan have recently presented a comparison 192 between their BGY 
approach and self-consistent and non-self-consistent PRISM theory, in 
both general conceptual terms and within the context of numerical 
predictions for specific model hard-core systems. For the jointed hard- 
core chain model studies, the theory of Eu and Gan appears quantitative- 
ly superior to PRISM predictions, particularly for the equation of state.lY2 

All the BGY appro ache^'^^-'^^ have yielded promising results for the 
structure and equation of state of hard core, jointed chain solutions and 
melts of modest degrees of polymerization. Eu and Gan have also 
successfully treated dilute homop~lyrner , ’~~ and AB copolymer,”’ solu- 
tions with soft-core interactions under both good and theta (ideal) solvent 
conditions. A noteworthy aspect of the approach of Lipson and Andrews 
is its ability to also be formulated and implemented for simple lattice 
polymer  model^.'^^^'^^ 

A third class of new polymer integral equation theories have been 
proposed by Kierlik and R 0 ~ i n b e r g . I ~ ~  Their work is an extension of a 
density functional theory of inhomogeneous polyatomic fluids to treat the 
homogeneous phase. The Wertheim thermodynamic pertubation theory 
of polymerization is employed in an essential manner. Applications to 
calculate the intermolecular structure of rather short homopolymer 
solutions and melts have been made. Good results are found for short 
chains at high densities, but the authors comment that their earlier theory 
appears to be unsuited for long chains at low to moderate (semidilute) 
densities.lY5 

As a general comment on the recent polymer integral equation work, 
we note that applications to date have focused primarily on the structure 
(intra- and intermolecular) and equation of state (based on a virial o r  free 
energy route) of the simple hard core, tangent jointed chain model of 
polymer solutions and melts. How tractable and generalizable the various 
approaches are for treating semiflexible and/or atomistic models of 
macromolecular fluids is unclear for most theories. Little, or no, work has 
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been published on the effect of attractive forces on fluid structure, 
collective scattering functions, compressibility route thermodynamic pre- 
dictions, semiflexible or atomistic chain models, or nonlinear macro- 
molecular architectures. The associating fluid has been 
generalized and applied to simple models of athermal polymer mixtures 
and copolymers, although the primary published emphasis is on thermo- 
dynamic properties and not structure. We anticipate many extensions and 
applications of the emerging integral equation theories in the near future, 
and feel it is premature to judge the relative advantages and disadvan- 
tages of the many distinct approaches. The latter task will undoubtedly be 
very difficult to simply summarize. 

Finally, we mention an interesting recent study by Chandler126 that 
extended the Gaussian field-theoretic model of Li and K a r d a ~ - ' ~ ~  to treat 
atomic and polymeric fluids. Remarkably, the atomic PY and MSA 
theories were derived from a Gaussian field-theoretic formalism without 
explicit use of the Ornstein-Zernike relation or direct correlation 
function concept. In addition, based on an additional preaveraging 
approximation, analytic PRISM theory3' was recovered for hard-core 
thread chain model fluids. Nonperturbative applications of this field- 
theoretic approach to polymer liquids where the chains have nonzero 
thickness and/or attractive forces requires numerical work that, to the 
best of our knowledge, has not yet been pursued. 

XI. DISCUSSION AND FUTURE DIRECTIONS 

This chapter has focused on describing progress made over the past eight 
years on developing microscopic liquid-state theories of the conforma- 
tion, structure, thermodynamics, and phase transitions of macromolecular 
fluids within the context of interaction site models and the RISM integral 
equation method. Even within this rather restrictive theoretical frame- 
work, many developments were not discussed. These include the follow- 
ing: 

1. Development and application by Glandt and co-workers of a theory 
of chain molecule fluids in porous media197 that heavily uses PRISM 
 method^.'^' 

2. Development and application of molecular closures to treat attrac- 
tive forces in polymer solutions and melts (including the liquid- 
vapor transition). 

3. PRISM theory of polymer/colloid mixtures in the dilute colloid 
limit by Yethiraj and c o - w o r k e r ~ . ' ~ ~  Shaw and Thirumalai have 
constructed a field-theoretic-type description for a single long 

119.134 
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polymer chain in a colloidal solution that also employs PRISM- 
derived information.200 

4. An exact analytic solution by Fuchs of the PRISM equations using 
the Baxter factorization method for special Gaussian chain models 
of melts and mixtures.20' 

5 .  Theory of self-assembling multiblock copolymer fluids.202 
6. Analytic and numerical self-consistent PRISM theories of polymer 

blends and diblock  copolymer^.'^^ 
7. PRISM theory, particularly in its analytic Gaussian thread and 

string versions, has also been extensively employed by Schweizer 
and co-workers as the equilibrium input to microscopic generalized 
Langevin and mode-coupling theories of the dynamics of macro- 
molecular fluids: 

Another important direction has been to construct microscopic 
theories of inhomogeneous systems by combining PRISM theory of 
disordered, bulk-phase structure with novel macromolecular versions of 
thermodynamic density functional theory. Building on the modern 
atomic205 and site-site polyatomic2"6 density functional theories, McCoy 
and co-workers have recently pursued this approach for treating first- 
order phase transitions such as polymer crystallization6* and block 
copolymer microphase separation.'" Extensions to treat chain mole- 
cule and polymer fluids near surfaces and interfaces have also ap- 

Surface segregation of polymer blends can also be treated 
using PRISM plus density functional theory.207 A computationally sim- 
pler, but more approximate, alternative for treating polymers near 
surfaces, confined fluids, and alloy surface segregation is to employ an 
entirely integral equation approach, wall-PRISM theory, as proposed by 
Yethiraj and Hall.78 Detailed applications of this approach to treat density 
waves and solvation forces of confined alkane fluids as a function of 
fluid-surface interaction potential, and direct tests of the theory against 
computer simulations and experiments, have been carried out by Walley 
and c o - ~ o r k e r s . ~ " ~  Athermal blend surface segregation has also been 
treated with wall-PRISM theory by Yethiraj and co-workers."' 

Although we believe much progress has been made based on the 
PRISM theory approach, there remain important basic theoretical issues 
that require continuing attention in the future. The most obvious is the 
question of closure approximation. Even for the purely repulsive or 
hard-core polymer fluid, improved closures are desirable. Results for 
diatomic and polymer fluids based on the "diagramatically proper" 
Chandler-Silbey-Ladanyi (CSL) f ~ r m u l a t i o n ~ ~  of RISM theory have 
been obtained by Yethiraj3* based on the site-site PY closure. Un- 
fortunately, for chain molecules this approach does not represent an 

54,203,204 

peared .80,207,208 
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improvement (indeed it appears worse) over the simpler, diagramatically 
“improper” PRISM theory. However, recent work by Lue and 
Blankschtien210 based on the CSL theory has yielded encouraging results 
for some nonpolymeric fluid systems, and further consideration of the 
CSL approach is desirable. A promising, but computationally intensive, 
new approach has been proposed by Donley and co-workers4* based on a 
2-chain (not 2-site), density functional and solvation potential perspec- 
tive. 

The question of the effects of attractive tail potentials on macro- 
molecular structure, and the appropriate closure(s), require much further 
study. Advances in the closure question may also result in more 
thermodynamically consistent theories, which is important for questions 
such as the equation of state, excess properties of multicomponent 
systems, and construction of constant pressure (not volume) theories. 
Other basic theoretical issues relate to the potential importance of 
corrections to site preaveraging, and the development of tractable 
schemes to systematically compute such corrections. The issue of “self- 
consistency” of intramolecular and intermolecular correlations is rather 
unsettled from the point of view of both how important these effects are 
(the answer is problem-specific), and how to best go about constructing a 
computationally convenient theory to treat them. 

For all basic questions mentioned, one expects there is not a single 
unique answer for all systems and conditions of interest. Moreover, there 
is always a trade-off between computational convenience and numerical 
accuracy. Due to the rapid progress in computing power and simulation 
algorithms, we believe that computer simulation will become increasingly 
important in guiding the development of liquid-state theories of poly- 
mers. As has been true for simple atomic and molecular fluids, carefully 
designed simulations can provide invaluable benchmark results to un- 
ambiguously test the statistical mechanical (not polymer model) aspects 
of integral equation approaches to macromolecules. This activity will also 
be important in establishing the relative merits of the many different 

and the emerging integral equation theories of polymer fluids, 
validity of coarse-grained scaling and phenomenological field-theoretic 
approaches and their relationship to microscopic liquid-state theories. 

Finally, there remain many physical problems and systems that have 
either not been addressed at all or are just beginning to be seriously 
attacked, from a liquid-state integral equation perspective. An incom- 
plete list is as follows: (1) Charged polymers, polyelectrolytes, and 
ionomers (strong dipolar interactions). The appropriate closure approxi- 
mations and treatment of self-consistency in the presence of both hard- 
core forces and long-range Coulombic interactions are major unsolved 

172-195 
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problems. (2) Short-range orientational correlations in isotropic fluids, 
and nematic and other liquid crystalline phases, of rigid and semiflexible 
polymers. (3) Incorporation of quenched disorder (beyond naive pre- 
averaging) associated with intramolecular features such as tacticity 
variations, molecular weight polydispersity, and sequence disorder in 
copolymers. (4) Polymer gels, rubbers, and associating fluids where 
strong intermolecular “attractive” interactions can result in networklike 
and/or fractal structures that can be either quenched in or thermorevers- 
ible. ( 5 )  Self-assembly of intermediate-sized molecules (e.g., surfactants) 
into supramolecular structures (e.g., micelles, microemulsions). (6) 
Ternary and more complex mixtures of homopolymers and copolymers 
where there is a competition between macrophase and microphase 
separation. A related phenomenon is the role of low concentration 
additives on phase stability. 

All these problems represent challenges to the further development of 
a general microscopic liquid-state theory of macromolecular systems, but 
we are hopeful that significant progress can be made in the near future. 
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I. INTRODUCTION 

A. Usefulness of High-pressure Studies 

It is well known from thermodynamics that the properties of a macro- 
scopic system can be fully described, if the equation of state is available, 
that is, V = f ( p ,  T ) .  However, in real physical experiments only one 
parameter is easily changeable: the temperature at atmospheric pressure. 
High-pressure (HP) investigations require much more advanced ex- 
perimental techniques and therefore such studies are less popular. 

Pressure is an important thermodynamic parameter that is often 
neglected in experimental studies. The application of high pressure is a 
useful mean in order to study the mechanism of phase transformations' 
and to vary the intermolecular distance that is indispensable for any 
discussion of the intermolecular potential.' Only in the frame of high- 
pressure experiments can the equation of state be established that allows 
one to distinguish between isochoric temperature changes and isothermal 
density changes. High-pressure phase transformations are important 
subjects for materials science, providing a chance to synthesize meta- 
stable phases with valuable properties. The most prominent example is 
the well-known diamond synthesis, the role of high pressure is also 
highlighted in various fields of solid-state physics and spectroscopy? 
Pressure-induced amorphization and memory effects have been observed 
where the crystal is transformed to a disordered solid under p r e s ~ u r e . ~  
The pressure dependence of dynamical properties (e.g., rate constants in 
chemical conversions' or relaxation times') yields the volume of activa- 
tion in the frame of transition-state theories. This quantity gives useful 
information for the space needed along a reaction path or in reorientation 
processes. 

The term high pressure depends strongly on  the problem. It seems to 
us that its use is justified only if the applied pressure changes significantly 
the property under study. In the case of molecular crystals or liquid 
systems there are only relatively weak intermolecular interactions, there- 
fore pressures from a few tenths MPa up to -300MPa are usually 
sufficient in order to induce considerable changes in the physical prop- 
erties of the system. Although pressure and temperature are in principle 
equivalent thermodynamic parameters, they affect the molecular system 
differently: Temperature causes mainly an excitation of rotational and 
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vibrational energy states, whereas pressure changes the intermolecular 
distance. Thus HP studies can yield quite new insight into the properties 
and behavior of various systems. 

The pressure dependence of the dielectric constant has been reviewed 
for fluids and liquids: ionic crystals: semiconductors: ferroelectrics,’.”’ 
vitreous materials,’’ ice phases,12 polymeric sy~tems,’~ and plastic 
crystals.14 These studies are helpful to probe theories of dielectric 
polarization and intermolecular forces. 

The employment of high pressure is also indispensable to elucidate the 
phase situation of liquid crystals. Their rich polymorphism is most 
conveniently studied by high-pressure differential thermal analysis 
(DTA).’”I8 Not only may the phase behavior of the substance studied 
change significantly under pressure (pressure-induced and pressure-lim- 
ited phases may occur), but also several peculiarities have been detected 
in liquid crystal phases, such as reentrant and tricritical ~ h e n o m e n a . ’ ~ - ~ ’  
Also the properties of ferroelectric22 and p~lymer ic ’~  liquid crystals are 
markedly altered under pressure. 

B. Liquid Crystals (LCs) 

1. Mesomorphic Behavior 

Liquid crystals are mesophases whose properties lie intermediate between 
isotropic liquids and long-range ordered crystals. They were discovered at 
the end of the last century by R e i n i t ~ e r ? ~  who was puzzled by two 
different melting points of cholesteryl benzoate. It took time until it was 
accepted that in fact a new state of matter had been found. At the 
“second melting point” cholesteryl benzoate transforms to an optically 
clear and isotropic liquid (clearing temperature). Substances that exhibit 
such a phase behavior as a single-component system are called thermo- 
tropic. There are also mesomorphic phases that exist only in the presence 
of a solvent. Such lyotropic liquid crystals will not be considered here, 
although they are of great biological interest.25 

Friede12‘ was the first who distinguished three main classes of liquid 
crystals, according to the different kind of orders in the mesophases: 
nematic, smectic, and cholesteric. From the point of view of the 
geometrical shape of molecules, we divide the thermotropic LCs into 
calamitic phases (when the molecules are rodlike), sanidic phases (when 
the molecules are bricklike), and the discotic phases (when the molecules 
are di~klike).*’-’~ 

a .  The Nematic Mesophase. This is a turbid phase of low viscosity. 
Usually it is limited by the isotropic liquid at high temperature and by 
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solid or a smectic phase at low temperature. The positional order of the 
molecules is destroyed. However, there is a certain parallel alignment of 
the long molecular axes of rodlike molecules, or a parallel arrangement of 
the disks in discotic phases. The preferred orientation will be called 
director and denoted by n. The director n corresponds to an axis of 
uniaxial symmetry with no polarity which means that n and -n are 
equivalent, although the individual molecules may be polar. For a 
quantitative treatment of the nematic properties it is necessary to define 
an order parameter that describes the distribution of the long molecular 
axes. The first nontrivial order parameters are3() 

( P 2 ( ~ ~ ~ 8 ) ) = ~ ( 3 ~ ~ ~ 2 8 - l ) ~ s  (1) 

(P,(co~ e )) = + (35 C O S ~ O  - 30 C O S ~ O  + 3) (2) 

where 8 is the angle between the molecular symmetry axes and the 
nematic director. The brackets ( *  . .) denote averaging over the orienta- 
tions of all molecules. 

The second rank-order parameter S can be derived from measure- 
ments of the macroscopic tensor properties such as birefringence and 
diamagnetic susceptibility. It varies typically between 0.4 at the clearing 
temperature to 0.7 at TN, - T - 2 0  K in nematic phase. The fourth 
rank-order parameter (P,)  may play an important role for a subtle 
analysis of the orientational distribution function and can be determined 
using polarized Raman spectroscopy.3' 

Optically active molecules may form a chiral modification of the nematic 
phase: the cholesteric phase. The local direction of n is slightly rotated, 
when we move perpendicularly to n to the adjacent region. Thus a helical 
structure is superimposed with a pitch comparable to the wavelengths of 
the visible light resulting in peculiar optical properties. Because of its rela- 
tionship to the nematic state, this phase is also called chiral nematic and 
denoted by N*. In some cases cholesteric liquid crystals with a relatively 
short pitch exhibit so-called blue phases.32 Surprisingly, the blue phases 
behave optically isotropic, whereas usually specific textures are observed 
with a polarizing microscope for liquid crystals. The helices are supposed 
to be arranged in a cubic superstructure. 

b. The Smectic Mesophase. This is a turbid, viscous state, where the 
molecules are arranged in layers. The molecules in each layer are again 
more or less parallel oriented. Discotic molecules can be stacked one 
upon another to form columns (columnar smectic mesophase). We 
mention two important types: smectic A and C, where the director is 
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orthogonal and tilted with respect to the layer. They can be considered as 
two-dimensional liquids with only a short range order of the molecular 
centers within the layers. Smectic A is optically uniaxial, similar to the 
nematic phase. In the case of smectic C the projection of n on the layer 
plane is not zero, defining a c vector in the layer plane. Contrary to n, c 
and -c are not equivalent. Provided we exclude chiral molecules, the 
smectic C phase is biaxial. Chiral smectics C will be denoted by C*. In 
smectic C* the c vector is continuously rotated, when we move to the 
next plane. Thus a helical structure is obtained where the helix axis is 
parallel to the layer normal. The symmetry of the C* phase allows for 
ferroelectricity that is also observed in some other chiral smectics.33 More 
details of ferroelectric liquid crystals will be presented in Section 1V.C. 

c. Polymeric LCs. The mesogenic groups (usually rodlike) may be 
attached to the polymer backbone in the main chain itself or as side 
groups (comblike polymers) .34 The phase behavior of such polymers 
depends strongly on the polymer backbone, the shape of mesogenic units, 
and the length of spacers. The liquid crystalline phases (nematic, smectic, 
or cholesteric) exist between the clearing temperature and the glass 
temperature T,. The LC phase may be macroscopically aligned by 
cooling the material from the isotropic melt into the LC state in the 
presence of a directing electric or magnetic field. Since polar groups are 
frequently incorporated in the mesogenic units and in the main chain, the 
dielectric relaxation spectroscopy is an effective method for studying 
molecular dynamics and the alignment of the sample. 

Nowadays a wealth of experimental and theoretical methods are 
available to investigate the mesomorphic behavior of liquid crystals. For a 
detailed description of the liquid crystalline state the reader is referred to 
te~tbooks:~-~ '  review and to proceedings of recent confer- 
e n c e ~ . ~ ' - ~ ~  We mention only briefly examples of mesogenic compounds 
with some thermodynamic properties, especially for those which have 
been studied dielectrically at elevated pressures (see below). 

2. Some Mesogenic Compounds and Phase Transitions 

We mentioned already cholesteryl benzoate as one of the first discovered 
liquid crystals, although the chemical structure of cholesterol was un- 
known at the time.50 From this compound the name cholesteric phase was 
derived. p-Azoxyanisole (PAA), which belongs to the nOAOB homolo- 
gous series (cf. Table I), was one of the first synthesized liquid crystals 
with known chemical structure. I t  is a typical representative of a rodlike 
compound. The first six members of this series form the nematic phase, 
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but for n 2 7 smectic phases are also observed. It is a common feature of 
rodlike liquid crystals that molecules with short end groups exhibit only 
nematic phases, whereas for longer homologues additional (or exclusive- 
ly) smectic phases occur. 

For PAA (10AOB) the nematic phase exists between 118 and 135°C 
(at atmospheric pressure), which is inconvenient for practical applica- 
tions. With the aim to find nematics with lower transition temperatures, 
Kelker et al? synthesized some new liquid crystals, the best known 
example being N-( p-methoxybenzy1idene)-p’-butylaniline (MBBA). At 
present more than 50,000 chemical compounds are known showing 
mesomorphic beha~ior .~’  

Wide scientific and practical interests are connected with the 
alkylcyanobiphenyls, nCB. For these compounds the dipole moment is 
parallel to the long molecular axis, which is advantageous for the 
interpretation of dielectric results (see below). It is interesting to investi- 
gate how the physical properties change, when we slightly alter the core 
or a specific group of the chemical compound. The series nPCH, nHCP, 
and nCCH are obtained by replacing one or both phenyls by the 
cyclohexyl group in nCB (see Table I ) .  

In Table I1 we list some thermodynamic properties connected with 
phase transitions. The enthalpy changes for the NI transition are one 
order of magnitude smaller than the heat of melting, but still indicating a 

TABLE I1 
Some Thermodynamic Properties of Selected Liquid Crystals at 1 atm’ 

Melting Smectic Phases Nematic-Isotropic 

Substance References T (K) AH (Jmol-l) Type T (K) TN, (K) AH (Jmol-‘) 

PAA 57.58 391 30340 408.6 733 
MBBA 57,59 295 15030 320 416 
5CB 17,60,61 295.7 13390 308.2 390 
6CB 38,61 286 24267 301 293 
7CB 38,61 301.7 25940 314.7 578 
8CB 17,60,61 294.2 23430 S,\-N 306.7 313.2 612 
6CHBT 17,62 285.7 26800 316.2 1600 
5PCH 63-66 303 21350 328 960 
6PCH 64 315 320 
7PCH 64-68 303 N-S, 290” 332 
8PCH 64 306 327 
SCCH 61,64,69 335 23900 N+S, 325’ 3% 
7CCH 61,64,69 344 3 1000 356 
80CB 61 327 24686 S,-N 340 353 

a N ,  I, S,,, S, stands for nematic, isotropic, smectic A, and smectic B phases. 
’ Monotropic transition?‘ 
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first-order transition. Transitions between smectic A and C (AC) or 
between smectic A-nematic (NA) are generally considered as second- 
order transitions, whereas smectic C-nematic (NC) is weakly first- 
order.20 However, when approaching a NAC tricritical point (i.e., a 
multicritical point where the AC, NC, and NA phase boundaries meet) 
the latent heat of the NC transition disappears, i.e., the nature of the 
transition changes from first to second order. 

Of special interest are the nCB and nPCH series, for which dielectric 
results under high pressure will be presented below. In the nOCB series 
80CB has attracted much attention because it exhibits the reentrant 
phase b e h a ~ i o r . ~ ” ’ ~  This means the following unusual sequence of phase 
transitions on cooling under pressure: 

Isotropic-, nematic+ smectic A- reentrant nematic 

There exists a maximum pressure beyond which the smectic A phase 
disappears (see Fig. Id).  The p(T)-phase boundary nematic-smectic A 
has an elliptic shape. Reentrant behavior has been found for many 
systems, and therefore several theoretical treatments have been consid- 
ered to explain this phenomenon. The most successful is probably the 
frustrated spin-gas model, which also predicts the sensitivity to the 
number of carbon atoms in the alkyl chain of the molecule.5s 

It should be mentioned that for 80CB the high-pressure smectic A and 
the reentrant nematic are only observed as supercooled, metastable 
phases that are not always found in a high-pressure experiment. Metas- 
tability has often been noticed in the study of liquid  crystal^.'^^'^ The 
retarded onset of a phase transition is frequently accompanied by a 
so-called exothermic anomaly in DTA experiments, where the under- 
cooled phase transforms on reheating. In some cases monotropic meso- 
phases have been found, which are only observed on cooling, for 
example, smectic phases for 7PCH and SCCH (cf. Table II).j6 

3. Phase Diagrams of Some LCs under Pressure 

Figure 1 presents the pT-phase diagrams for some compounds listed in 
Table 11. In general the transition temperatures have been determined 
with DTA and optical observations. The phase behaviors of the n- 
alkylcyanobiphenyls have been thoroughly studied by Shashidhar and 
Venkatesh;’ who discuss a pronounced odd-even effect in the clearing 
temperature and in the slope dT,,/dp. 8CB exhibits also a smectic A 
phase. Its smectic A-nematic transition was observed using a high- 
pressure optical microscope stage.j3 Literature data for the T ( p )  depen- 
dencies of the phase boundaries of nCBs are partly d i ~ c r e p a n t . ~ ’ - ~ ~  
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Figure 1. Temperature-pressure phase diagrams of selected LCs: (a) SCB,” (b) 
SPCH,x7 (c) 8CB,I7 (d) 80CB;’ (e) 6CHBT,” and DOBAMBC.I6’ (Reprinted with kind 
permission from the authors and the editors.) 
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TABLE 111 
Transition Temperatures as Function of Pressure for Selected Liquid Crystals" 

Substance Transition a b c x lo4 References 

5CB 

6CB 

7CB 

8CB 

6CHBT 

SPCH 

7PCH 

5CCH 

Cr+N 

N + I  

Cr-, N 
N + I  

Cr- N 
N-I 

Cr + S, 
S,+N 
N + I  

Cr+ N 
N-I 

Cr+N 
N+I  

Cr-N 
N+I  

Cr+N 
N + I  
N+S, 

294.4 
295.7 
308.4 
308.2 
286.2 
301.2 
301.7 
301.4 
301.7 
314.7 
315.3 
316.2 
294.5 
306.8 
313.8 
286.5 
316.7 
303.1 
328.1 
303.5 
331.0 
338.0 
359.5 
325.1 

0.303 
0.264 
0.419 
0.403 
0.264 
0.337 
0.372 
0.411 
0.246 
0.479 
0.339 
0.364 
0.250 
0.223 
0.370 
0.270 
0.420 
0.246 
0.440 
0.311 
0,420 
0.330 
0.536 
0.355 

-1.739 
-1.29 
-2.288 
-2.64 
-0.92 
-2.1 
-1.0 
-4.1 
-0.98 
-0.54 
-0.40 
-2.89 
-1.20 
-0.71 
-2.40 
-1.30 
-3.30 
-1.09 
-1.11 
-1.68 
-2.86 
-0.114 
-2.867 
+0.24 

17,73-75 
70 
17,73-75 
70 
70 
70 
72 
76,83 
70 
70 
72 
76,84 
17,75-77 
53 
17,75-77,85 
17,75,86 
17,75,86 
78,81 
78,87 
78,88 
78,88 
77 
77 
77 

a T (K)  = a  + b (plMPa) + c (piMPa)' 

Therefore we redetermined the transition lines for some selected liquid 
crystals in our laborat~ry.'~-'' The results (smoothed by polynomials) are 
listed in Table I11 together with some literature data. Further details of 
the polymorphism and crystal structures for some nPCHs and nCCHs can 
be found by Haase et al.f727y Kuss,66 and Schneider et  al.Xo The phase 
behaviors are also noted in the presentations of the dielectric  result^.*^-^^ 

C. Remarks on the Theories of LCs 

1.  Nematic Phase 

The first description of the nematic state was developed by Maier and 
S a ~ p e . ~ "  They considered the molecules as simple rigid rods with no 
internal degrees of freedom. In the nematic state the rods are aligned on 
average parallel to the nematic director. The orientation-dependent 
potential energy of one molecule in the field of its neighbors is taken in 
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the simple form 

U ( 0 )  = -qP,(cos 0 )  ( 3 )  

where P,(cos 0 )  has the same meaning as in Eq. (1). Maier and Saupe 
(MS) assumed that the strength parameter q (the nematic potential) is 
proportional to the order parameter S = (P,(cos 0 ) )  : 

q = u s  (4) 

The interaction coefficient u determines the energy scale of the potential 
and is temperature independent, however, it depends on the molar 
volume V. 

It is interesting to note that the main assumptions of the MS theory 
[U  - P,(cos 0) ,  q - S ] ,  were satisfactorily justified by the model calcula- 
tions with the use of the Gay-Berne potential." Although the MS theory 
gives a qualitatively correct description of the main properties of the 
nematic phase, it cannot be used for a quantitative comparison with 

That arises from the mean-field approximation and the 
neglect of other than the orientational components of the interaction 
energy. The discussion of the theoretical quantities with respect to the 
experimental ones presented by Urban et a1.82 for the nematic phase of 
5CB sheds more light on this problem and generally support the above 
statement. Closer agreement with the experimental results have been 
obtained with theories in which some modifications in the form of the 
nematic potential were 

Humphries et al.94 have considered in addition to the order parameter 
S the fourth rank-order parameter ( P , ) ,  which modifies the shape of the 
potential. They approximated the volume dependence of the interaction 
energy by 

u = u o v - y  ( 5 )  

where y is treated as a free parameter in fitting theory to 
experiment.y8-'n2 The coefficient uo is taken to be a constant, independent 
of pressure, volume, and temperature. Maier and Saupe assumed that 
u - V - , ,  which means that only London dispersion forces are taken into 
account (corresponding to an r-' dependence of the potential). McColl'"' 
introduced a thermodynamic coefficient r, defined as 

which is identical to y for the potential above." The y values determined 
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experimentally for different nematogens are usually larger than 2, 
indicating that repulsive forces must be taken into account. 

Recently Tao et al.96 extended the MS theory by adding to Eq. (3) the 
isotropic, density-dependent component of the molecular interactions 
Il,(r) in the form of the Lennard-Jones potential U,(r) = 4 ~ , [ ( a / r ) ' ~  - 

( a / r ) 6 ] .  As a result they obtained a better agreement of the calculated 
and experimental quantities characterizing the nematic-isotropic transi- 
tion, for example, volume change at T,, and the values of dT, , /dp .  
Chrzanowska and S ~ k a l s k i ~ ~  considered the case when the parameter u 
in the Lennard-Jones potential is dependent on the orientation of 
molecules that allows one to predict properly for MBBA such properties 
as order parameters, elastic constants, and rotational viscosity coeffi- 
cients. 

To discuss the true contribution of particular components to the 
intermolecular interactions, it is necessary to find the volume dependence 
of the molecular field potential characterized by the exponent y. For this 
the pressure-temperature studies of liquid crystals are indispensable. On 
the basis of high-pressure volumetric and nuclear magnetic resonance 
(NMR) studies, McColl and Shihlo4 determined y for PAA from the 
slope of the curves log T versus log V at constant S according to Eq. (6). 
Similar studies have been done for other members of the nOAOB series 
by Tranfield and C~llings. '"~ They found that y decreases gradually from 
4 for lOAOB (PAA) to 1.9 for 60AOB. The same procedure was 
applied by Urban et a1.82 for 5CB, using literature data on V and S from 
optical measurements:' yielding y = 5.3. The MS theory predicts that 

TNI l u  - TN,Vy = const (7) 

so that y may be obtained from log T,, versus log Vplots. The result was 
y = 5 . 2 ,  in excellent agreement with the above value. This can be 
compared with findings of Emsley et al.98 These authors found that r 
decreases steadily along the alkyl chain from 5.3 for the order parameter 
of the deuterons nearest to the aromatic core, to 4.2 for those from the 
methyl group. For 7PCH Emsley et al.99 obtained y = 3.6. 

In a similar way Shirakawa et a1.'06 determined y for various liquid 
crystals belonging to the nCB and nPCH series. They found y = 5.24 for 
SPCH, which clearly reveals the inadequacy of the Maier-Saupe theory. 
The values y decrease with increasing length of the alkyl chain that is 
contributed to the enlarged conformational freedom of the longer alkyl 
chain. It is interesting to note that the nPCH series yields smaller values 
for y than the nCBs, which can be explained by the higher flexibility of 
the cyclohexyl core. 
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Collings and co-workers 1"731"8 calculated y from 

where T,  and V,, represent a point on the nematic-isotropic coexistence 
curve. They obtained the following values for y:  2.07 for 70AOB, 3.20 
for 80CB, and about 3 for three 4,4'-di-n-alkylazoxybenzenes. 

The comparison of y obtained from high-pressure studies of different 
liquid crystals allows one to draw the following conclusions: (i) y is 
usually larger than 2, indicating that besides dispersion repulsion forces 
also determine the intermolecular potential in the nematic phase. (ii) 
Different substances are characterized by different y values. (iii) In a 
homologous series y decreases with increasing chain length. (iv) y 
decreases steadily along the alkyl chain. Thus, a balance between the 
long-range attractive and short-range repulsive interactions depends on 
the structure and flexibility of the molecule. 

Another theoretical approach comes from Singh et  al.'"9 These authors 
analyzed the influence of short-range orientational order on the thermo- 
dynamic and orientational behavior of nematogens close to the N-I 
transition, considering both attractive and repulsive interactions. The 
potential parameters were chosen so as to reproduce quantitatively the 
clearing temperature of PAA. The estimated r values are considerably 
smaller than the experimental ones (ca. 2.3 against 4.0), while the slope 
dTldp  of the N-I transition line was one order of magnitude too high. 
Nevertheless the trends of pressure effect on the stability, ordering, and 
phase transition are in better agreement with experiments as compared to 
mean-field results. 

Finally we note some recent molecular dynamics simulations with the 
use of atom-atom potentia~,'"2"'~'~1'2 which can provide useful infor- 
mation concerning the relation between the detailed molecular com- 
position, the phase behavior, and dynamical properties of the system. 
However, due to the large number of interaction sites in real molecular 
systems, the calculations are extremely time consuming, and therefore 
only a few liquid crystals have been studied in this way. Some simplifica- 
tions are introduced to circumvent part of the diffi~ulties."~-"~ In the 
approach by Cross and Fung"""'3 the phenyl rings in the LC molecules 
are considered as enlarged simple spheres, whereas other parts of the 
molecule are treated realistically. Inter- and intramolecular contributions 
arising from the alkyl chain to the conformational properties could be 
separated. In the model proposed by Yoshida and T~r iumi , "~  the LC 
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molecule is made up of linearly connected four spherical beads, each of 
which acts as a center of the Lennard-Jones interactions. 

2. Smectic A Phase 

Some variety of smectic A phases can be distinguished, if the ordering of 
molecules in layers is  ons side red."^-"^ Generally two factors play an 
important role in the formation of different subtypes of smectic A phases: 
the dipolar effects and steric effects; and for rodlike molecules the dipolar 
features are most important."' The main property for discriminating the 
different subtypes is the ratio of the smectic layer spacing d to the 
molecular length 1 in its most extended form. The monolayer Sm A, can 
be regarded as the classical smectic A phase, which is characteristic for all 
nonpolar and many weakly polar compounds. Sm A, is called the 
partially bilayer smectic and is formed by compounds with strongly polar 
terminal groups such as -CN, -CHO, and -NO,."s As an example 
Figure 2 shows the arrangement of two neighbouring molecules for 8CB 
in the smectic A, phase and for 5CB in the nematic phase."' 

To describe the properties of Sm A phases, it is necessary to 
introduce-in addition to the order parameter S (defined for the nematic 
phase in Section 1.B.)-a second-order parameter u that accounts for the 
layer structure: 

u = ( cos 2r rz ld )  (9) 

where z is the translational coordinate parallel to the director. On that 
basis McMillan' l9 has extended the Maier-Saupe theory by assuming a 
coupling of the smectic order parameter u to the orientational order 
parameter S. The intermolecular potential contained two model parame- 
ters, the strength of the potential and its effective range. McMillan's 
theory is in good accord with typical features of experimentally observed 

Then further phase diagrams and thermodynamic quantities. 
which gave a better refinements have been made to the theory, 

agreement with experiments. However, this mean-field theory cannot 
describe all properties of the smectic A phases, such as the various 
subtypes or the reentrant behavior. 

Luckhurst and Simmonds'23 employed a new parametrization of the 
Gay-Berne potential that allowed more details of the liquid crystal 
behavior to be revealed. The main result was that the isotropic and 
nematic phases are dominated by short-range anisotropic forces, whereas 
the stability of the smectic A phase depends critically on the anisotropy of 
the attractive forces. The use of the Gay-Berne potential was criticized 
by others because it is too simple to find out how the particular molecular 

39,116,119 

120-123 
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structure may affect the phase situation. Smectic phases have been 
identified in computer simulations of liquid crystal models with semiflex- 

The well-known odd-even effects for the nematic ible molecules. 
properties could be recovered. Paolini et employed a soft-core 
site-site potential and could reveal both nematic and smectic phases. 

A number of models have been elaborated with the aim of explaining 
the reentrant phenomena in liquid In the models the 
interactions between the molecules are described by means of long-range 
forces (dispersion, inductive, and dipole-dipole forces) as well as by 
short-range, mainly steric forces. The former forces are responsible for 
the creation of long-range order (smectic layering), whereas the latter 
ones tend to destabilize the smectic order. The competition between both 
types of forces may lead to the appearance of even multiple reentrant 
behavior being observed at decreasing temperature or increasing pres- 
sure. 

124.125 

11. DIELECTRIC PROPERTIES OF NEMATIC LIQUID CRYSTALS 

A. Static Permittivity 

The dielectric method is a powerful tool for studying the reorientational 
motions of dipolar molecules in condensed phases. The probing external 
electric field interacts with the dipole moment of a molecule that is 
embedded in a continuum consisting of the same molecules. Thus the 
molecule also interacts with its surrounding, and the net effect can be 
accounted for by introducing the local field, which is larger than the 
external one. The finding of a proper form of the local field is a crucial 
point of each theory of dielectrics. In the case of isotropic systems the 
Onsager approach is commonly accepted,128-'31 Maier and M ~ i e r ' ~ '  have 
used this approach to describe the dielectric properties of the nematic 
phase in spite of a strong anisotropy of molecular interaction in that 
phase. To calculate the orientational distribution function for the mole- 
cule, the Maier-Saupe potential was used. Therefore the obtained 
expressions for the dielectric permittivity components of the nematic 
phase may be treated as a rough estimation and cannot be used for 
quantitative analysis of the experimental results. 

Due to the anisotropic features of liquid crystals we have to distinguish 
between different principal elements of the dielectric tensor. We consider 
uniaxial liquid crystalline phases, that is, nematic and smectic A, with the 
macroscopic z axis parallel to the director n. In this case we have two 
principal elements: ell = e,,,  E ,  = ex, = E ~ ~ .  Depending on whether the 
measuring field is kept parallel or perpendicular to the director n, we 
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obtain E,,  or F ~ ,  respectively. The dielectric anisotropy A& = E~~ - F ,  will 
certainly depend on the extent to which adjacent molecules are parallel 
aligned, that is, the dependence on the order parameter S will be 
particularly relevant. 

Similar to the treatments for isotropic phases we have to compute the 
sum of the induced and orientation p ~ l a r i z a t i o n . ~ ” ~ ~  Following Maier and 
Meier,1323133 we consider a molecule with a permanent dipole moment p 
that makes an angle p with the long molecular axis [. The anisotropy of 
the polarizability is accounted for by two principal elements a, and a,, 
along and transverse to 5. The components of p (in the molecule-fixed 
coordinate system) are: pl = p cos P ,  pr = p sin 0. The components a, , ,  
a L ,  pl,, and pl (in the laboratory system) depend on the orientation of 
the molecular 5 axis, which makes an angle 8 with the z axis, and thus are 
connected with the order parameter S: 

( a ) , ,  =+[a,(2S+ 1)+ar(2-2S)] (10) 

( a ) ,  = + [ a / ( l - S ) + a r ( 2 + S ) ]  (11) 

(12) ( p i )  = f[p;(2S + 1) + p:(1 - S) ]  = +p2[1 - (1 - 3 COS2P)S] 

( p : )  = f [p;( l -  S) + ip:(2 + S ) ]  = $p2[1 + i ( 1 -  3 COS~P)S]  (13) 

In order to derive equations for the dielectric components, the 
authors’323133 used similar simplifications as in the Onsager t h e ~ r y . ’ ~ * - ~ ~ ’  
The molecule is put in a spherical cavity with radius a, determined from 
the molar volume: M / p  = f.rrNAa3 ( M  = molar mass, p = density, NA = 
Avogadro number, N = N A p / M ) .  In the cavity field factor h = 3E/(2E + 
1), and the reaction field factor f =  (.F - 1)/[2.rr~,a~((2E + l)], the aniso- 
tropy of the permittivity is ignored. In the expression F = 1/(1 -fa) an 
averaged value for the polarizability a is used. The resulting equations 
are, 

~ S l j  - 1 = ( ~ h ~ / & n ) [ ( a ) I I  + F ( P $ ) I ( ~ T ) I  

37.38.132 where 6 = f (aI + 2~x0, A a  = a/ - ar : 

= (NhF/~,)(ci + 5 AaS + F (  p2)  /(3kT)[1 - (1 - 3 COS’P)S]) (14) 

- 1 = (NhF/&n)[ ( a  ) 1 + F (  P: ) / ( ~ T ) I  

= ( N ~ F / F , , ) ( &  - AaS + F (  p2)  /(3kT)[1 + i (1  - 3 C O S * P ) S ] )  

(15) 

AE = - E, I = (NhF/&,) [Aa - F (  p2)  l (2kT) (  1 - 3 C O S * ~ ] S  (16) 
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where E, stands for the static permittivity and E,, is the permittivity of free 
space. 

The last equation shows that the induced polarization is proportional 
to S ,  whereas the orientation polarization is governed by S / T .  The 
experimental temperature dependence of A& can roughly be explained 
with the Maier-Meier equations. 

Using averaged quantities for F and F,: E = f ( ~ ~ ~  + 2 ~ ~ ) ,  Onsager's 
equation for isotropic phase is obtained such that it can be used for 
estimation of permanent dipole moments of molecules ( E ,  = n2 being the 
high-frequency dielectric constant, n = refractive index): 

There are many examples (e.g., for alkylcyanobiphenyls) where the 
calculated dipole moment is significantly smaller than expected from the 
polar substituents. This deviation can be formally accounted for in 
replacing F~ by 

where the correlation factor g has been introduced analogously to the 
In the case of the nCBs antiparal- Kirkwood-Frohlich theory. 

lel correlations are dominant, leading to g ,  < 1. 
A more sophisticated treatment is given by Bordewijk and 

B o t t ~ h e r , ' ~ " , ' ~ ~  who has taken into account the anisotropy of the nematic 
medium, but the derived expression for g,,ll and g k , l  were obtained with 
other not very realistic assumptions. 

Recently, Sharma 13' has proposed some extension of the Maier-Meier 
approach to the case of nematogens with antiparallel dipole-dipole 
correlations of the molecules. He treated a polar LC material as a 
mixture of unpaired molecules with a finite dipole moment p and 
antiparallel pairs with zero dipole moment. The molecules interact with 
each other through a combination of the generalized Maier-Saupe 
pseudopotential for nematic mixtures and a reaction field energy term 
calculated from an extension of the Maier-Meier theory. Additionally, it 
was assumed that a dipole with dipole moment p is embedded in a 
spherical cavity of dielectric permittivity n2,  which is surrounded by a 
medium of average dielectric permittivity E. In that case the expressions 
for the cavity field factor h and the reaction field factor f are given by 
h = 3 F / ( 2 1 +  n 2 ) ,  f =  ( E  - n2)/[2n~,a3n2(2E + n')]  and the left sides of 
Eqs. (14) and (15) should be replaced by E - n 2 .  The calculations 

129 , Ih .  134,135 



DIELECTRIC PROPERTIES OF LIQUID CRYSTALS UNDER HIGH PRESSURE 161 

performed for 5CB and 7CB gave reasonable agreement with an overall 
behavior of the dielectric permittivity in the nematic phase. The mole 
fraction of the “associated” pairs appeared to be relatively small (-10%) 
and the association energy does not exceed 2kT. 

B. Dielectric Relaxation 

1. Fundamentals 

At sufficiently high frequencies the orientation polarization lags behind 
the measuring field, resulting in a decrease of the permittivity. Simul- 
taneously, the system absorbs energy that appears as a “dielectric loss.” 
The frequency-dependent dielectric constant is usually expressed as a 
complex permittivity: E *  = E ’  -id‘. In the simplest case of a single 
relaxation time 7, the real and imaginary part of E *  can be described with 
the well-known Debye equations: 129,131,136.13y 

E, - E x  &, - E x  

1 + W 2 T 2  W r  
& ’ ( W )  - E,  = & “ ( W )  = 

1 + 0 2 r 2  

The dielectric relaxation time r can be calculated from the frequency 
of maximum loss: r = l /wmax .  A Cole-Cole plot of E” against 8’ enables 
one to check easily deviations from a single Debye mechanism that can be 
accounted for by several extensions of the Debye theory. We use 
equations after Havriliak-Negami (which contains the Cole-Cole and 
Cole-Davidson equations as special cases) and Jonscher, preferentially 
for a precise evaluation of urnax: 

Havriliak-Negami: 

&* - &, 
& * ( W )  - F, = 

[l + ( i W T ( p ] P  

Jonscher: 

A 
&“(W)  = 

(W/WJ” + ( W / W p ) l P n  

The adjustable parameters E,, a ,  p,  ro or A ,  m, n ,  are in general 
sufficient for an accurate fitting of the loss curves.14” Moreover, they give 
useful information about the shape of the loss functions and distribution 
of relaxation times. 

When the ionic conductivity a, contributes to the absorption spectra, 
this effect has to be subtracted, where can be used as an adjustable 
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parameter: 

The temperature and pressure dependence of the dielectric relaxation 

Activation enthalpy: 

129.141.142 time can be expressed in terms of activation parameters: 

Activation energy: 

Activation volume: 

It is the aim of the present review to emphasize the pressure 
dependence of the activation quantities (A"V and dA"H/ap) ,  which is not 
obtainable in atmospheric pressure measurements. 

In the case of nematic liquid crystals we have to take into account the 
anisotropic features, which results in significantly different reorientation 
processes parallel and orthogonal to the director n. Correspondingly, we 
have to distinguish between two relaxation times, rI1 and r l .  The dipole 
components p, and pr relax through rotations about the short and long 
molecular axes, respectively. In measurements of F , , ,  when the field is 
parallel to n, rotations around the short molecular axis are strongly 
hindered by the more or less parallel aligned neighbors. Therefore this 
relaxation process will be shifted to low frequencies (1.f. mode). The 
molecule rotations about the long axes are weakly influenced by the 
nematic order, and therefore the corresponding relaxation process ( E ~  ) is 
observed at distinctly higher frequencies (h.f. mode). Due to the 
incomplete nematic order (0 > 0, S < l), there will also be a certain 
contribution from pl on E ,  and I-L, on ell. This can be understood by a 
reorientation of pl through an angle rn over the latitude 0 = ~ 0 n s t a n t . l ~ ~  
The influence of the nematic order on the interaction in the T~~ process is 
accounted for by the nematic potential q (see below). 
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2. Concept of the Retardation Factors 
According to the Maier-Saupe theory of the nematic phase, one can 
distinguish two energy minima, at 8 = 0" and 13 = 180", that correspond to 
molecular alignment with the nematic director. The energy barrier 
between them, the nematic potential q ,  is supposed to be proportional to 
the order parameter S .  Thus, the molecular reorientation around the 
short axis is hindered by this potential, and this is why one observes a 
dramatic lowering of the relaxation rate when crossing the transition 
point from the isotropic phase (S = 0) to the nematic phase (S I 0.3 at 
TNI). Then it seems to be reasonable to expect a straightforward relation 
between a degree of slowing down of the relaxation rate, characterized by 
the retardation factor gl, = T , , / T ,  (7, being the relaxation time at q = 0) 
and the nematic potential q. It was first derived by Meier and S a ~ p e ' ~ ~  
who considered the parallel relaxation process in the Maier-Saupe 
potential. They assumed that the perturbation of the angular distribution 
function by the probe electric field has the form of a cosine at all times 
after the field is switched off. In this manner they circumvented the need 
for solving the equation for the distribution function exactly. The 
obtained relation is the following: 

where the nematic potential barrier parameter a = qlRT. 
A detailed description of the molecular motions in the Maier-Saupe 

potential disturbed by the electric probe field has been done by Martin 
and c o - ~ o r k e r s . ' ~ ~  These authors obtained the numerical solutions for the 
relaxation times T ~ ,  and 7, and for polarization. They found that the 
relaxation process measured at nllE geometry is slowed down with respect 
to the Debye-type motion in the isotropic phase, whereas the second 
relaxation process connected with the molecular reorientations around 
the long axes ( n l E  geometry) becomes faster in the presence of the 
nematic potential, that is, g > 1 and g ,  < 1. 

developed a new approach to the problem 
of Brownian rotational motions of a single-axis rotator in a uniaxial 
potential. Using very sophisticated mathematical procedures, they were 
able to obtain the exact analytic solutions for the retardation factors g,, 
and g, in terms of a. The following formula for the parallel retardation 
factor renders a close approximation to the exact solution for all a 

146-v51 Recently, Coffey et al. 
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Figure 3. Retardation factor giI = T , ~  17, as function of the nematic potential barrier 
parameter u = q/RT according to Meier et 14’ Eq. (26) (broken line), and Coffey et 
a l . ~ ‘ 6 ~ i s ”  Eq. (27) (dashed line) and exact solution (solid line). (Reprinted with kind 
permission from the authors and the editor of Liq. Crystals.) 

In Figure 3 this formula is compared with the earlier formula of Meier 
and Saupe. It is clear that the Meier and Saupe formula considerably 
overestimates g, ,  for (T > 1, which causes the q values calculated with the 
use of Eq. (27) to be approximately 25% greater than those obtained by 
Eq. (26); see Refs. 88 and 152. Coffey et al.i49”si found also the relations 
between the retardation factors gll and g ,  and the order parameter S: 

2 - 2 s  
g ,  =2+s 

However, the expression for the longitudinal retardation factor does not 
provide a correct description of the behavior of g,, for (T > 2, whereas the 
one for g ,  is valid for all (T.’~’),~~’ By comparison of the above equations 
one gets two general relationships between the retardation factors 

A discussion of the relationships (28)-(30) is given in Refs. 152 and 172. 
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111. EXPERIMENTAL METHODS 

The measurement of the permittivity and the theoretical background is 
described in  textbook^^^"-'^' and review  article^.'^^^"^^"'^^ In general the 
permittivity s is determined from the increase of the capacitance of a 
capacitor filled with the substance under consideration. In the case of 
liquid crystals we have to take into consideration the principal elements 
of the dielectric tensor. At least two different principal values, E~~ and E ~ ,  

have to be distinguished (e.g., for nematic and Sm A). For tilted smectic 
phases three main dielectric constants have to be measured.'53 The 
anisotropic permittivity of liquid crystals requires special designs for 
aligning the sample.37 In order to measure the parallel (siI) or perpen- 
dicular ( E , )  component, the electric field must be kept parallel or 
perpendicular to the director n. It is advantageous to align the sample 
with magnetic field that allows to measure slI and E~ with the same cell, 
yielding accurate values for the dielectric anisotropy A s  = E~~ - sl. At any 
rate the applied voltage should be low (=1V) to avoid a hydrodynamic 
perturbation of the oriented sample. 

Of course, three-terminal capacitors are most appropriate in order to 
avoid stray and lead capacitances. For measurements of isotropic liquids 
cylindrical capacitors are convenient. Parallel-plate capacitors are pre- 
ferred for orienting the sample with a magnetic field. The cell is 
introduced between the poles of a magnet, providing the magnetic 
induction of the order of 1T. Thus E ~ ,  and sl can be measured in the 
E 1 1  B and E I B  geometry, respectively. For studies at higher frequencies 
various techniques have been described for the investigation of the 
complex permitti~ity.'~~.'~~-'~~ The alignment of the director can also be 
achieved in thin cells through interaction of the liquid crystals with the 
walls. The layer may be homeotropic or planar, depending on whether 
the director is perpendicular or parallel to the walls. This method can also 
be used in the time-domain spectroscopy (TDS).'54 

Dielectric studies on liquid crystals under high pressure are scarce, and 
only few high-pressure cells are described in the I i t e r a t ~ r e . ' ~ ' ~ " ' ' ~ ~ ' ~ ~ ' '  
High-pressure experiments cause additional difficulties that are not 
encountered at normal pressure: The pressure transmitting medium must 
be separated from the sample. Dissolution of compressed gases, for 
example, in the substance under investigation can significantly change the 
measured properties.16' Feedthroughs for the electrical leads to the 
capacitor require special sealing. The geometry of the capacitor and the 
connections may change under pressure that must be controlled by a 
careful calibration. 
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In the author's group dielectric cells were developed for the in- 
vestigation of liquids and plastic crystals. A scheme of the setup is 
presented in Figure 4. The autoclave A is pressurized with compressed 
argon that is created with a pump station up to a maximum pressure of 
300MPa. A heating and cooling jacket around the autoclave serves to 
adjust the temperature. The impedance is measured automatically with a 
Hewlett-Packard analyzer HP 4192, controlled by a personal computer. 

The high-pressure vessel is shown in more detail in Figure 5. It is made 
of copper beryllium alloy and closed by a Bridgman piston with two bores 
for the electrical leads to the capacitor. Special care was necessary to 
design the sealings in order to avoid short circuits between the leads and 
the vessel.'62 In Figure 6 we present one example of a three-terminal 
dielectric cell.74,i63 The cylindrical capacitor is guarded by rings (g ,  x). It 
was shown recently that such cells can also be used to study the slow 
relaxation process observed in nematic phases.'l A special moving piston, 
consisting of two parts ( y ,  z )  separated by an indium sealing (o ) ,  
transmits the pressure on the substance, which can penetrate through 1 to 
the room (w) between the cylindrical electrodes (h ,  i). The compressed 
gas allows an accurate reading of the pressure. However, leakages cannot 
always be avoided, and the strong solubility of the gas then destroys the 
measurements. Therefore we established a new high-pressure equipment 
using compressed oil as a pressure transmitting m e d i ~ m . ~ ~ . ' ~  Some 
changes in the dielectric cell and the lead connections were necessary in 
order to permit dielectric studies at somewhat higher temperatures up to 
110°C. The new setup facilitates the measurements considerably. The 
frequency dependence of the permittivity was measured up to 13 MHz. 

Very recently Urban'64 developed a high-pressure cell that enables one 
to measure both parallel and perpendicular components of the permittivi- 
ty up to 70MPa. 

Sasabe and 0 0 i z u m i ' ~ ~  measured the pressure dependence of the static 
permittivity of MBBA in order to determine the crystal-nematic transi- 
tion line. They used a guarded electrode system that was pressurized 
hydrostatically. 

Yasuda et performed dielectric relaxation measurements on 
metastable solid MBBA, using a parallel-plate capacitor. Glass plates 
with strips of transparent tin-oxide-conducting coating served as elec- 
trodes. The cell was mounted in a copper beryllium pressure vessel, 
pressurized with liquid isopentane. A similar setup was used for the study 
of ferroelectric liquid crystals.167 Ferroelectric li uid crystals have also 
been studied by Chandrasekhar and co-workers, who used a sapphire 
cell setup in a high-pressure apparatus. The sample was sandwiched 
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Figure 5. High-pressure autoclave: a ,  connections to the electrical leads; 6, screw; c, 
electrical feedthrough; d ,  Teflon; e ,  pressure ring; f, sealing; g, stainless steel brace; h ,  
screws; i, connections to the electrodes; k ,  location of the measuring cell; I ,  thermocouple; 
m, screw; n ,  Bridgman piston; 0, part of the lead connections; p ,  r ,  Teflon spacers; q ,  
clamp; s, connection to the pressurizing system. 

between two steel cylinders, enclosed in an elastomer tube. The surface 
of the cylinders were coated with a polymer that was rubbed in such a 
way as to get a planar orientation of the sample. 

W. Heinrich and B. Stoll16' developed a high-pressure apparatus that 
was employed for the dielectric investigation of LC polyacrylates. The 
polymer specimens were pressed between stainless steel plates and 



DIELECTRIC PROPERTIES OF LIQUID CRYSTALS UNDER HIGH PRESSURE 169 

1 cm 

Figure 6. Dielectric measuring cell: a,  electrical connections; b ,  screws; c, cone sealing; 
d ,  screw cover; e ,  O-rings; f, outer shielding of the capacitor; g, guard ring; h ,  inner 
electrode; i, outer electrode; j ,  spacer of Teflon; k ,  opening for substance inlet; I ,  clamp of 
Teflon; rn, spring; n ,  O-rings; 0, indium sealing; p .  screwing with gas inlet; q ,  glue; r ,  
screws; s, cone sealing; t ,  plug; u, Teflon ring; u ,  Teflon support; w ,  substance under study; 
x, shielding; y ,  z ,  parts of the piston that separates the substance from the pressurizing 
medium. 

mounted in the high-pressure cell. So, the surface of the specimen had 
only little contact with the pressure transmitting silicon oil. 

Carboni et al.'59 describe a specialized apparatus for the study of LCs 
at high pressure that include also electrooptic and electrical measure- 
ments. 

IV. DIELECTRIC STUDIES AT ELEVATED PRESSURES 

A. Isotropic Phase 

The dielectric properties under high pressure of the isotropic phase of LC 
substances have been investigated to a much less extent than in the case 
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of the nematic phase. This is due to a distinct shift of the relaxation 
spectra toward higher frequencies (see Fig. 14) and thus not accessible for 
usual impedance bridges. On the other hand, another experimental 
technique very well suited for that purpose, such as the time-domain 
spectroscopy (TDS) method, cannot be easily adopted to HP equipment. 

Figure 7 presents the static permittivities E ~ , ~ ~  as function of pressure at 
constant temperatures within the isotropic phase of nCB substances 
measured in our lab. A small but noticeable decrease of the permittivity 
with the increase of pressure is observed. Thus, the effect is in opposition 
to that which can be expected from a change of the density of the 
samples. Analogous behavior has been observed for these substances at  
ambient pressure when the static permittivity was measured as a function 

Namely, E,, , (T)  increases of temperature starting from TNI. 
initially with temperature reaching a broad maximum at about T,, + 10°C 
and then becomes a decreasing function of the temperature, as in a 
normal isotropic liquid. We observed such a behavior in the case of 
7PCH." This pretransitional effect was attributed to an increase of the 
number of dimers (with decreasing temperature) in a dynamic monomer- 
dimer equilibrium.'69"7" Additionally, some fluctuations of the nematic 
clusters embedded in the isotropic liquid near the transition temperature 
may also influence the static permitti~ity.'~' 

In our HP studies of the isotropic phase of nCB and nPCH compounds 
the pressure was decreased from pNI corresponding to the N-Is transition 
temperature at T = constant. According to the equation of state that 
corresponds to the increase in temperature at p = constant starting from 
TN1. Thus, both observed changes of E ~ , ~ ~  have the same origin, that is, 
the breaking of the dipole-dipole associations of the cyano compounds 

156,169-171 
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Figure 7. Static dielectric permittivity in the isotropic phase as a function of pressure 
for four members of nCB series. 
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caused by the temperature or pressure. However, due to the narrow 
pressure ranges of the isotropic phases attainable to our former ex- 
perimental setup, a maximum of ~ , , ~ ~ ( p ) ~  could not well be resolved. 

In the case of 7PCH, however, the accessible range of the isotropic 
phase was broader, due to the establishment of a new high-pressure 
device that allows measurements at higher t e m p e r a t ~ r e s . ’ ~ . ~ ~  Figure 8 
presents clearly maxima in P ) ~  for several constant temperatures. 
The effect is very weak, although well discernable. The positions of 
maxima are systematically shifted toward higher pressures when the 
temperature raises, but the distance from the transition line persists 
roughly constant: pNI - p,,,  = 40 MPa. 

As one can see in Figure 14 the relaxation spectra of the isotropic 
phase of all substances studied have maxima of losses above 100 MHz, so 
our HP setup can cover only a low-frequency part of the absorption 
bands. Therefore, to obtain the relaxation times vs. T or p we had to 
extrapolate the measured spectra to higher frequencies in order to find 
the critical frequency f, = 1/ (2~5- ,~) .  According to Parneix et al? the 
Cole-Davidson skewed arcs should be used for that purpose. However, 
the recent measurements carried out by Gestblom and c o - ~ o r k e r s ~ ~ * ~ ’ ~ ~  
with the use of the TDS method have shown that the spectra of the 
isotropic phase of 5CB 154 and 5PCH’” could be well described by the 
Cole-Cole equation with a symmetric distribution of the relaxation times, 

I 
7PCH 

8 . 2 8  
0 50 100 I! 

p I MPa 

Figure 8. Static dielectric permittivity in the isotropic phase as a function of pressure 
for 7PCH.’* Vertical lines mark the clearing points. 
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TABLE IV 
Activation Volume A#Vs and Activation Enthalpy A"H,, for Different Substances in the 

Isotropic Phase 

Substance A#Vs (cm3/mol) A"H,, (kJ/mol) References 

5CB 
6CB 
7CB 
8CB 
8OCB 
5PCH 
7PCH 
5CCH 
6CHBT 

30 
33 
36 
47 
46 
34 
37 
32 
35 

30 
36 
46 
41 
46 
33 
36 
37 
32 

81 
83 
84 
85 
89 
87 
88 
77 
86 

whereas in the case of the isotropic phase of 7PCH the Cole-Davidson 
formula is more a p p r 0 ~ r i a t e . I ~ ~  Fortunately, evaluation of the spectra 
does not influence the relaxation times markedly when T ; ~  is calculated 
from the f, values. 

The isotropic phase of 5CB was studied with a special a t t e n t i ~ n ; ~ " ~  
and the conclusions derived seem to be valid for all nCB substances: the 
activation volume A"r/;, and activation enthalpy A"H;, can be treated as 
constant within the temperature and pressure ranges covered in the 
experiments. Table IV presents the obtained values of both quantities for 
particular substances studied. In case of nCB compounds one can observe 
some tendency of increasing activation quantities with the number of 
carbon atoms in the terminal group although the differences between the 
substances having similar geometrical shapes (5CB f-, 5PCH f-, SCCH, 
7CB - 7PCH, 6CB f-, 6CHBT, 8CB f-f 80CB)  are rather small. 

140,172 

B. Nematic Phase 

1. Static Permittivity 

The temperature and pressure dependence of the parallel component of 
the static permittivity, was studied for several n-alkylcyanobiphenyls 
(5~~,74,81,164 6CB,83,164 7 C B y  and 8CBx5), as well as for other similar 
compounds (6CHBTP6 5PCH,7"77,87 7PCH,77,x8 80CB,x9 and 5CCH77). 
However, the perpendicular component, E , ~ ,  and the dielectric aniso- 
tropy, A&, are known for 5CB and 6CB only.164 

Figure 9 presents the static dielectric constants, E ~ , ,  and E , ~ ,  as a 
function of pressure at two temperatures within the nematic phase of 5CB 
and 6CB. The average permittivity values, E = + 2 ~ , , ) / 3 ,  are practi- 
cally independent of pressure and are the same at both temperatures. 
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Figure 9. Pressure dependence of the principal static permittivities in the nematic [ E , ~ ,  

E , ,  E )  and isotropic ( E ,  ,3) phase for 5CB (bottom scale, (A) 310 K,  ( A )  313 K)  and 6CB 
(top scale, (0) 304 K, (0)  310 K).'64 (Reprinted with kind permission from the editor of Z .  
Naturforsch. A . )  

Moreover, they differ very slightly from the values E ~ , ~ ~  extrapolated from 
the isotropic phase. Characteristic steps between E,, , ,  and E, observed 
for all cyanobiphenyls at the I-N transition point at ambient pres- 

were practically not observed in the studies at T =  
con~tant . "~  The dielectric anisotropy AE presented in Figure 10 as a 
function of the reduced pressure, p -pNI, does not obey the Maier- 
Meier equation (16) well. The order parameter S ( p )  normalized to the 
points close to the clearing temperature shows marked discrepancy as we 
go deeper into the nematic phase. The effect cannot be caused by the 
density change as the ratio A E I A E ~ ~  = A E I ~ S F ~ ,  AcMM being the aniso- 
tropy calculated with the use of Eq. (16), is not constant as a function of 
pressure (see Fig. 10). One can conclude therefore that the Maier-Meier 
equation (16) does not relate properly the permittivity anisotropy with 
the order parameter in the two cyanobiphenyls studied.'64 

The ratio A s / A s M M  = p2ff /p2 = g, can give some information about a 
degree of dipole-dipole associations in the nematic phase of the sub- 
stances under consideration. However, the obtained value of g,  s 0.5 
seems to be unreliable in the light of the above discussion concerning the 
applicability of the Maier-Meier equations to real nematic phase prop- 

Sure ,3Y ,169-17 I 
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Figure 10. Dielectric anisotropy, A E ,  as a function of the reduced pressure in the 
nematic phase of (A)  5CB and (0) 6CB;I6' the lines correspond to the order parameter S 
normalized to the points close to pNI. Full symbols [ (O)  310 K, (A) 313 K] concern the ratio 
of measured ( A E )  and calculated (AE"") dielectric anisotropy for 5CB (right-hand scale); 
the lines are only guide for the eyes. (Reprinted with kind permission from the editor of Z .  
Naturforsch. A .) 

erties. As mentioned in Section II.A, Sharma13* has proposed the 
extension of this theory by including the electronic polarization to the 
cavity and reaction field factors. After doing that the Kirkwood g, factor 
becomes more realistic (ca. 0.7).164 

For other substances the parallel permittivity component, E , ~ , ,  , is only 
known. Figure 11 shows a typical behavior of the static permittivity F~~~ in 
the nematic and isotropic phase of 7PCH at constant temperatures, while 
the pressure was successfully reduced from the points close to the 
nematic-solid transition line. Figure 12 presents the dependencies of ,, 
on the reduced pressure, p -pNI, for different substances studied. It IS 
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I I I I 

0 40 80 120 160 200 
p/M Pa 

Figure 11. Pressure dependence of the static permittivity e',,  in the nematic and 
isotropic phase of 7PCH; the temperatures for different isotherms vary in steps of 3 K.88 The 
vertical lines mark the clearing points. 

worthwhile to note that the absolute values of E,, ,  obtained for the 
samples oriented by the electric field ( E  - 300 V/cm) are usually marked- 
ly greater than those measured in other labs when a B-field was 

Maybe the strengths of the magnetic fields used were 
not large enough. Two features of these behaviors should be noted: (i) 
the static permittivity decreases with increasing alkyl chain length and (ii) 
a stronger dependence of ~ , , , ( p )  is observed close to the clearing 
temperature in the case of nCB compounds than for other ones. The first 
feature is probably connected with the conformation motions of the end 
group in the molecules, which become wider with longer chains. These 
motions smear out the position of the long molecular axis and make the 
molecule broader. The addition of CH, groups to the alkyl chain (e.g., 
SPCH -+ 7PCH) produces looser molecular packing in the nematic 
phase.'73 It was found that the decrease of the permittivity between SPCH 
and 7PCH (-15%) is not compensated by the change of the density and 
molar volume.88 Figure 13 shows that the molar susceptibility ( E ~ , ,  - 1)M/ 
p is appreciably reduced (to -2%), but the difference remains in the 
whole range of pressures in the nematic phase of both compounds. The 
second feature can be connected with breaking of the dipole-dipole 
associations due to a change of monomer-dimer equilibrium caused by 

applied.83-85,87-89, 172 
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Figure 12. Parallel permittivity component, E ? , , ,  as a function of the reduced pressure, 
p - pN,,  for different substances in the nematic phase. The temperatures correspond to a 
few Kelvins above the clearing points at ambient pressure. 

the increase of p r e s s ~ r e . ~ ' - ~ ~  However, a detailed analysis of these 
behaviors requires the knowledge of the order parameters in function of 
pressure, which is only exceptionally available. 

2. Dielectric Relaxation 
The alkylcyanobiphenyls are specially suited for the investigation of the 
dielectric relaxation because the two main modes of dipole relaxation are 
well separated. The hindered rotation about the short molecular axis is 
shifted to relatively low frequencies conveniently accessible in impedance 
bridge measurements. This relaxation process is coupled to the strength 
of the nematic potential q ,  which should be sensitive to a variation of the 
intermolecular distance. Hence a strong pressure dependence is expected 
for this relaxation process. 

As an example in Figure 14 we show the real and imaginary parts of 
the complex permittivity for 6CB as a function of temperature at ambient 
pressure and as a function of pressure at constant t e ~ n p e r a t u r e . ~ ~  A 
similarity of the pictures is evident. In both cases the observed relaxation 
process can be described by a single Debye mechanism, which is easily 
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Figure 13. Pressure dependence of the parallel permittivity component, E,,, , and the 
molar susceptibility, ( E , , ,  - l ) M / p ,  for SPCH and 7PCH in the nematic phase. 

seen on the Cole-Cole plots (E" against s ' ) .  This well-known behavior for 
the low-frequency relaxation process in the nematic phase can be checked 
more quantitatively in evaluating the shape parameters of the loss 
functions. Using the Jonscher equation, it was shown for 7CB that the 
parameters m = 1 k 0.01 and 1 > 1 - n > 0.95 are in fact very close to 
unity ." 

The relaxation times T~~ are strongly pressure dependent (see Fig. 15), 
and it is more convenient to present them in semilogarithmic form. In 
Figure 16 and 17 the logarithm of the dielectric relaxation time is plotted 
against pressure and the reciprocal temperature, respectively. Although 
the plots are not exactly straight lines (especially In T,, vs. p plots), we can 
determine the activation volume and activation enthalpy from the average 
slopes according to the equations presented in Section 1I.B. The activa- 
tion energy can be derived from suitable cross plots of the isobaric 
relaxation time and isochors, or alternatively with Eq. (24), after 



178 s. URBAN AND A. WURFLINGER 

E' I 

12- 

E"1 T =  312 K 
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Figure 14. Dispersion and absorption spectra and Cole-Cole plots for 6CB: (a) at 
constant (ambient) pressure and different temperatures, and (b) at constant temperature 
and different  pressure^.^' (Reprinted with kind permission from the editor of Liq. Crystuls.) 

evaluating ( d p l d T ) ,  = a / p  from pVT data. Both procedures yield the 
same result in the limits of experimental errors (see Table V). 

The activation parameters are compared in Figures 18 and 19. The 
variation of the alkyl chain length in the alkylcyanobiphenyl homologues 
does not exhibit significant trends.85 The most interesting result is the high 
activation volume that is an order of magnitude larger than those usually 
observed for reorientation processes in liquids and plastic ~rysta1s.l~ It 
amounts to about 25% of the molar volume of an LC substance. These 
high A'V,, values reflect the strong sensitivity of the relaxation process 
against a change of the density of the phase. A'U,, is appreciably smaller 
than A'H,, due to the large activation volumes [cf. Eq. (24)]. The 
activation energy A'U,, corresponds to the energy barrier at constant 
volume, which should be accessible from computer experiments. Indeed 
computer simulations have been performed for 5CB,'1"~112 5PCH,'74 
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Figure 15. Pressure dependence of the relaxation time T,, at different temperatures in 
the nematic phase of 6CHBT.#‘ (Reprinted with kind permission from the editor of Liq. 
Crystals.) 

SCCH,”’ and ~ O C B S . ” ~  However, energy barriers for the reorientation 
processes in nematic phases have not been calculated so far. 

In Figure 19 A’H,, is plotted against pressure for several nematics. 
Surprisingly, A#HII decreases with increasing pressure and corresponding- 
ly we observed a negative density dependence for A#Uil.  This behavior 
can be understood in the frame of a monomer-dimer equilibrium. The 
nCB molecules are supposed to form dimers that partly overlap”’ (see 
Fig. 2) and therefore require a relatively large volume. The specific 
arrangement is due to dipole-dipole correlations. Obviously, the average 
volume occupied by a dimer must be larger than the volume required by 
two monomers. Increasing pressure squeezes out the free volume and 
thus destroys the dimers. Because the monomers are assumed to reorient 
more freely, the activation enthalpy is reduced with increasing pressure. 
Once the dimers are destroyed, one should observe the “normal” 
pressure dependence of A#Hl,, i.e., an increase with pressure. Probably 
the range of experimental pressure was not high enough to observe a 
minimum in A#HII(p). In this context we mention results for 6CHBT,R6 
for which A#HII was practically independent of pressure (this substance 
does not show dipole-dipole correlations in the nematic phase’76). 
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Figure 16. I n T , ,  vs. p plots for the nematic and isotropic phase of 6CB. The 
temperatures for different isotherms vary in steps of 3 K." (Reprinted with kind permission 
from the editor of Liq. Crystals.) 

A comparison of 5CB with 5PCH8' and 5CCH" and 7CB with 7PCH" 
enables us to analyze the influence of different molecular cores. Both the 
activation enthalpy and activation volume are considerably larger for 
nPCH and even more for 5CCH compounds (see Fig. 20). This could be 
connected with the higher flexibility of the cyclohexyl ring requiring more 
space for the reorientation. On the other hand the pressure dependence 
of A'H,, is much less pronounced for nPCHs compared with nCBs. For 
the A'U,, values the density dependence is even inverse (Fig. 21). 
Whereas A"U,, decreases with increasing density for 5CB, we find an 
increase in the case of SPCH and 7PCH, although for nPCHs the 
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o experimental 
interpolated 

We formation of antiparallel dimers is generally accepted as well. 
assume that due to stronger dipole-dipole interactions in the nematic 
phase of SPCH, the dimers cannot be so easily destroyed with pressure, 
and hence a weaker pressure dependence is observed. This conclusion is 
also supported by a similar pressure dependence found for the static 
permittivity (compare Fig. 12). 

Interesting trends are observed in the case of 7PCH for which 
dielectric measurements were carried out in a distinctly broader range of 
temperatures and pressures owing to the new HP setup (see experimental 
part). Figure 20b shows that the activation volume decreases with 
increasing temperature like 7CB, but at higher temperatures (and at the 
same time at higher pressures--compare phase diagrams in Fig. 1) a 
plateau is reached. The activation enthalpy A#HI, for 7PCH remains 
practically constant, whereas a distinct 'decrease was observed for nCB 
compounds (see Fig. 19). Combination of Eqs. (23) and (24) give the 
difference of two thermal pressure coefficients, ( d p  / d T ) ,  - (dp  / 8 T )  = 

A'U,, / T A#V,, , which is a measure for the isochoric activation energy. 
When the slopes dp ldT  were equal, then the relaxation time would be 
solely determined by steric conditions, and hence the activation energy 
A'U,, would be zero. (A similar conclusion follows from the simplest free 
volume t h e ~ r y * ~ . ' ~ * ) .  Figure 22 shows that both these slopes are evidently 
different, which yields distinctly nonzero A#UII values, SO the q relaxa- 

170,174,177 
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80 '"f 

Figure 18. Activation volume A"V,, as a 
function of T for different substances in the 
nematic phase. 

tion process cannot be explained only by volume effects. It would be 
interesting to compare A'U,, in more detail for liquid crystals, which do 
not form dimers, for example, 6CB with 6CHBT. However, p ,  V,  T data 
are not available. 

As outlined in Section II.B, Maier and Saupe have introduced the 
nematic potential q ,  which is a measure of the average strength of 
interaction between molecules treated as rigid bodies. However, the 
information about the values of the nematic potential is rather scarce. It 
can be determined from the deuterium NMR ~ p e c t r a ~ ~ ~ ' ~ ~ - ~ ~ ~  and from 
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5 PCH 
v ‘V- v-v- 

=-L. 

GCHBT 
_ -  -0- - -0 -  - - -0-  - -o-- Figure 19. Activation enthalpy 

A#H,,  as a function of p for different 
substances in the nematic phase. 

the dielectric relaxation studies using relations (26) and (27). In the latter 
case only compounds having dipole moments directed along the symme- 
try axis can be used. Only in such cases do the relaxation spectra 
measured in the isotropic phase give correct values of the relaxation times 

characterizing the molecular reorientations about the short axes in the 
absence of the ordering potential. The compounds belonging to the nCB 
and nPCH homologous series seem to be good representatives in that 
respect. Therefore, using a “natural” extrapolation of ln[~,,(p)] from the 
isotropic to the nematic phase (see Fig. 16) one can obtain the values of 

p l M P a  
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p I MPa 

(a) 
plMPa 

(b) 

Figure 20. Comparison of the activation volumes A"V,, and enthalpies A'H,, for (a) 
SCB, 5PCHP7 and 5CCH7? and (b) 7CB and 7PCHS8 in the nematic phase. 

Figure 21. Comparison of the activation energy A'U,, vs. molar volume V,,, obtained for 
the nematic phase of 5CBP' 5PCH," and 7PCH.nX 
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160 - 

- 

. 

31 0 330 350 370 
T I  K 

Figure 22. Comparison of p ( T )  plots at V =  constant and at T,, =constant for 5PCH (7s, 

V,) and 7PCH (T,, V,). 

~ ~ ( p ) ~  and then the g i , ( p ) T  factors. That procedure was applied to 
several substances s t ~ d i e d . ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  Figure 23 (top) shows, as an exam- 
ple, the gll factors for 5PCH calculated at different conditions. In the case 
of this substance the values of the retardation factor change from about 5 
close to the N-I transition up to about 20 at the N-Cr transition. At 
p = const and T = const only minor differences are observed between 
values corresponding to different isotherms or isobars, and only the 
change of density (molar volume) involves considerable changes in gll 
factors. For nCB compounds the g,, factors are significantly l o ~ e r , 8 ~ - ' ~  for 
example, for 6CB giI changes from about 2 to about 4 within the nematic 
phase (Maier-Saupe theory predicts gI1 = 4 at TN,). Figure 24 presents 
the ratio gI1 (experimental) to g i  (theoretical) calculated for 5CB at 
different conditions according to formula (28). It is clear from this figure 
that the relation predicted by formula (28) is not fulfilled; moreover, in 
the case of 6CB (and also 5CB) we have g i  > g,, , whereas for 7PCH it is 
g i  <gI1 .172 It should be noted, however, that the absolute values of the 
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Figure 24. Ratio of experimental and theoretical g,, factors calculated for the nematic 
phase of 5CB at different conditions. 

order parameters are hardly obtainable; this concerns especially the data 
calculated from the refractive index measurements.'72"s' 

Having retardation factors, one can calculate the nematic potential q 
using equations derived originally by Meier and Saupe [Eq. (26)] or by 
Coffey and co-workers [Eq. (27), Fig. 31. With the aid of Eq. (26) the 
nematic potential has been calculated as a function of temperature and 
pressure for various nematics.s2-"~87~8s"52"72 For nCB compounds the q 
values vary between 3 kJ/mol near T,, point and 6 kJ/mol near the 
melting tempera t~re ;~- '~  whereas in the case of nPCH substances they 
are higher87,88. 152.172 (ca. 8 and 16 kJ/mol, respectively). As pointed out 
in Section II.B.2, the relation between g,, and q derived by Coffey and 
co-workers seems to be more appropriate for characterizing the nematic 
phase. Figure 23 shows that the Coffey and co-workers formula gives 
systematically higher values (ca. 20-25%) of the nematic potential q than 
the Meier-Saupe equation, but both depend similarly on temperature 
and pressure. 

The temperature and pressure dependencies of q yield important 
information about the validity of the assumptions of the theories describ- 
ing the nematic state. In particular, having S values from independent 
experiments one can check the relation predicted by the Maier-Saupe 
theory (see Section I .C . l )  that q = US. However, the data on S(T,  p )  are 
available for a few LC substances only.71~72~98~yy~"'4 Figure 25 presents the 
q versus S plots for three substances studied in our lab [the data on 
S(T ,  p )  were taken from Ref. 71 for 5CB, Ref. 72 for 6CB, and Ref. 99 
for 7PCHJ. In the case of two cyanobiphenyls some scatter of points 
obtained at different experimental conditions are observed, but essential- 
ly one can note a proportionality of both these quantities. For 7PCH, 
however, a nice proportionality was found for the results obtained at 
p = constant only, whereas at V =  constant it is completely failed8' 88.172 
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(the data on S were taken from Ref. 99 with a correction factor of 1.4 as 
described in Ref. 172). The calculated interaction coefficients u = q / S  are 
listed in Table VI together with other available data obtained with the aid 
of deuterium NMR experiments. One can note quite good consistency of 
the results coming from both experimental methods. This is easily seen in 
Figure 25a where the NMR data coincide nicely with the dielectric 
relaxation data obtained from the Meier-Saupe equation. Thus, the 
assumptions accepted on the way from the experimental relaxation times 
T,, and T , ~  to the final interaction coefficient u (extrapolation procedure, 
theoretical mean-field approximation) seem to be justified. 

The q values amount to only 15-20% of the activation enthalpy A#HII.  

TABLE VI 
Mean-Field Interaction Coefficient u Determined from the Deuterium NMR Spectra 
(Aromatic Core) and the Dielectric Relaxation Studies for Some Members of Three 

Homologous Series, nCB, nPCH, and nOCB 

Interaction Coefficient u (kJlmo1) 

Substance NMR Diel. Relax. Remarks Refs. 

5CB 10.9 2 0.1 
11.5 2 0.2 
13.0 2 0.1 

0.1 MPa 
243 cm3 mol ~ 

238 cm3 mol-' 
different conditions 

178 
98 
98 
82 11 r 1 

8.1 2 1" 
(10.1 2 l ) b  

17.4 2 0.3 
(19.6 & 0.3) 
14.4 2 0.5 

(18.4 2 0.5) 
15.4 2 0.6 

(19.3 2 0.6) 

6CB p = const, T = const 

8CB 
5PCH 

11.6 0.1 MPa 
0.1 MPa 

178 
152 
172 
172 0.1 MPa 7PCH 

43 MPa 

30CB 
40CB 
5 0 C B  

11.73 
11.73 

0.1 MPa 
0.1 MPa 
0.1 MPa 

179 
179 
228 9.8 2 0.2 

(12.4 2 0.2) 
60CB 11.73 

10.5 
0.1 MPa 179 

180 
185 10.5 k 0.8 

(13.82 1.2) 
10.0 ? 0.4 

(12.5 2 0.5) 

0.1 MPa 

0.1 MPa 185 70CB 

8 0 C B  179 
185 

12.4 0.1 MPa 
1 0 2  1 

(13? 1) 
____ ~ 

a Meier and Saupe formula (26). 
Coffey et al. formula (27). 
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According to de Jeu3’ 

where W, accounts for the viscosity effects. From the comparisons of 
Figures 19 and 23 and Table IV one can state that for 6CB the above 
relation is not well obeyed if it is assumed that A’H,, = W,. Moreover, 
the activation enthalpy A#HII and the nematic potential q behave in the 
opposite way with pressure (compare Figs. 19 and 23). This should mean 
that the activation energy W, characterizing the viscosity in the nematic 
phase is a decreasing function of pressure! This unreasonable conse- 
quence may be avoided if a third component is added to Eq. (31). 

A#HII = W, + q + W,, 

where W,, corresponds to the dipole-dipole association energy; it is 
estimated to be of the order of (2 t 3)kT.1H13183 In this energy balance W,, 
seems to be the only term that really decreases with increasing pressure 
due to the breaking of the dipole-dipole correlations between the 
molecules. A full microscopic understanding of the activation parameters 
is still lacking, however. 

C. Smectic Phases 

Only two LC substances with the smectic A, and one with 
smectic B phase77 were studied under pressure dielectrically. In the case 
of the octylcyanobiphenyl (8CB) the temperature range of smectic phase 
shows minor increase with pressure, whereas for the second substance, 
octyloxycyanobiphenyl (80CB), the smectic phase is limited; compare 
Figure 1. In the case of truns-4’-pentylbicyclohexyl-4-carbonitrile (SCCH) 
a metastable smectic B phase has been found at normal pressure.6426’ 
Recently, we investigated the dielectric properties of this compound also 
under pressure.77 For the smectic A phase the ratio of layer thickness to 
molecular length dlZ= 1.4:18 whereas the smectic B phase of SCCH is 
close to a monolayer.6’ According to Figure 2 antiparallel dimers form the 
Sm A, layers. Thus one could expect that this fact would influence the 
dielectric properties of the phase. 

Figure 26 presents, as an example, the pressure dependence of the 
static permittivity and relaxation time for 8CB showing stepwise changes 
at the phase transitions.*’ The measurement runs were started from a 
well-oriented nematic phase, and the smectic phase was reached by slowly 
increasing the pressure at T = constant or by decreasing the temperature 
at p = constant. However, the permittivity always dropped to relatively 



192 s. URBAN AND A.  WURFLINGER 

20 40 60 80 100 
p/MPa 

Figure 26. Example of pressure dependence of the static permittivity ( X )  and 
relaxation time (0 )  in the smectic, nematic, and isotropic phase of 8CB.x5 (Reprinted with 
kind permission from the editor of Z .  Nuturforsch. A , )  

small values. In spite of the nonreproducibility of the values for F ’  and F”, 

the positions of maxima of losses on the frequency scale were very 
reproducible. That allowed us to calculate the relaxation times T~~ also for 
the smectic phases of the studied LCs. Furthermore, Figure 26 shows the 
well-known feature of a continuous change of the relaxation time at the 
Sm A-nematic phase transition. In the case of 5CCH, however, a strong 
decrease of T~~ by a factor of 210 is observed at the nematic-Sm B 
transition.77 Similar strong steps have also been observed for other LCs 
with Sm B phases.’53 

Figure 27 presents the In ~ , , ( p )  dependencies obtained for 8CB. The 
activation enthalpies A#HII and activation volumes A”VII for the nematic 
and smectic phases are presented in Figure 28, both for 8CB and 80CB.  
The activation enthalpies obtained for the smectic phases increase for 
8CB but decrease for 80CB with rising pressure, whereas it always 
decreases in the nematic phase. Also the plots for the activation volumes 
(Fig. 28b) exhibit similar trends. The opposite pressure dependencies 
observed for the nematic and smectic A phase of 8CB have been 
discussed in terms of a peculiar pressure influence on the molecular 
associations.X’ The existence of dimers in the smectic layers enlarges the 
free volume that facilitates the molecular reorientations; thus the activa- 
tion enthalpy for the smectic phase is reduced, which has also been noted 
for other liquid crystals.18* 
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plMPa 

Figure 27. In T ~ ,  versus p plots for the smectic, nematic, and isotropic phase of 8CB at 
different temperatures; the temperatures for different isotherms vary in steps of 2 K.*' 
(Reprinted with kind permission from the editor of 2. Nuturforsch. A , )  

80CB 
8CB 

0 0- 

""I 

I I I 

310 330 350 370 390 50 100 150 200 

p I MPo T I  K 

(a) (b )  

Figure 28. (a) Activation volume, A'Y,,  as a function of temperature and (b) activation 
enthalpy, A#H,l, as a function of pressure for the nematic (open symbols) and smectic A 
(solid symbols) phase of 8CBXS and 80CB.*' 



194 , s. URBAN AND A. WURFLINGER 

If the pressure destroys the molecular associations, the excluded 
volume becomes smaller and the molecules will be more closely packed in 
the layers. Clearly, the layer thickness decreases with increasing pressure. 
both for 8CB184 and 80CB.184'185a However, this result does not explain 
the different pressure dependencies of A#HII in the smectic phases. In the 
case of SCCH the activation enthalpy for the Sm B phase is practically 
independent of pressure.77 It should be noted that the decrease of A#HII 
for the smectic phase of 80CB concerns the low pressure region, whereas 
the increase of A#HII for 8CB was observed at higher pressures only. 
These pressure-limited phase behaviors of the smectic phases studied do  
not allow one to draw decisive conclusions at present. It would be 
desirable to study the T ( p )  dependence of the dielectric relaxation in the 
smectic phase over a significantly larger pressure range that is still 
lacking. 

D. Ferroelectric C* Phase 

Ferroelectricity in LC materials was theoretically predicted by Meyer et  
al.lS6 and found experimentally in DOBAMBC.'867's7 A proposal of 
practical use of various types of electro-optic devices with a high response 
speed (see, e.g., Ref. 188) has accelerated the synthesis of many 
ferroelectric liquid crystals (FLCs) and stimulated intensive 
theoretical 189-196 as well as e ~ p e r i m e n t a l ' ~ ~ ~ ' ~ ~  investigations ' of pure 
substances or mixtures. 

Three main factors decide the appearance of the spontaneous polariza- 
tion in an LC material: the molecule must possess a chiral group at  a 
wing, its dipole moment must be deviated from the long molecular axis, 
and the substance must show the tilted smectic C phase (abbreviated as 
Sm C*). The substances under consideration have usually the following 
phase sequence: 

194-196 

Cr+ Sm C*+ Sm A*+N*+ Is 

In the higher temperature Sm A* phase of a chiral compound the 
molecular symmetry axes are normal to the smectic layers and the local 
point symmetry is 2/m. This does not allow for spontaneous polarization 
to occur. In the Sm C* phase, on the other hand, the tilt of the long 
molecular axes with respect to the layer normal breaks the mirror plane 
symmetry and the spontaneous polarization is induced. Due to chirality of 
the molecules, the symmetry axis turns its direction on going from one 
smectic layer to another. This implies that the polarization shows a 
helicoidal order with a pitch distinctly larger than the layer thickness. The 
helix can be easily unwound by an external electric field normal to the 
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helix. Some observation of the pressure dependence of the helix pitch is 
reported in Ref. 197. 

However, the FLCs are improper ferroelectrics as the primary order 
parameter is the tilt angle and not the p~larization.’~’-’~~.”~ Nevertheless, 
both these quantities are roughly proportional except the vicinity of the 
Sm C*-Sm A* phase t rans i t i~n , ’~~-’ ’~  which in most cases is of the 
second-order one. 

Many relaxation processes influence the dielectric spectra of FLCs. 
Apart from the usual 1.f. and h.f. modes characterizing the reorientations 
of molecules around their principal axes, the Sm C* phase shows at least 
two collective processes. One collective mode, the Goldstone mode 
(GM), is associated with the fluctuations of the azimuthal angle (the cone 
motion); it is observed in Sm C* phase at low frequencies and is not an 
activated process. The second mode, the soft mode (SM), is connected 
with the tilt fluctuations; its critical frequency falls in the kilohertz range, 
from ca. 50 to ca. 500 kHz. The soft mode shows a decrease of frequency 
in Sm A* phase on approaching the transition Sm A*-Sm C*, but it 
survives to the lower temperature phase. In special conditions (e.g., after 
applying an appropriate strength of the bias field’y5) yet another collec- 
tive mode can be observed (domain mode). 

All those modes can be observed via measurements of the perpen- 
dicular permittivity component ( E ~ ) ,  so the influence of the 1.f. molecular 
mode is eliminated, whereas the h.f. process can be observed at much 
higher frequencies than the previous ones. In most cases the collective 
modes are well described by a simple Debye-type relaxation model; 
however, they usually overlap, which makes the separation of particular 
components rather difficult. 

Main quantities characterizing the properties of FLCs (the values of 
the tilt angle 8, the spontaneous polarization P,, the dielectric constant 
E T ,  the critical frequencies for particular collective modes) depend on 
intermolecular interactions caused by the chirality of mole- 

Thus the ferroelectricity of LCs must be sensitive to cules. 
the intermolecular distance; it must then be pressure dependent. The 
pressure studies of FLCs have been undertaken in a few labora- 

Typical property of a ferroelectric system, the hysteresis loop, shows 
marked dependence on the pressure (Fig. 29). Observations of the 
hysteresis loops have shown that the spontaneous polarization P, abruptly 
increases at the Sm A-Sm C* transition point when T decreases at 
p = const (Fig. 30a) or when p increases at T = const 22,200,203 (Fig. 30b). 
That is accompanied by an increase of the tilt angle 620”,201 (Fig. 30c). 
However, the coupling constant between P, and 8 is not purely 

195,196 

186,189-196,198 

tories.22. 199-203 
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Figure 29. Hysteresis loops obtained for D8, [2S,3S]-4'-(2-chloro-3-methyl penta- 
noyloxy) phenyl trans-4-n-octyloxy cinnamate, at T,, - 4 K for different pressures.'"' 
(Reprinted with kind permission from the authors and the editor, Gordon and Breach 
Publishers, World Trade Center, 1000 Lausanne 30, Switzerland.) 

The Iinear:2*200 which was predicted by the mean-field theories. 
magnitude of P, as well as its rate of variation with temperature decreases 
with increasing pressure. 

measured at low frequencies 
shows drastic change when the Sm A-Sm C* transition point is crossed 

189-192 

22,200 

The transverse dielectric constant 

T J T  
(a)  

;:::,!-j7= v 

400 

0 
90 120 

pIMPa 
( b )  

104°C 
110°C 

50 100 150 200 
pIMPa 

(C) 

Figure 30. (a) Temperature dependence of the spontaneous polarization P, of 
DOBAMBC at different p ~ e s s u r e s ~ ~ '  (b) Pressure dependence of PI of D8 at T =  87.7"C.20' 
(Reprinted with kind permission from the authors and the editor, Gordon and Breach 
Publishers, World Trade Center, 1000 Lausanne 30, Switzerland.) (c) Pressure dependence 
of the tilt angle 0 at different temperatures in the Sm C* phase of DOBAMBC'67.'Yy [(a) 
and (c) reprinted with kind permission from the authors and the editor, Institute of Physics 
Publishing.] 
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Figure 31. (a) Variation of E ,  of D8 as a function of pressure at T = 92°C and 50 Hz 
(the line is a guide to the eye). (b) Thermal variation of at p = 110 MPa and f =  50 Hz." 
(Reprinted with kind permission from the authors and the editor, World Scientific Pub. Co. 
Ptr. Ltd., Singapore.) 

(Fig. 31).22 Application of pressure drastically alters both the magnitude 
of F ,  and its thermal and frequency variation; compare Figs. 32a, b, and 
c. At low frequency and low pressures the GM relaxation dominates (see 
Fig. 32a). With increasing pressure at constant frequency its contribution 
progressively decreases. The same can be said about the frequency 
dependence at a given pressure (cf., e.g., the values of E ,  at 80MPa in 
Figs. 32a, b, c). Because the Goldstone mode does not exist in the Sm A 
phase, the dielectric response of this phase allows for extraction of the 
information regarding the soft mode relaxation. It was found that the 
relaxation frequency of both these modes decreases on increasing the 
pressure .22 

E. Polymeric Liquid Crystals 

Polymeric liquid crystals have been extensively studied at ambient 
pressure because of their potential applications for electro-optical switch- 
ing or storage  effect^.^^^-^"^ However, high-pressure studies are very 

At least five different relaxation processes are ob- 
two of them above the glass transition (a  and S )  and served ,204-206.209 

three below it ( p ,  'y,, y 2 ) .  
The 6 relaxation is observed in prominent form in some polyacrylates 

and polysiloxanes, if a strong dipole is attached to the mesogenic group 
parallel to its long axis. This relaxation is assigned to the rotation of the 
side group about the polymer b a ~ k b o n e . ~ ~ ~ ~ ~ ~ ~ " ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  1,228 Its relaxation 
frequency falls in the kilohertz range, and the activation barriers hinder- 
ing rotations are distinctly higher than for the low-frequency process in 

Scarce .23,2O7,208 
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the case of the low-molecular-weight mesogens.206 The 6 relaxation 
measured for parallel-oriented sample shows Debye behavior, although 
the proper permittivity values are hardly obtainable. 

The a process is observed at higher frequencies (and correspondingly 
at temperatures below the 6 relaxation). According to Attard?" it 
combines at least two other motions, the reorientations of the side group 
around the long axis and its stochastic precession around the director. 
Thus the (Y process must show a pronounced distribution. Both relaxation 
bands are seen when the samples are not aligned.232207*208 However, if the 
sample is cooled from the melt in the presence of a saturating ac electric 
field, a fully homeotropic alignment can be obtained.232210321' In such a 
case the loss peak is dominated by the 6 process. The p relaxation is 
connected with motions in the centre of the spacer, the y relaxations with 

The pressure reorientations at the ends of the spacer group. 
dependence of the y relaxation was studied for non-liquid-crystalline 

Moura-Ramos and W i l l i a m ~ ~ ~ . ~ " ~  have studied LC siloxane polymer 
P/Si/8/CN in the pressure range 0.1-152 MPa, the temperature range 
50-75"C, and the frequency range 10-10'Hz. The substance exhibits a 
smectic phase between 363 K (the clearing temperature) and 274 K (the 
glass transition temperature, T,). Dielectric studies were performed with 
disk samples placed between metal electrodes of a three-terminal high- 
pressure cell. The results are presented as loss curves in terms of 
G / w  = E"C,, where G is the measured equivalent parallel conductivity of 
the sample, E" is the dielectric loss factor, and C, the inter-electrode 
geometric capacitance. 

Figure 33 shows typical spectra obtained at 70°C at different pressures. 
The sample was aligned homeotropically by cooling from the melt in the 
presence of an ac electric field. For this polymer sample the loss peak is 
dominated by the 6 process. The a process appears only as a high- 
frequency shoulder. The curves have the same half-width of 1.46 being 
greater than 1.14 for a single relaxation time process as it happens in the 
case of low-molecular-weight smectic phases.8s Thus, the attachment of 
the mesogenic group to a polymer chain means that its motions in the LC 
potential are strongly coupled to the main chain motions so that on 
decreasing the temperature toward glass temperature T, (or increasing 
the pressure) the decrease in relaxation rate of the chain backbone also 
decreases the relaxation rate of the mesogenic group.23 

As is seen in Figure 33 the peak height increases linearly with pressure 
(ca. 20%/kbar). Such a large effect could not be attributed to the 
increase of the order parameter nor to changes in sample dimensions and 
was interpreted as caused by a change in ( p 2 )  due to a change of 

206,209 
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Figure 33. &"C, against log[f(Hz)] for homeotropically aligned sample at 70°C and 

different applied pressures.23 Curves A-G correspond to 0.1, 25, 51, 76, 102, 128, and 
152 MPa, respectively. (Reprinted from Polymer with kind permission from the authors and 
the editor, Butterworth-Heinemann journals, Elsevier Science Ltd, The Boulevard, Lang- 
ford Lane, Kidington OX5 lGB,  UK.) 

conformation with pressure, which leads to an enhancement of the overall 
dipole moment. 

The activation plots, presented in Figure 34 in the form of logf, vs. 
T -  ', are markedly curved when approaching the apparent glass transi- 
tion. The average slopes of the plots increase with pressure, indicating 
that the apparent activation energy AH, for the 6 process increases with 
increasing pressure. At the same time the plots log f, vs. p (Fig. 35) are 
downward at the higher pressures, and their average slopes decrease with 
rising temperature. That means that the activation volume AV, [cf. Eq. 
( 2 5 ) ]  decreases with increasing temperature. Although p V T  data are 
missing for the evaluation of the isochoric activation energy, the authors 
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Figure 34. Log[f,(Hz)] against reciprocal of temperature ( K -  ') for the homeotropical- 
ly aligned sample.*' A-E correspond to 0.1, 34.5, 69, 104, and 138MPa applied pressure, 
respectively. (Reprinted from Polymer with kind permission from the authors and the 
editor, Butterworth-Heinemann journals, Elsevier Science Ltd, The Boulevard, Langford 
Lane, Kidington OX5 IGB, UK.) 

estimate the ratio A#U,/A#H, ~0.7-0 .8 ,  on using ( d p l d T ) ,  data for 
similar polymers. 

It is interesting to note that an estimate of ( d ~ / d T ) ~  = A # H / ( T  A'V) 
gives constant slopes of 38.5 bar/K, which means that the changes in the 
activation enthalpies and activation volumes (multiplied by T )  compen- 
sate for the 6 process (the same was also observed for other LC polymers 
as welI2O7). The authors present a detailed discussion in terms of current 
relaxation t h e o r i e ~ . ' ~ ~ - ~ ~ ~  They emphasize the usefulness of high-pressure 
investigations that allows one to notice the fundamentally different 
mechanism for the a relaxation in amorphous polymers and the 6 
relaxation in LC polymers. 

Another interesting high-pressure study on LC polymers was per- 
formed by McMullin et a1."' They investigated an LC polymer sample 
that has been synthesized by Zentel et al.,2°922'3 where 5% of the side 
groups have been substituted by an alkanol group. The polymer com- 
pound has a transition at 45°C from the glass phase to a smectic A phase 
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Figure 35. Log[f_(Hz)] against pressure (1 psi = 6.895 x lo-' MPa) for the homeo- 
tropically aligned sample.z3 A-F correspond to 50, 55, 60, 65, 70, and 75"C, respectively. 
(Reprinted from Polymer with kind permission from the authors and the editor, Butter- 
worth-Heinemann journals, Elsevier Science Ltd, The Boulevard, Langford Lane, Kiding- 
ton OX5 lGB, UK.) 

that transforms at 102°C to the nematic state with a clearing temperature 
of 106°C. The measurements were carried out up to temperatures of 
130°C and pressures of 300 MPa. The effective dipole moment calculated 
from the Onsager equation is largest for the planar-oriented sample and 
distinctly increases with rising pressure up to 150 MPa. 

At lower temperatures the p process can be observed in the glass 
phase. The high-frequency permittivity above the p relaxation is esti- 
mated to be 3.48 that distinctly exceeds n2, indicating probably the y 
process.z09 The activation enthalpy for the p relaxation is 38 kJ/mol for 
nonaligned sample, compared with 54 kJ/mol for the homopolymer. The 
planar aligned sample yields 71 kJ/mol. 

For the a process the halfwidths of the E" curves are of the order of 4 
decades, which is distinctly larger than for the p process (2.6-3 decades). 
This big halfwidth implies a strong composition of the a-relaxation 
process. The activation enthalpies A"H, are 148 kJ/mol for the homeo- 
tropic and 236 kJ/mol for the planar sample. In the latter case the 
pressure dependence resulted in an activation volume of 100 cm3 /mol, 
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Figure 36. Effect of pressure on f,,, for planar alignment."* Curves A ,  B and C 

correspond to temperatures of 90, 98, and llO"C, respectively. (Reprinted with kind 
permission from the authors and the editor of Liq. Crystals.) 

slightly decreasing with increasing temperature, see Figures 36 and 37 (8 
and 9 from Ref. 208). This corresponds to 25% of the repeating unit. It is 
interesting to note that activation volumes determined for the low- 
frequency relaxation in alkylcyanobiphenyls correspond also to about 
25% of the molar volume (cf. Fig. 18). For a nonaligned sample the 
log f ,  vs. p plot shows an increase of the slope with rising pressure, which 
means an increase of the activation volume with p .  Also the halfwidth of 
the loss curve increases with p .  

The /3 relaxation for the nonaligned sample yielded smaller activation 
volumes of 16.5-19.5 cm3/mol. The presence of remarkable ionic con- 
ductivity made it difficult to discern the 6 relaxation, and therefore 
activation parameters are not reported for this process. The origin of the 
weak 6 process is probably different from the 6 relaxation observed in 
other polymers. Heinrich and Stoll and Gnoth207 investigated two 
unaligned samples of polyacrylate, P/H/6/CN, and some mixtures with 
L7CN, respectively. They found for the a-process activation volumes 
ranging from 49% (80°C) to 31% (120°C) of the repeating molar volume. 
The low-frequency 6 process behaved very similarly. 
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F. Nonlinear Dielectric Effect Studies 

The nonlinear dielectric effect (NDE) is an important tool for studying 
The the properties of the isotropic-nematic transition. 

NDE is the measure of changes in electric permittivity due to the 
application of a strong electric field E :  = E~ - E ,  where e E  and E 

denote the electric permittivity in the strong and weak electric fields, 
respectively. To a large extent the NDE is an analogue of the Kerr effect. 

The NDE method cannot be applied to studies of the nematic phase 
because the strong electric field causes hydrodynamic flows that destroy 
the nematic order. This is not the case for the isotropic phase, if the 
conductivity is low e n 0 ~ g h . l ~ '  It is well known that some nematiclike 
short-range order survives to the isotropic phase that influence many 
properties in the neighborhood of TNI. Strong influence of the short- 
range orientational order on the phase transition properties is discussed in 
Ref. 109. Especially the Kerr effect, the Cotton-Mouton effect, the 

131,214,215,229,230 
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intensity of light scattering as well as the NDE are well suited for 
confirmation of the existence of strong orientational correlations between 

This enables one to determine certain the molecules. 
molecular characteristics of the nematic phase in the isotropic phase. The 
behavior of these quantities may be described by the Landau-de Gennes 
modelP5 which predicts the same, mean-field type of temperature be- 
havior for the parameters measured by the mentioned methods. In case 
of the NDE one has for p = const = 1 atm 

35.38.39,131.214,215 

AEE A 
NDE=,-- T*  = T,, - AT T > T,, (33)  

E (T - T*)' 

where T* is the temperature of the hypothetical, continuous phase 
transition, T,, and AT are clearing temperature and the discontinuity of 
the isotropic-nematic transition, respectively, A is the amplitude, and $ is 
the critical exponent. 

The relation (33) was tested for a few LCs.13132143215 Figure 38 shows 
that it is fulfilled for MBBA and EBBA with the classical exponent (cr = 1. 
The ratio of the amplitudes corresponds roughly to the ratio of dielectric 

N 
I 

E 
> - z . . 2 
N 
W 

Figure 38. Inverse of the NDE versus temperature for MBBA (open circles) and 
EBBA (solid circles)."' Arrows indicate the clearing point. (Reprinted with kind permission 
from the authors and the editor of Liq. Crystals.) 
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approaching the clearing point for MBBA.’I4 The arrow indicates the clearing point. 
Parameters: T =  5 2 T ,  pN, = 16.5 MPa, Ap = 5 MPa. (Reprinted with kind permission from 
the authors and the editor of Liq. Crystuis.) 

anisotropies AE multiplied by the ratio of rhe polarizabilities of both 
compounds, in accord with the theoretical prediction.214 

The Landau-de Gennes model may also be considered for the 
isothermal pressure case. It leads to a relation analogous to (33) 

A s E  A‘ 
NDE=?= p >pNI,  p *  = p N I  - A p ,  T =  const (34) 

E ( P  - P * )  

with analogous meaning of the symbols. 
In Figure 39 measurements are shown of the NDE versus pressure at 

constant temperature in the isotropic phase of MBBA. Clearly, the 
mean-field formula (34) is confirmed too. 

The results emphasize the equivalence of the temperature and pressure 
which may be interpreted as a consequence of the postulate 

of isomorphism of critical phenomena. 

V. CONCLUDING REMARKS 

The presentation of the dielectric results of liquid crystals has shown that 
the  application of high pressure elucidates more features of the inter- 
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molecular interaction and the dynamic behavior in the mesophases. When 
the equation of state and the pressure dependence of the order parameter 
S are known, current theories for the description of nematic LC phases 
can successfully be tested. In particular the different influences of 
temperature and volume can be separated and analyzed, if high-pressure 
volume data are a ~ a i l a b l e . ~ ~ . ~ ~ ~ ' " ~ - ~ " ~ ~ ~ ' ~ - " ~  Moreover many liquid crys- 
tals exhibit peculiar high-pressure phase behaviors, such as reentrant and 
multicritical phenomena or pressure-induced phase transitions, meta- 
stable and pressure-limited phases, which are inieresting subjects of their 

It is worthwhile to mention recent papers own. 19-22,53,54,80,185a,200,220-224 

by Wolinski et al. :25 who describe a fiberoptic high-pressure sensor with 
cholesteric liquid crystals. 

We highlight some aspects of the high-pressure studies on the dielectric 
properties of liquid crystals reviewed in this chapter. 

1. Pressure influences the dielectric permittivity of liquid crystalline 
phases considerably. For some LCs that form antiparallel dimers, the 
observation of a small maximum in E ( T )  at 1 atm above the clearing 
temperature is well established. In recent high-pressure investigations a 
similar effect was found, that is, a maximum in E(  p )  at T = const in the 
isotropic phase in the neighbourhood of the NI transition. 

2. The pressure dependence of the dielectric anisotropy cannot be 
solely explained by the change of the order parameter, as was predicted 
by the Maier-Meier equation. Moreover the variation of F , ,  in a 
homologous series (e.g., SPCH compared with 7PCH) is stronger than 
simple equations for the molar polarization predict. This is apparently 
due to the higher flexibility of the longer chain length that modifies the 
intermolecular interaction appreciably. 

3. The longitudinal relaxation time T,,  is strongly pressure dependent, 
yielding large activation volumes, A"?, that are an order of magnitude 
larger than those observed for other types of organic compounds. 
However, it should be noted that T , , ( P )  is not a purely exponential 
function, especially near the NI phase transition. 

4. The activation enthalpy, A'H,,, and the activation energy, A'U,,, 
exhibit a peculiar pressure and density dependence, in particular for the 
nCB series that is opposite to the "normal" pressure dependence of the 
activation parameters. This behavior can be explained with specific 
dipole-dipole correlations between antiparallel associates, assuming that 
increasing pressure destroys voluminous dimers. 

5.  In spite of the variations with temperature and/or pressure of the 
activation parameters, the relation between them is in agreement with the 
predictions of the thermodynamics. 

6. A "natural" extrapolation of l n ~ , ,  vs. p from the isotropic to the 
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nematic phase can serve for the calculation of the retardation factor gI1 
and then the nematic potential q as functions of T and p .  That enables 
one to discuss the relation between q and S, thus to test the predictions of 
the mean-field theories. 

7. The activation parameters found for the smectic A and B phases are 
significantly lower than those characterizing the nematic phase. This 
strange effect is similar to a behavior sometimes observed in plastic 
crystals, where the activation enthalpy for the reorientation in the ODIC 
phase is smaller, despite the higher density, than in the liquid phase. This 
was explained with the higher order in the solid state.226 

8. Knowledge of the equation of state allows one to evaluate the 
exponent y and thus to test theories for the intermolecular potential. 

However, the number of liquid crystals that have been studied under 
pressure is very limited. In most cases neither the equation of state nor 
the pressure dependence of the order parameter is known. Only the 
mean-field theory of Maier and Saupe was extended to explain the 
dielectric properties of liquid crystalline phases. However, a recent 
approach by Photinos et al.227 analyzed the nematic reentrance and phase 
stability based on the variational cluster method. The lack of a full 
theoretical description as well as insufficient experimental data should 
stimulate further high-pressure investigations in this field. 
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I. INTRODUCTION 

In this work we start with a limited but directed historical review of 
dielectric literature emphasizing the assumptions underlying dielectric 
theory. We outline the work of D e b ~ e ’ - ~  who developed the idea of point 
dipoles in neutral molecules. With the development of this idea he was 
able to explain why the dielectric constants of materials were greater than 
the square of the refractive index. Fixing these dipoles to spheres and 
assuming vicious drag forces to impede their motions lead to the now 
famous Debye relaxation process. With the development of this idea he 
was able to explain why relaxation were “anomalous” when compared to 
absorption curves at optical and infrared frequencies. These two contribu- 
tions form a very profound and broad starting point in the field of 
dielectric relaxation theory and interpretation. For example, the point 
dipole concept was used by Onsager, Kirkwood, Frohlich, Scaife, Cole, 
and others as starting points for their theories,’-8 to correct the inconsis- 
tencies of Debye’s equilibrium theory with experimental results. The 
Debye process is used by all those who wish to discuss broad and skewed 
dielectric relaxation dispersions in terms of a distribution of Debye 
elements. Nearly all dielectric literature since his developments is based 
on these concepts, and seldom if ever are the underlying limitations 
inspected for their suitability. 

Two limitations of Debye’s original work form the basis of this work. 
First, associated with this polarization process there must be a distortion 
(strain) of the dielectric specimen because dipoles are fixed to un- 
symmetrical groups, and these become aligned in the electric field. The 
first question to be addressed is “What are the consequences of the strain 
energy associated with polarization process?” Second, the viscosity 
surrounding the sphere is assumed by Debye to be Newtonian. The 
second question to be addressed is “What are the consequences of a 
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time-dependent (or complex) viscosity?” The present historical review is 
necessarily kept short and is selective for the purposes of illustrating the 
trend in this work. As a result many important contributions that are not 
directly in line with these questions are omitted. 

11. HISTORICAL REVIEW 

A. Debye Equilibrium Model 

A convenient starting point for the analysis of dielectric effects is a sphere 
of the test material suspended in a vacuum to which an electric field is 
applied: see Figure 1. At equilibrium this electric field, E, induces a 

METAL ELECTRODE 

VACUUM 
MACROSPHERE 

\ 

EQUILIBRIUM DIELECTRIC CONSTANT 

VACUUM 

METAL ELECTRODE 
Figure 1 .  Starting point for most theoretical studies in a sphere of the material 

suspended in a vacuum to which an electric field E is applied to induce a moment M. 
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moment, M, in the sphere given by 

E* - 1 3 v  
E" + 2 41r 

M=-- 

In this expression E ~ )  is the equilibrium dielectric constant while V is the 
volume of the sphere. The theoretical objective is to relate M to some 
molecular quantity. The earliest interpretation was in terms of molecular 
polarizability of the individual molecules in the sphere. This polarizability 
cro is due to the mobility of the electronic cloud that surrounds all atoms 
or molecules and is given by the Clausius-Mosotti equation: 

~ " - 1  4dNlr  
Eo + 2  - 3M *o 

In this equation d is the density, N is Avogadro's number, and M is the 
molecular weight. 

Dielectric measurements made in the audio-radio frequency range 
soon lead to a phenomenon called anomalous dispersion' because the 
frequency dependence of the real part of the complex dielectric constant 
did not behave at all like the frequency dependence of the real part of the 
refractive index in the region of significant absorption. Debye was the 
first to show that the polarization of this sphere is at least a two-step 
process. The first step is due to the nearly instantaneous (510-"s)  
displacements of electrons as represented by the Clausius-Mosotti 
equation. He then postulated that although these molecules are electrical- 
ly neutral, the centers of positive and negative charges are not coincident 
thereby leading to a dipole moment. The dipole moment, generally 
represented in terms of Debye units, is the product of the separated 
charge and their separation. Idealization of a real dipole is referred to as 
a point dipole and corresponds to the condition of a very small charge 
separation. 

B. Debye Dynamic Model 

The Debye model proceeds by fixing a point dipole in the center of a 
microsphere itself centered in the macrosphere; see Figure 2. The result 
of his analysis, obtained by applying Maxwell-Boltzmann statistics is 
given by 

( 3 )  
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METAL ELECTRODE 

NET DIPOLE MOMENT 

MACROSPHERE 
MICROSPHERE 

CENTRAL 
DIPOLE 

EQUILIBRIUM DIELECTRIC CONSTANT 

VACUUM 

METAL ELECTRODE 
Figure 2. The geometry shown in Figure 1 is refined for dielectric analysis by fixing a 

microsphere concentric with the macrosphere and contains the elements of molecular 
structure. 

In this expression k is the Boltzmann constant, T is temperature in 
Kelvin, and p is the dipole moment in electrostatic unit (esu). 

Debye’s next contribution was to fix a point dipole on a microsphere of 
radius a and then assume the macrosphere to be a fluid with viscosjty r ] .  
Under these conditions the relaxation time, T ,  is given by 

Debye’s analysis yields for the complex dielectric constant E * ( w )  at radian 
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frequency w ,  the following equation: 

In this equation i = G, and e * ( w )  is the complex dielectric constant 
and is related to the real E ’ ( w )  and imaginary E”(w) components through 
the expression 

.*(a) = & ’ ( W )  - i&”(W) (6) 

The real and imaginary components of Eq. ( 5 )  

Eo - 
&’(#) = F, + ~ 

1 +xz 
( E  - E,)X 

1 +x2 &”(W) = + 

with 

Efl  + 2 
X = -  W T  

F,  + 2 

can be separated to yield 

(7) 

(9) 

An important result of Debye’s model is that the relationship between the 
macroscopic, X ,  and molecular relaxation times, T,  is given by Eq. (9). 
For example, Eq. (9) predicts that materials with go = 100 and E, = 2 the 
ratio of times is 25.5, with the molecular time being the faster one. 

C. Criticisms of the Debye Model 

There are several criticisms of Debye’s results. First, let us consider Eq. 
( 3 )  by assuming a. to be zero and defining a Curie temperature T, to be 
given by 

4drrN p2 
9M k 

T, =-- 

The Debye Eq. (3) becomes 

go - 1 T, 
e f l + 2 -  T 

For reasonable choices of the parameters in Eq. (lo), T, can +T; Eq. 
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(11) approaches 1; so that E, + m. In other words there is a temperature 
below which E, is infinite, a prediction not consistent with observation. 

D. Reaction Field Model 

This criticism was solved by Onsager" for rigid dipoles and then 
Kirkwood" for polarizable dipoles who showed that point dipole(s) in the 
microsphere induce(s) a field (i.e., reaction field) in the macrosphere 
opposite that of the applied field. Onsager's result for nonpolarizable 
point dipoles is given by 

E o - l  &,-1 ~ E ~ ( E ,  + 2) 4 dNrp2 
E, + 2  - E, + 2  + (2-5, + E, ) (E ,  + 2 )  9kMT (12) 

The quantity 

is due to the reaction field of the dipoles and significantly modifies the 
Debye result, that is, Eq. (3). For simplicity let us assume that ( E ,  - 1) /  
( E ~  + 2) can be ignored, that is, the case for modest to highly polar 
systems. Equation (12) becomes 

3 E o ( E ,  + 2) 4 dNrp2 
(144  

EO - 1 -- 
E~ + 2  - (2r, + E , ) ( E ~  + 2 )  9kMT 

or 

~ E , ] ( E ,  + 2) 4 dNrp2 
( 2 ~ ~  + E , )  9kMT E o - l =  

It is important to recognize that there is a fortuitous cancellation of E(,  + 2 
on both sides of Eq. (14a) that yields the result in Eq. (14b). As a result 
of this cancellation, the equilibrium dielectric constant is now propor- 
tional to the square of the effective dipole moment and inversely 
proportional to temperature. Consequently, the Curie temperature occurs 
only as temperature approaches OK. The results are considered to be a 
significant advance over the Debye result. 

E. Distribution of Relaxation Times 

Another failure of the Debye theory is that the frequency dependence of 
the dielectric loss predicted by Eq. (8) is not what is observed experimen- 
tally. Experimental loss-log(frequency) curves are generally broader 
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than those predicted by Eq. (8) in addition to being unsymmetrical. A 
plot of the loss, Eq. (8), against the real, Eq. (7), at the same frequency 
but with frequency as a running variable is a semicircle for the Debye 
process. Such Arrgand diagrams are generally referred to as Cole-Cole 
(C-C) plots and the semicircle is referred to as a Debye shape or single 
exponential process. Most materials do not exhibit such a simple shape. 
Rather, they are unsymmetrical, most often to the high-frequency side. 

These experimental loss-log( frequency) or equivalently real-log(fre- 
quency) curves can be interpreted in terms of a distribution of Debye 
elements given by the following equation: 

In this equation the quantity F ( T / T , , ) ~  ln(T/T,) is the distribution of 
relaxation times, while the quantity in brackets is the Debye relaxation 
function, that is, see Eq. ( 5 ) .  A particularly useful form for representing 
the complex dielectric constant dependence on frequency is given 
the following equation: 

In this expression the parameters a ,  p represent the width and skewness 
of the relaxation process, respectively, and will be referred to as the H-N 
function. Since the left-hand side of Eq. (15) is given by the right-hand 
side of Eq. (16), a closed-form solution for the distribution times is 
possible. This solution is given by 

~ ( y )  = (i)y"P(sin pe)(y2a + 2y"cos n-a + 1 ) - ~ / 2  (17) 

In this expression 

7- sin n-a 
y =- and 0 = arctan( ) 70 y"c0s 3ra 

F. Time-Dependent Correlation Functions 

An alternate interpretation of this broading-skewing of the relaxation 
process is given by Glarum14 and later by Cole" who applied the 
irreversible-statistical-mechanics results of Kubo.I6 Once again the model 
chosen is a sphere suspended in a vacuum with a microsphere containing 
the elements of local structure centered in the macrosphere. Long-range 
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interactions between the micro- and macrospheres is assumed to be given 
by the Onsager-Kirkwood reaction field. Glarum’s result (assuming 
nonpolarizable dipole, i.e., Onsager’s case) is given by 

E * ( w )  - 1 3[2~,)  + E * ( w ) ]  4rN 
- (gP2Vp (19) &*(a) + 2 - (2E” + l)[E*(W) + 21 9 k W  

- 

In this expression gp’ = ( p. m), represents the equilibrium moment of 
the microsphere assuming all moments to be the same. The quantity I, is 
defined as the microscopic distribution of relaxation times given by 

The microscopic distribution of relaxation times and the time-dependent 
correlation function @(t)  is given by 

One important result of Eq. (19) is that the quantity 

3[2e, + E * ( w ) ]  

(2q, + 1)[&*(0) + 21 

is due to the complex reaction field due to dipoles in the microsphere. 
This term has a similar effect in the dynamic case as it does in the 
equilibrium case. In the dynamic case the quantity E * ( w )  + 2 appears on 
both sides of Eq. (19) so that it is F * ( w )  - 1 that is proportional to the 
square of the effective dipole moment. For the same reason E * ( o )  - 1 is 
proportional to the molecular distribution function. 

Another important result obtained from this analysis, as well as from 
Cole’s analysis is that the relationship between the macroscopic and 
molecular relaxation times is given by the following equation: 

This equation ranges from 1 to $ as ranges from E, to =. This result is 
in stark contrast with Debye’s result, that is, Eq. (9),  which predicts a 
range of 1 to 03 for the same range. Cole and Glarum stated that they 
were “pleased” with this result, although the present authors do not 
know of any experimental evidence to support this contention. 
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G. Results from Fluctuation Theory 

Scaife”-19 proposed that the Cole-Cole plot method of analyzing 
dielectric data should be replaced by the use of the polarizability plot in 
which the imaginary coordinate of the complex polarizability, p * ( w ) ,  
defined by 

&*(O)  - 1 
P*(@) = E * ( W )  + 2 

is plotted against its real component. The quantity, p * ( w ) ,  is the complex 
polarizability of a dielectric sphere of unit radius suspended in a vacuum 
to which an electric field is applied while the quantity E * ( w )  is the 
complex dielectric constant. Ordinarily s * ( w )  is used to construct such 
plots followed by an analysis of the data. Scaife recommended p * ( w )  
because in a sphere, long-range dipole-dipole coupling vanishes, and 
therefore p* (w)  will be a good measure of the intrinsic properties of the 
substance. This method, according to Scaife, gives proper weighting to all 
polarization mechanisms and provides a ready means of comparing 
dielectric behavior of different substances. He applied this method to 
glycerol, an ethanol-water mixture, and to n-propanol. He found that 
deviations from expected behavior, which were interpreted in terms of a 
second relaxation process by others, were in fact an artifact due to the 
method of data representation. Another important result is that the ratio 
of microscopic (molecular) to macroscopic relaxation times is given by 
Eq. (9). 

H. Models That Include a Time-Dependent Viscosity 

Although the work of Glarum and Cole was criticized, we will not 
continue along these lines because for the present purposes they are 
relatively minor albeit elegant criticisms; see, for example, the work of 
Fatuzzo and Mason.” There are two other studies that need to be 
reviewed. The first one is by Gamant” who observed that the viscosity in 
Debye’s model should be time dependent (see Fig. 3) .  By means of a 
series of heuristic arguments, he replaced 77 with a time-dependent one; 
that is, ~ ( t ) .  We examined these equations2’ in some detail and could not 
obtain his results for the time dependence of ~ ‘ ( w ) .  

The second work to be reviewed is that of DiMarzio and Bishop23 
(D-B) who introduced a time-dependent viscosity into the hydrodynamic 
equations of Debye’s model and then solved the hydrodynamic equations 
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I 
I ENVIRONMENT I ENVIRONMENT 

Figure 3. Dipole centered in a sphere (represented by the arrow) surrounded by an 
environment with properties that depend on the model. In the case of the Debye model, the 
environment has a viscosity TJ independent of time. In the DiMarzio-Bishop model the 
viscosity is a complex time-dependent viscosity q * ( w  = l i t ) .  In the Havriliak-Havriliak 
model the cavity is not spherical and the environment is taken to be represented by a 
complex tensile compliance D(w = l / t ) .  

exactly. Their result is given by 

1 
1 + KG*(w)  

- - &*(a) - E, 

E~ - E, 

where 
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In this equation R is the radius of the sphere and G*(o)  is the “dynamic 
viscosity”, which we will take to be given by the complex shear modulus. 
D-B concluded that this equation is either a one- or no-parameter 
equation, depending on whether or not R is measured or  assumed. D-B 
considered the case of poly(n-octyl methacrylate), and we shall also 
consider the same case with some minor modifications in the treatment of 
data. These procedures permit us to calculate &*(a) over an extensive 
frequency range and over a wide range of R. These values of e * ( w )  were 
then represented in terms of the H-N function, that is, Eq. (16). In 
Figure 4 we have given complex plane plots using values for R similar to 
those used by D-B. The results in this figure are similar to those in 
Figure 2 of their work. Since we can use the H-N function to represent 
the calculated values of c * ( w ) ,  we can determine the influence of R on 
the H-N parameters. These results are given in Figure 5 for the a ,  p 

n en 

DIELECTRIC CONSTANT 

Figure 4. Plot of the elastic energy with time for various ellipse ratios. Included here is 
the electrostatic energy whose sign has been reversed. Complex plane plats calculated from 
the DiMarzio-Bishop model for various values of K (multiplied by 10’) listed in the legend. 
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1 2 3  5 10 20 30 50 100 

K PARAMETER 

piTK-1 + --+- 
Figure 5. Plot of the a. p parameters as a function of the DiMarzio-Bishop K 

(multiplied by 10y). 

parameters, Figure 6 for the relaxation time and Figure 7 for F",  F,, and 
A&. The parameter a is essentially constant while p varies from about 
0.33 to 1.0 over the range of K's shown in Figure 5. Over the same range 
E" and E, vary with K in such a way that both parameters range from 0 to 
1 with their difference (A&) exhibiting a maximum. Finally in Figure 6 the 
relaxation time changes nearly 5 decades (log,,) in time. In other words 
the effect of increasing K ,  hence radius of the sphere, is to decrease the 
relaxation frequency, decrease the skewness with keeping the breadth 
constant while A& goes through a maximum. It is not clear why A& goes 
through a maximum, and this point will be discussed in the next section. 
Much of these results are intuitive since the torque on due to E is fixed, 
but the drag forces increase with surface area as R increases. 

The important point of this discussion is that once the Debye process is 
modified to include a time-dependent local viscosity, realistic dielectric 
results are obtained for polymers. To repeat the D-B contention, Eq. 
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Figure 6. Plot of In fo as a function of the DiMarzio-Bishop K (multiplied by lo9). 

(25) is either a zero or a one-parameter model depending on our view of 
R. The net result is that the Debye relaxation process has been converted 
from a single exponential decay to a broad-skewed relaxation process. 

111. STRAIN VS. POLARIZATION ENERGIES: NUMERICAL 
EXAMPLES 

A. Equilibrium Case 

The purpose of this section is to provide simple numerical examples that 
not only compare the magnitude of the elastic and electrostatic energies 
involved in the orientation process but also provide a simple example of 
what happens when the electric field is turned on. The electrostatic 
energy of a spherez4 (U,) suspended in a vacuum to which an electric field 
(E,) is applied is given by (see Fig. 8) 

u, = - (e> - 1  -&2 3v 
&"+2  4rr 
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Figure 7. Plot of E" and E ,  as a function of the DiMarzio-Bishop K (multiplied by 10'). 

For the case of E, = 8, V =  100cm3, and E, = 300V/cm (1 esu), the 
electrostatic energy is -18.0 ergs. It is important to note that the energy 
is negative, that is, a reduction of the free energy has occurred. 

Let us now consider the case of a polarized-distorted sphere such as 
the one in Figure 8. We would expect that associated with the polarization 
process there is a distortion process because dipoles are associated with 
some real molecular group that has a shape. In other words, when the 
dipoles orient in the electric field, there is an average projection in the 
field direction that is different from the average when the field is turned 
off, At this point it is necessary to postulate a molecular mechanism for 
the distorted sphere. Consider the sphere to consist of N ellipsoids with a 
major (2a) to minor (a) axis ratio of 2. The dipole moment w,, = 4 0  units, 
which was computed from Eq. (12), E, = 1, E~ = 8, and T=room 
temperature is assumed to be in the direction of the major axis. 
Furthermore we assume a two-site model for the ellipsoids in such a way 
that the dipole moments of the sphere prior to the application of the 
sphere is zero. Consider a plane that contains lo4 such sites in the z 
direction. The average projection of the ellipsoids in the z direction is 
1.5a. When the field is turned on (in the z direction), F r ~ h l i c h ~ ~  found 
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METAL ELECTRODE 

I 

VACUUM 

METAL ELECTRODE 
Figure 8. A polarized distorted sphere used as the basis for electrostatic or strain 

energy calculations. 

that under these stated conditions (electric field and dipole moment at 
room temperature) the fraction of ellipsoids that orients is Compu- 
tation of the average projection of the ellipsoids in the z direction when 
the field is turned on is 1.5001~. The change in lengthiunit length due to 
the electric field, otherwise known as the strain (r) is 6.6 x lo-? For 
most polymers the tensile compliance is in the range of 10-h-lO-l" cm2/ 
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dyn. The strain energy under these conditions is given by2' 

1 r2v u,=-ra v=- 
2 2 0 "  

= 0.22 ergs for D, = cm2/dyn (28a) 

= 2200 ergs for D ,  = lo-'" cm2/dyn (28b) 

In other words when the asymmetry of the orienting segment is as low as 
2 (one might expect considerably higher values in the case of polymers) 
and for the range of compliance's that are usually observed in polymers, 
the strain energy can range from an insignificant fraction of the electro- 
static energy to a level that dominates the entire process in polymers. The 
total energy of the system can never be positive for if it were, the 
polarization process would cease to exist because the driving force would 
vanish. 

B. Time-Dependent Case 

In the case of polymers the compliance depends on time (frequency). It is 
of interest to calculate the strain energy for Eq. (28) using the data for 
poly(n-octyl methacrylate). The time dependence of the tensile com- 
pliance data for this polymer is discussed in Reference 52. The results of 
this calculation, for different minorimajor axis ratios is given in Figure 9. 
In addition, the negative (-) electrostatic energy is also given in that plot. 
The results clearly show that in the region of the a relaxation process, the 
elastic energy changes from a very large value to a very small value 
relative to the electrostatic energy, which does not change at all. 

These simple numerical exercises illustrate the point that the total 
Hamiltonian of the system in the presence of the electric field must not 
only include the well-known electrostatic energy term but also the 
hitherto ignored strain energy term. The small strains that are en- 
countered in the polarization urocess also justify the use of the electro- 
static equations of the sphere. It is also quite clear that for very 
unsymmetrical species where equilibrium compliance approaches infinity, 
such as the case of bulky polar liquids, the strain energy term may also be 
zero and the Onsager-Kirkwood equations are once more applicable. It 
should be pointed out that the strain energy is also zero for finite values 
of Do but symmetrical species such as spherical dipoles. 
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Figure 9. The geometric model used for the present calculations 

IV. EQUILIBRIUM POLARIZATION 

A. General Case 

The starting point for the present development is given in Figure 10. Let 
the total energy change (perturbation term in the Hamiltonian) caused by 
the action of the electric field on the sphere be given by 

H’( 4, E,) -M . E, + Us (29) 

To proceed further, we need to specify a microscopic mechanism for the 
deformation of the sphere. For the present purposes we choose a 
relatively simple mechanism that avoids all complications due to a 
variable and unknown Poisson ratio. We assume the material to be 
initially isotropic so that the deformation and the polarization are parallel 
to the applied field. Furthermore, the midsection of the deformed sphere, 
perpendicular to the direction of the field, will be assumed to be circular 
and with the original radius. Finally the deformation parallel to the field 
is proportional to the length of the original chord from the midplane of 
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METAL ELECTRODE 

NET DIPOLE MOMENT 
DISTORTED 
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EQUILIBRIUM DIELECTRIC CONSTANT 
AND EQUILIBRIUM TENSILE COMPLIANCE 

METAL ELECTRODE 
Figure 10. Plot of the elastic energy with time using the data for poly(n-octyl 

methacrylate) and various ellipse ratios. Included here is the electrostatic energy whose sign 
has been reversed. 

the sphere. This model is one of pure tension, is uniformly strained in the 
direction of the electric field, and assumes the Poisson ratio to be zero. 

The incremental energy (SU,) for an incremental volume element (6V)  
of the sphere is given by A I , l A ~ = u r l 2 ,  where r is the strain of the 
sphere. Since the sphere is uniformly polarized, it is also uniformly 
strained and the strain energy will be given by V, = crTV/2. The r is an 
intensive property of the sphere, therefore we identify the strain of the 
sphere with the strainlunit. This quantity is also proportional to the total 
moment of the sphere per unit. In other words: 
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where M , ( q )  is the z component of the sphere moment. The total energy 
change of the sphere due to the presence of the field E,, is, remembering 
that (T = BE,, 

From the principles of statistical mechanics26 we know that an 
experimental observable such as M is related to the statistical average M 
by 

where f(p, q ,  E,) is a normalized distribution function of the coordinates 
p ,  q in the presence of the field E,. If we assume, as is customary to do, 
that f(p, q,  E,)) Eexp{H(p, q ,  &)}, where H ( p ,  q ,  E,) is the Hamilto- 
nian of the system after application of the electric field and further 
assume that 

where H o ( p ,  q)  is the unperturbed Hamiltonian of the system, then 

and the average moment becomes 

In this expression M . M / 3  = M,(q)M,(q)  and the brackets ( .  . .),, mean 
an averaging with respect to the equilibrium distribution function 
hl(p, q).  Equation (35) can be reduced one step further by noting that in 
an averaging procedure that will be used the units are assumd to be 
identical so that ( M - M ) ,  = N ( p - M ) , .  Equation (35) becomes 

We now proceed to the evaluation of B. We know from Hooke's law"' 
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that the tensile stress is proportional to the average strain r. Therefore, 
- r 

Do 
_-  - w = BE,, so that r = BDE,, 

The average strain is given by 

Substituting Eq. (30)  into (38) yields 

and finally 

which in combination with Eq.  (36)  becomes 

This is as far as the analysis can go without the simplifying assumptions 
needed to evaluate ( p .  M), .  

B. Inconsequential Electrostatic Interactions 

The assumption in theories based on point dipoles is that the nature of 
long-range coupling between the microsphere and the macrosphere is of 
electrostatic origin. This means that as the moment m in the sphere is 
rotated, the moment induced in the macrosphere, given by -A(q,)m also 
rotates (assuming the rotation to proceed infinitesimally slowly so that the 
system always remains in equilibrium). As the moment m in the 
microsphere is made to vanish, the induced moment in the microsphere 
-A(q))m vanishes. Therefore in the limit of a nonpolar polymer there is 
no correlation between the two spheres. This assumption is probably 
acceptable for polar liquids but not for polymers where long-range 
correlations other than electrostatic one exist. 

Let us now consider a microsphere containing a segment of a nonpolar 
polymer chain such as polystyrene, in the limit of very high holecular 
weight. As the segment in the microsphere chain rotates (or translates) 
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slowly, a disturbance will be set up at any arbitrary distance away from 
the microsphere that is proportional to the magnitude of the rotation (or 
translation). Such disturbances are assumed to give rise to polymer 
orientation in the macrosphere. In other words a long-range nonelec- 
trostatic correlation exists between the micro- and macrosphere that is 
based on polymer chain structure. These estimates are based on the stress 
birefringence measurements of A n d r e ~ s . ~  In these experiments he was 
able to show that long-range correlations exist between the polymer chain 
and the phenyl side chains in polystyrene. 

The problem is how to evaluate (p . M),, .  Ideally, this would come 
from the statistical theories of polymers. A review of the literature shows 
that such statistical theories are always molecular weight dependent, and 
these results are not applicable to the case of polar polymers in the bulk 
phase. Though it is not possible to develop a statistical theory, it is 
possible to consider Kirkwood's development (next section) as one 
limiting case and assume the other limiting case to consist of trivial (by 
comparison to steric factors) long-range electrostatic interactions. 

We can proceed along lines similar to those of McCrum and co- 
workers as follows: 

In this expression p: is the ith unit on polymer molecule I and p: 
represents the remaining units on molecule I ,  and p;' represents the units 
on all of the other polymer chains. Since all basic units are assumed to 
have the same dipole moment, we have 

( p .  M) ,, = p2( 1 + COS' y,, + COS"~, , )  
I n 

(43)  

or 

Combining this result with Eq. (41) we have 

~ " - 1  3V N 
& , + 2  477 3kT 

- (45) 

remembering that &.L = y. 
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C. Onsager-Kirkwood Approximation 

Though the quantity ( p .  M )  can be evaluated quite readily by a simple 
reference to Kirkwood: we shall discuss the calculation at some length 
because its application to polymer systems is not done with certainty. 
Kirkwood’s first assumption limits the elements of discrete local structure 
to a microsphere located inside the macroscopic one. Kirkwood’s second 
assumption limits the correlation between the units of the microsphere 
and the remaining units to long-range dipole-dipole forces. The average 
correlation is given by an appropriate electrostatic calculation. Thus while 
the region is microscopically small, it may be quite large in terms of 
molecular dimensions. The average to be computed is ( p . M ) , .  This 
average may be performed by fixing the orientation of p, averaging over 
all positions of p. The last average is trivial for no terms in the 
Hamiltonian depend on the absolute position of p. 

To accomplish the first average let us denote a dipole within the small 
sphere by the suffix k and the one outside it by the suffix 1. We can then 
average over all configurations of the p for a given configuration of the 
pk and finally over all the p,. Thus 

The subscript i was added to p in order to keep track of the indexing in 
the sums and integrals. The moment induced in the outer sphere due to 
the presence of the moments in the microsphere is given by an electro- 
static calculation and is equivalent to 

When this calculation is completed, it is found that the resulting moment 
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In order to perform this electrostatic calculation, Kirkwood had to 
invoke a double limiting process in that not only must the radius of the 
microsphere approach infinity but the ratio of the macrosphere to the 
radius of the microsphere must also approach infinity. This assumption 
clearly indicates that the microsphere, however large, is an insignificant 
portion of the macrosphere. Consequently, the second integral in Eq. 
(48) becomes 

and finally 

If we let m equal the net moment of the microscopic region about p,, 
then 

The evaluation of ( p -  C p,), is known as Kirkwood's electrostatic 
argument, its particular form here is due to Glarium:8 though the same 
result can be obtained from somewhat different arguments; see, for 
example, Frohlich.6 What is important is the recognition that there are 
two assumptions in Kirkwood's argument that may not apply to the case 
of polymers. Combining Eq. (54) with (41) leads to 



ELECTRIC POLARIZATION OF POLAR TIME-DEPENDENT RIGID MATERIALS 241 

The quantity in the second brackets must, of course, be unitless. This 
is easily verified by noting that t2(  p .  m),, = ( y C Y ) ~ ,  which is unitless. 
Finally substitution of the values of V/D,kT show that the entire fraction, 
hence the entire bracket, is unitless. A numerical check of the results is 
made by direct substitution into the square brackets and noting that its 
contribution is significant over the entire range of parameters studied in a 
previous section. 

V. TIME-DEPENDENT POLARIZATION 

A, General and Debye Equations 

The time-dependent incremental strain energy, 6 U,(t), for an incremental 
volume element, SV, of the sphere is given by 

where r(q) is the strain of the sphere. Since the strain of the sphere is 
uniform, the strain energy will be given by 

US(t )  = t 4 t ) W V  (57)  

The strain r(t) is an intensive property of the sphere, therefore, we 
identify the strain of the sphere with the strainfunit and is proportional to 
the total dipole moment of the sphere per unit. In other words, 

r(q) = c y l N  = F I N  = ( M ( q ) l N  (58) 

The strain energy of the sphere becomes 

In this expression, M,(q) is the z component of the moment and is 
assumed to be dependent on the coordinates q of the sphere. The 
perturbation term H ' ( q ,  t )  is given as the sum of the electrostatic and 
strain energy terms, that is, 
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In this expression -M,(q)E(t) is the electrostatic energy. The remaining 
arguments are similar to those of the previous section. The moment of 
the sphere suspended in the vacuum becomes 

E * ( W )  - 1 5 2v ( M m )  oL[-@.(t>l 
E * ( w )  + 2 - 3kTV 6kTN2D(o)  

In this expression L is the Laplace transform. In addition 

L{-@(t)} = '@ dt 
0 

and 

(q, + 2)4.rrN2 
( M : ( o ) ) o  = ( E ,  + 1)9VkT ( E O  + 2)8rrN2DO 

This is as far as the analysis can go without the introduction of species 
schemes for evaluating the equilibrium averages. We shall, in this work, 
consider the case where the long-range interactions are electrostatic in 
origin. 

B. Onsager-Kirkwood Approximation 

This case assumes that the long-range interactions can be represented by 
electrostatic ones, that is, the Onsager-Kirkwood reaction field. The 
arguments of Fatuzzo and Mason leads to a relationship between the 
time-dependent moment of the macrosphere (@) and the time-dependent 
moment of the microsphere (4), viz. Eq. (11). 

If we apply these arguments to Eq. (7), the results are 

C2VA'(&*)(p .rii),L(-+) 
6kTND(w) E * ( W )  - 1 =- 4.rrN { 1 + 9kTV 

9 E * ( W )  ( p  . m ), 
X 2 E * ( W )  + 1 L ( - 4 )  
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where 

9e*(o) 
[2&*(0) + l ] [&*(W) + 21 A'(&*) = 

V1. APPLICATION AND DISCUSSION OF THE RESULTS 

A. Molecular Strain 

The quantity y, referred to as the molecule strain in previous sections, 
needs to be examined in greater detail. It is reasonable to assume2' that if 
1, represents the length of bond i and it makes an angle +t with the z axis, 
then the potential energy of the bond in a tensile field u directed along 
the z axis is given by 

BE,I,cos +L = ul,cos = u . I ,  (69) 

In other words we can associate a vector I, with the bond, which behaves 
in much the same way as the vector representing the dipole moment p. If 
1 and p are specified, then a set of transformation equations can be 
constructed. The bond length 1, actually represents the difference be- 
tween the overall length of two atoms and their diameter. In a similar 
way we can represent the strain as 

a - b  a - b  
Y = b  Or y=- b 

where a is the overall length of the bond and b is its diameter. The ratio 
in Eq. (70) is the change in length per unit length as the unit rotates 
about its axis. The vector a - b is taken to be in the direction of the 
greater quantity a or b. The quantity y refers to the strain of the 
molecule. What is needed is the strain at a particular point in the sphere. 
This will be proportional to the moment of the sphere per molecule. 

The direction of the dipole moment need not be limited to the 
direction of the major axis; it could lie in any direction. For these cases 
the sphere would be distorted but no longer in the direction of the electric 
field. In the special case of a dipole moment along the direction of the 
minor axis, the sphere would be an ellipse, but the major axis would be 
perpendicular to the direction of the applied field. 

The interaction of the unit with its environment is best seen from a 
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Figure 11. An elliptical unit is immersed in its own medium. The spherical cavity 
represented by the dashed line represents the Onsager cavity. 

consideration of the Onsager model. Consider the following schematic 
representation given in Figure 11 of a polar species. The shape of the unit 
is an ellipse (solid line in Fig. I I ) ,  but the point dipole is considered to be 
centered in the sphere. The material constants are E,, Do. In order for the 
dipole to orient, the ellipse must strain the environment surrounding the 
spherical cavity. 

A more realistic model is the schematic representation of the one given 
in Figure 12. The portion depicted in Figure 12 could be part of a 
polymer molecule or of some large molecule. The dashed line represents 
the Onsager cavity with a dipole moment of magnitude p located at its 
center. Surrounding the Onsager cavity is a medium of dielectric constant 
E, and tensile compliance D,. Rigidly connected to the sphere containing 
moment p are two nonpolar spheres labeled A .  When the field E,  is 
turned on, the group p tends to rotate. To do so in this model the sphere 
A must distort the medium giving rise to a strain energy term. To 
evaluate the strain the actual A l / f  for the orienting species must be 
calculated. 

B. Limiting Behavior 

If we define {. . .} to be 
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0-K CAVITY 

Figure 12. 
sphere labeled A. 

A spherical dipole in a cavity (dashed line) is rigidly connected to nonpolar 

then the effects for various limiting values of 5 and D, on Eq. (46) can be 
evaluated. 

Case I. Consider the case of symmetrical units, that is, (- 0 units and 
finite D,, so that { -  . - }  -+ 1 and 

~ ~ - 1  3V N -= ( P W ,  ___- 
E l )  + 2 4%- (73) 

Case 11. Consider 
shaped units, that is, 

the case of highly unsymmetrical units or needle 
{+x, and finite D, so that {. . .}-0 and 

En -+ 1 (74) 

Case 111. Consider the case of a rigid environment, that is, D,-O, 
and ( Z O  so that { . . . } - + O  and 

El) + 1 (75)  

Case IV. Consider the case of a flexible environment, that is, Do -+ m, and 
( # O  so that {-.-}-1 and 
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These limit results suggest that Eq. (46)  is well behaved at the limits. 
For example, when {. . .} = 1, Eq. (73) becomes the familiar polar liquid 
expression. On the other hand, when { -  . - }  = 0, the equilibrium dielectric 
constant, F~ = 1, that is, that of a vacuum and the material behaves as if it 
were a nonpolar liquid. The results for the four cases just discussed in the 
previous section are the same and will not be reproduced here. 

C. Curie Temperature 

The second criticism of the Debye equation is that it predicts an electrical 
Curie temperature. Equation (46)  does not lead to an electrical Curie 
temperature for certain choices of the parameters. This point can be seen 
from the following variation of Eq. (46) .  

2D,N 

When 6D,NkT < Vgry2, Eq. (77) becomes 

~ ~ - 1  3V 2D,N2 p2 
- 

1, + 2 41T v Y 2  

(77) 

In other words the polarizability and hence the dielectric constant are 
independent of temperature. Using the numerical constants in a previous 
section, i.e., Eqs. (28a) and (28b), the results are found to be quite 
reasonable and are given below: 

6D,NkT 
For D, = dynfcm2: =2,49T 

VgrY 

6D,NkT 
For Do = lo-'" dynlcm': = 2.49 x 1 0 - j ~  

VgrY 

In other words for reasonably rigid systems with y - 2 the polarizability 
and hence F, do not exhibit a Curie temperature. 

D. Apparent Relaxation 

Consider a case where the relaxation time of point dipoles in the system is 
much less than lo-'. Then, in the experimental frequency range of 
102-105 Hz, equilibrium dielectric constants will be measured. However, 
let us assume that y 2 / D ,  is such that F,, - 1 is reduced in magnitude. 
Furthermore, the equilibrium compliance Do is a function of time such 
that Do(t) = D,{1 - exp(-t/.)} where 7 is the relaxation time somewhere 
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in the experimental frequency range ( 102-10s Hz). This assumed relaxa- 
tion process has a single relaxation time. The so-called equilibrium 
dielectric constant E,,(t) will have a value that is dependent on the 
frequency of measurement, simply because Do(t) is time dependent. This 
time-dependent dielectric constant may be given by redefining E,, to be 
E o ( t )  in Eq. (46). This substitution yields the following equation: 

(79) 

Numerical estimates can be made with a few simplifying assumptions such 
as ~ ~ ( t )  > 1 and Eo(t)D,(t) = D(t)  and finally scaling the results, that is, 
{e0(t)  - l}/{~,, - l}. In Figure 13 we have given the time dependence for 
a number of different values of y 2 / D O ( t ) .  In the first case, the value of 
y ’ / D O ( t )  was chosen such that part of the polarization process was 
partially “frozen out .” In this case the relaxation times are nearly the 
same, the dielectric process is the faster one by a factor of about 1.5. 
However, in the other cases y’/D,(t) was chosen to be much greater. 
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Figure 13. Plot of the time-dependent dielectric constant as a function of time for 
different values of the tensile compliance given in the legend. 
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Under these conditions, .q,(t) comes to its equilibrium value [when 
y2/D,( t )  is such that it no longer freezes out the process] much sooner 
and its apparent relaxation time is much shorter. Clearly, from Figure 13, 
the relaxation time depends on the magnitude of Do. This dependence 
can be seen by defining a relaxation time to be when E o ( t )  reaches a 
certain value ~ ~ ~ ( f ) .  This situation comes about when the quantity Do([)  
reaches a specific value Do,(t) at which all other quantities have been 
assumed to be constant. For large values of Do,  this level will be reached 
in a short time so that t / T  < 1. Making the substitution into the time 
dependence for Do(t)  we have 

where tT implies a time that fixes DOT(t) for a given Do. In other words the 
apparent dielectric relaxation time will be a linear function of Do. 

E. Multiple Dispersions 

Many polymers exhibit multiple relaxation processes. For those polymers 
that are partially crystalline such as polyesters, the interpretation is quite 
simple; relaxation in the crystalline and noncrystalline domains have 
different dynamic parameters so that their respective relaxation processes 
occur at different experimental conditions. Acrylic polymers are not 
though to be partially crystalline, although there is some evidence to 
suggest that there may be a considerable amount of local structure. Not 
all acrylic polymers have two dispersions, those with short side chains 
exhibit two dispersions while those with longer side chains have only one, 
as the following results demonstrate. 

A plot of the dielectric loss tangent with temperature for conventional- 
ly initiated polymethacrylates (PMA) taken from the data of Steck? and 
Dyvik and Bartoe3' is given in Figure 14. This series clearly demonstrates 
several important features. First, poly(methy1 methacrylate) (PMMA) 
and poly(ethy1 methacrylate) (PEMA) have two loss tangent maxima 
while the other polymethacrylates have only one. The relative magnitudes 
of the higher temperature loss peaks for these two polymers, that is, a 
peaks, are much smaller than their corresponding /3 peaks. The mag- 
nitude of the loss tangent for these two p peaks are similar to the a peaks 
of the other methacrylate polymers. The p peaks for PMMA and PEMA 
do not correlate with the glass temperature while the a peaks do 
correlate with that temperature. In other words, increasing the side chain 
length to about 3 or 4 carbon atoms appears to freeze out the p (glass 
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Figure 14. Plot of the loss tangent ( x 100) as a function of temperature for a number of 
methacrylate polymers The polymers are listed in the legend. 

phase) relaxation process. A complete set of equilibrium and instanta- 
neous parameters for this acrylic series is given in Table I. 

The dipole moments of the acrylic polymers just described lie in the 
planes of the ester groups, and nearly pointing in the direction of the 
carbonyl g r ~ u p . ~ ’  The results from an infrared study and computer 
modeling of syndiotactic structures with increasing side chain lengths 
leads to the hypothetical structure shown in Figure 15.33 Starting from the 
top of the figure, the first monomer unit is methyl methacrylate, the 
second, connected to the first in a syndiotactic placement is ethyl 
methacrylate, the third also connected in a syndiotactic placement is 
propyl methacrylate, and so on down the chain. Although this structure is 
hypothetical, it can be used to illustrate the following points. The labels 
in that figure identify the side chains and are placed near the carbonyl 
group. The carbonyl groups were positioned to be pointing in the same 
direction (toward the viewer) to demonstrate their proximity to the main 
chain. Dipoles pointing in the same direction are inconsistent with dipole 
moment calculations based on trial  structure^:^ which suggest that they 
alternate toward and away from the viewer position. The side chains are 
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TABLE I 
Instantaneous and Equilibrium Dielectric Constants for Some Acrylic Polymers 

p Process a Process 

Polymer 71 T J 2  ( 1 . 07TJ)2 E ,  EU E* Ell 

s-PMMA 1.47 2.16 2.47 2.50 4.6 4.6 5.0 
PMMA 1.49 2.22 2.54 
PMA 1.48 2.19 2.51 4.11 7.42 
PEMA 1.49 2.22 2.54 2.36 4.77 
PnPMA 
PnBMA 1.48 2.19 2.51 - - 2.17 3.64 
PiBMA 1.46 2.13 2.44 - - 2.10 3.54 
PAMA - - 
PcHMA 1.51 2.28 2.61 - - 2.21 3.86 
PnHMA 1.48 2.19 2.51 - - 2.60 4.25 
PnOMA - - 2.53 4.22 
PnNMA - - 2.37 3.42 

Figure 15. Top view of a hypothetical acrylic polymer chain illustrating the effect of 
polymer side chain length. 
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Figure 16. End view of the photograph in Figure 15. 

in their extended conformation to emphasize their length. It is clear from 
this figure that increasing side chain length serves to separate main 
chains. 

Figure 16 is an end view of the same structure shown in Figure 17. In 
this view the dipole moments would be pointing up. It is the dipole 
moment of several ester groups that interact with the applied electric 
field. Restricting that orientation at equilibrium is the equilibrium tensile 
compliance surrounding the unit. 

Let us assume the following form for the time dependence of D(t):  

__- D(t)  - 1 x lo-' + (1.0 x - 1 x 10-'}[1 - exp(t/~,,)] (82) 
Y 

This expression is a simple exponential rise with limits at 0 time of lo-' 
and at infinite time of Since the lower limit of tensile compliance 
for most polymers is about 10-'2cm2/dyn for polymeric glasses at very 

_- - 

I PMMA PEMA PnPMA PnBMA PnHMA PnOMA 
____ ___..._.__...... ____-___ - - - . . . . - - - - - . . - 

Figure 17. Elliptic cross section of acrylic polymers with increasing side chain length. 
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low temperatures and cm2/dyn for the rubbery transition region well 
above the glass transition temperature. For purposes of calculation let us 
set 1 = -12 and let k range from 5 to 8.5 in increments of 0.5. Since the 
quantity y is a shape factor and is not known with certainty we shall 
assume that it is lumped in with D(t) .  Presumably the range would nearly 
be zero for symmetrical units and perhaps 10-100 for highly unsymmetri- 
cal units. The results of this calculation are given in Figure 18. The 
relaxation time was adjusted to center the relaxation process in the 
experimental frequency range. At first, k shifts the relaxation process to 
longer times (lower frequencies), and finally decreases the magnitude of 
the relaxation process. The effects of I is observed by setting k = 5 and 
varying I from 11 to 14. The results of this calculation are given in Figure 
19. 

If we assume that the relaxation time, T", is given by a typical 
Arrhenius rate plot: 

AE 
RT In T~ = - + ln(AS) (83) 
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Figure 19. Dependence of the dielectric constant for fixed values of the instantaneous 
and equilibrium dielectric constants but for the relaxation times listed in the legend. 

In this expression the activation energy AE is taken to be 100 kcal/mol, a 
number similar to the activation energy of s-PMMA In(AS) is set to 
- 125, which places the rate plot in the experimental temperature and 
frequency range. The results of the calculation are given in Figure 20. 

The a and p dispersions of s-PMMA can be discussed in terms of 
Figure 19. In the glass phase, y 2 / D ,  is such that the polymer segment 
orients with respect to the electric field that results in a value of 8,) = 4.6; 
see Table I. At temperatures above the glass transition region the ratio 
y * ID, changes by several orders of magnitude not because y changes 
but because D, changes by 5 decades. The relaxation observed in Figure 
19 labeled a process is entirely due to the assumed relaxation of D,. In 
other words the polarization process is not complete until the strain 
energy term approaches zero. The activation energy of this dielectric a 
process is the same as is the activation energy of Do because it is the rate 
limiting step. In other words the rate of polarization (a  process) due to 
softening of the matrix is determined by the matrix rate parameters even 
though the p process has a much faster rate. 

The dielectric relaxation time can be defined as the time that the 



254 

L 

S.  HAVRILIAK, JR., AND S.  J.  HAVRILIAK 

120 

100 

80 

60 

40 

20 

0 

Figure 20. Dependence of the dielectric relaxation time on viscoelastic relaxation time. 

dielectric constant (for the a process) reaches half its final value; see 
Figure 19. An activation energy can be calculated from a plot of these 
relaxation times with reciprocal temperature absolute. In Figure 20 we 
have plotted the dielectric activation energies for a range of assumed 
activation energies (20-100 in increments of 20) for the relaxation time in 
Eq. (83). D(t)’s were calculated using Eq. (83) and finally the relaxation 
time was calculated for €*(I) .  The dielectric relaxation time was used to 
calculate the activation energy. As expected, the dielectric activation 
energy is determined by the activation for Do.  

Increasing the side chain length from methyl to ethyl, that is, from 
PMMA to PEMA alters some of the details for the a and /3 processes but 
the results, hence the interpretations, are similar. PMA is also similar to 
these two polymers, hence the interpretation is similar. No other acrylic 
polymer listed in Table I exhibits a /3 or glass phase process. This point is 
verified by the refractive indices (7) listed in Table I. Squaring 7 with or 
without some allowance for atomic polarization is similar if not the same 
as the F, for the other methacrylates. This agreement suggests that there 
are no higher frequency relaxation processes. 

In as much as Do’s for acrylic polymers in the glass phase appear to be 



ELECTRIC POLARIZATION OF POLAR TIME-DEPENDENT RIGID MATERIALS 255 

the same, it is the y2 ' s  that are different and consequently inhibit the 
orientation process. Figure 7 gives the reason of the dependence of y on 
side chain length. As the side chain increases in length, the cross section 
of the polymer becomes less cylindrical and more elliptical. At a side 
chain length of 4, that is, butyl, the ratio y 2 / D ,  in the glass phase inhibits 
the polarization process. 

F. Broad Dielectric Dispersions 

In the previous two sections we discussed the effects of representing a 
single-exponential time-dependent compliance on dielectric behavior. It is 
well known35 that the time dependence of the tensile compliance of glassy 
materials such as polymers cannot be represented as a single exponential 
function. The decay can, however, be represented by a distribution of 
exponential functions. A considerable effort has been made in studying 
the origins and shapes of tensile compliance with time. In this work we 
simply assume that an approximation to these distributions can take the 
form 

~- '(i' - 1 x lo-'" + (1.0 X - 1 x lO-(')}{(l- e x p [ - ( t / ~ ~ ) ~ ] }  (84) 
Y 

In this expression the last term in brackets is commonly known as the 
stretched and c is the stretched exponential constant 
which can range from 0 to 1. 

For purposes of demonstrating the effect of c on ~ ( t ) ,  let us set I = 12, 
k = 8, and let c range from 0.2 to 1.0 in Eqs. (79) and (84). The results 
for the time-dependent log(comp1iance) are shown in Figure 21. Since the 
quantity y is a shape factor and is not known, we shall assume that it is 
lumped in with D(t) .  Results of calculating ~ ( f )  for this range of tensile 
compliances from Eqs. (79) and (84) are given in Figure 22. These 
time-dependent dielectric constants can be transformed into the fre- 
quency domain, that is, complex dielectric constant, using the extended 
Scwarzl m e t h ~ d . ~ * - ~ ~  A complex plane plot of the results are given in 
Figure 23 for the case of I = 12 and d = 8 and a range of c from 0.2 to 1.0. 
The plots exhibit a range of shapes when viewed in the complex plane. 
These complex plane plots can be represented by the H-N function using 
the techniques previously reported. 

The H-N parameters and their confidence intervals for the four curves 
in Figure 23 (on page 258) are listed in Table 11. A plot of the H-N 
parameter so as a function of c for different values of I are shown in 
Figure 24 (on page 259). The value for E, is independent of c but depends 
on I .  A plot of the H-N parameter (Y with c for various levels of I is given 
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Figure 21. Plot of log(tensi1e compliance) as a function of log(time) for different levels 
of c and 1 = 8. Points indicate spacing and half the points used in the calculations. 

in Figure 25 (on page 260). A plot of the H-N parameter p with c for 
various levels of I is given in Figure 26 (on page 261). A plot of H-N 
parameter In(&) with c for various levels of 1 is given in Figure 27 (on 
page 262). Increasing the width of the tensile compliance curve, that is, 
decreasing c ,  has the effect of increasing the width of the dielectric 
relaxation process, that is, decreasing a. The magnitude of the change 
depends on 1 and at I = 9.5, there is no change and a = 1. Increasing the 
width of the tensile compliance curve, that is, decreasing c ,  has the effect 
of decreasing p, that is, increasing the skewness of the dielectric 
relaxation process. Although the change depends on I ,  it does approach a 
limit as I approaches 9.5. There is no simple condition for /3 = 1. As in 
the case of /3, ln(fo) approaches a limit that is independent of c as 1 
approaches 9.5. 

A plot of a vs. p44 for many materials have shown that the entire 
plane is populated, although not uniformly. Furthermore, this plot does 
not seem to sort out material by type. For example, such diverse 
materials as the p process in PMMA or PEMA are similar to those of 
cyclohexane, 124 Methyl 356 Chloro benzene, or even poly(trifluro 
monochloro ethylene). The list of materials for the case of /3 = 1 is even 
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Figure 22. Plot of the time-dependent dielectric constant as a function of log(time) for 
different values of c and I = 8. 

longer if one includes all of the original work of Cole et alP5 In their work 
circular arcs were found to represent the dielectric relaxation process of 
such diverse materials as slate and halowax in addition to materials 
similar to the ones just cited. In other words there appears to be no clear 
delineation of the material type that is represented by the circular arc 
function. A plot of the values for these materials would be misleading 
because none of the researchers have tested the data to determine if two 
parameters were necessary. Values of 0.8 5 p 5 1.0 when a 0.7 go 
undetected unless unbiased statistical techniques are used. A recent 
example of this problem is that of N a ~ k i ~ ~  who reported on the p 
dielectric relaxation process of poly(viny1 chloride) as a function of 
temperature and pressure. It has been demonstrated4' using unbiased 
techniques that this process requires a and p < 1. Even so many other 
researchers continue to use the circular arc formalism even though it is 
probably not adequate. The important point is that a broad spectrum of 
materials are likely to fill the a vs. p plane4 and without segregation 
according to material types. 

Perhaps the most significant result of these calculations can be seen in 
a plot of a vs. /3 for different levels of c and I shown in Figure 28 (on 
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Complex plane plot of the complex dielectric constant calculated from the 

TABLE 11 
Relaxation Function Parameters and Their Confidence Limits for Representing the 

Complex Dielectric Constant for Various Values of C and L = 8 

Parameter C = l  C = 0.7 c = 0.5 C = 0.3 

1.621 
0.001 
1.000 
0.003 
6.19 
0.06 
0.82 
0.01 
1.09 
0.05 

1.621 
0.001 
I. 000 
0.003 
6.35 
0.07 
0.76 
0.01 
0.77 
0.03 

1.623 
0.001 
1.000 
0.002 
6.6 
0.07 
0.67 
0.01 
0.60 
0.02 

1.633 
0.001 
1 .ooo 
0.001 
7.7 
0.1 
0.48 
0.01 
0.50 
0.02 
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Figure 24. Plot of the equilibrium dielectric constant as a function of c for various 
levels of I 

page 263). In this plot the various c values have been connected at 
constant I. The different I values are indicated in the legend. A c of 1.0 is 
always in the upper right-hand corner of the graph for a given I, and the 
points shown are decreases in c by 0.1. The results shown in the figure are 
important because nearly the entire physically significant range of a and 
p is covered by the present range of c and 1 chosen for computations. 
Presumably if c was decreased to 0.1 and permitted to approach 0, the 
entire range, that is, 0 s a  5 1 and O s a .  0 I 1, would have been 
covered. 

The well-known Cole-Cole plot (0 5 a 5 1.0) forms a single line in 
this a ,  /? plane; see Figure 29 (on page 264). The Ki rkwo~d-Fuoss~~  as 
well as the Gaussian functions49 are essentially coincident with the 
Cole-Cole function. The Cole-Davidson function 0 5 p 5 1.0 is also a 
single line in this plane and forms one of the bounds that is perpendicular 
to the Cole-Cole line. The stretched exponential is represented by a 
hyperbolic-like line in the a ,  p plane and takes the form5' 

( p  - 0.26 2 0.04)(1.092 z i  0.007 - a )  = 0.058 ? 0.006 (85 )  
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Figure 25. Plot of Q with c for various levels of 1. 

Mansfield’s model represents a range of a ,  p and accounts for about 16% 
of the total area. 

The results in Figure 28 can be mapped into contour maps of constant 
I ,  or c as functions of a and p ;  see Figures 30 and 31 (on pages 265 and 
266). These plots are important because they permit us to pick of the 
values of c and I for experimental values of a and p. In Figures 30 and 31 
we have plotted the values of 1 and c for the Cole-Cole and Cole- 
Davidson functions, respectively. In addition there are a large number of 
theoretical correlation functions that form lines in this plane?’ 

The model proposed for dielectric relaxation assumes the inherent 
dielectric relaxation time to be much shorter than the time associated 
with the “softening up” of the environment. A simple distribution of 
exponential decays representing the softening of the environment ac- 
counts for a broad range of a ,  p pairs while changes in the asymmetry of 
the orienting unit completes the spreading out to all physically acceptable 
values of a and p. Hence two macroscopic parameters, that is, a and p 
have been related to two other parameters c and I. These two constants 
are closer to a molecular description of the system since one of them 
accounts for the macroscopic change in shape during the orientation 
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Figure 26. Plot of p with c for various levels of 1. 

process in terms of a molecular shape factor. A considerable effort has 
gone into understanding of the other parameter, c, in terms of vibrations 
along a polymer chain and the influence that the environment has on it. 
Equation (84) was chosen because of its simplicity. A more realistic 
choice would have been to use one of the functions used to represent 
polymer chain vibrations. 

G. Comparison with the DiMarzio-Bishop Results” 

Following the procedure adopted for evaluating the D-B model, we 
calculate e( t )  for a given D ( f )  using Eq. (79) and the viscoelastic data for 
poly(n-hexyl methacrylate). We use the frequency domain J(w)  data, see 
Reference 22 to calculate D(t )  in the time domain. Once the time- 
dependent dielectric constant is made, the frequency-dependent dielectric 
constant is calculated using the modified Schwarzl method.” 

In Figure 32 (on page 267) we have given complex plane plots for 
different values of the shape parameters c,  calculated from Eq. (79) and 
the time-dependent compliance for poly(n-hexyl methacrylate). The 
dependence of the H-N a ,  p parameters on the shape factor is given in 
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Figure 27. Plot of the In(f,) with c for various values of 1. 

Figure 33 (on page 268), while in Figure 34 (on page 269) the dependence 
of so, E,, and A& on the shape factor is given. Finally in Figure 35 (on 
page 270) the dependence of In f, on the same parameter is given. 

The results of the D-B and H-H models, as shown in a comparison of 
Figures 4-7 with Figures 32-35 are very similar. In both cases a == 0.6 
and approximately independent of either the K or the shape parameter 6. 
The p parameter changes in a sigmoidal pattern from about 0.35 to 1.0 
for the D-B model and from 0.35 to about the 0.7-0.8 range for the 
H-H model. In other words, both the D-B and the H-N models predict 
the shape of the dielectric relaxation process to have nearly the same 
dependence on sphere diameter or  segment asymmetry 6 and both 
models have very different starting points. 

In the case of DiMarzio and Bishop:3 they solved the hydrodynamic 
equations for the Debye model and the non-Newtonian case exactly. The 
important result of their analysis is that the dielectric response is no 
longer a Debye type but depends explicitly on how the local viscosity 
depends on time. In other words the nature of the viscoelastic properties 
surrounding the sphere determines the shape of the dielectric relaxation 
process. This result is in marked contrast to the results of the model 



ELECTRIC POLARIZATION OF POLAR TIME-DEPENDENT RIGID MATERIALS 263 

1 -  
[r 
W 

tj 0.8 

a z 

1.2 

- 

I 
I H t ; r ‘  

* I  
A 

0 
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 

BETA PARAMETER 

’ L=6 L=7 L=7.5 L=8 L=8.5 L=9 Lz9.5 --..-- . . 8 . .  -- - .... .... 

Plot of a against p for various levels of 1 indicated in the legend. In all cases 
c = 1 in the upper right-hand corner of the plot and decrease systematically to the left and 
down in increments of 0.1. 

I- 
Figure 28. 

proposed by Coles4 and extended by Shore and Zwanzig.” In these cases, 
the broadening of the dielectric relaxation process comes about because 
of time-dependent point dipole interactions. The shortcoming of the 
DiMarzio-Bishop result is based on the usual criticisms of the Debye 
model. In the view of the present authors, the criticisms of the Debye 
model is probably less serious than the point dipole assumptions that are 
customarily made. 

The advantage of the H-H model is that the starting point is a more 
general formulation of the dielectric relaxation problem, that is, it is less 
specific than is the Debye model. Another advantage of this approach is 
that the relationship between strain and electrostatic energies is clearly 
incorporated into the model. This incorporation has the effect of 
approximating real molecules as point dipoles situated on bodies that 
have an arbitrary shape. Furthermore it is reasonable to assume that the 
relationship between dipole moment and shape factor is given by a 
tensor. In any case there is no reason to assume that the moment of the 
sphere and its distortion are collinear when the electric field is applied. 
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For example, while the induced moment may be in the direction of the 
electric field, the distortion of the sphere may be perpendicular to the 
field. 

The results of these comparisons show the advantages of incorporating 
the viscoelastic properties of the environment in predicting dielectric 
behavior. In this approach, the broadening of dielectric dispersions is due 
to the shape of the viscoelastic relaxation process. Equations (25) and 
(79) have at most only 1 adjustable parameter that is related to the 
volume or shape of the moving segment. This, of course, is a significant 
achievement, but the question now is why are viscoelastic dispersions 
shaped the way they are. 

H. Comparison of Dielectric and Viscoelastic Dispersions 

McCrum and co-workers56 stated: 

In comparing dielectric and mechanical data it should be noted that the 
electric field E is analogous to  the mechanical stress cr and that the 
dielectric displacement D is analogous to  the mechanical strain y. It follows 
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that E *  and rE are analogous to J*  and r, respectively. Comparisons 
between dielectric and mechanical relaxation data might therefore be made, 
for example by noting the correlation which exists between the frequencies 
of maximum E" and J". 

An excellent example for such comparisons are the dielectric relaxa- 
tion data of poly(n-hexyl methacrylate) by Strella and C h i r ~ a i ~ ~  and the 
viscoelastic relaxation data on the same polymer by Child and Ferry .58 

Complex plane plots for the dielectric process (normalized with respect to 
AE = E,, - E ~ )  and the viscoelastic relaxation data are given in Figures 36 
and 37 (on pages 271 and 272), respectively. There are several observa- 
tions that can be made from these figures. First, the shapes are quite 
different for the two processes. Second, the frequency rages for the 
viscoelastic process is to the low side of the dielectric process and the 
temperatures are to the high side. An Arrhenius rate plot of the 
log(re1axation times) against temperature is given in Figure 38 for the 
J*(w)  and the E * ( w )  relaxation data. The E * ( w )  data were treated using 
rigorous statistical  technique^.'^ The two dashed lines represent 95% 
confidence intervals for the dielectric log(re1axation time). It was difficult 
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Figure 31. Plot of c as a function of a or p that meet the Cole-Cole or the 
Cole-Davidson condition. 

to analyze the viscoelastic data using the same statistical techniques. For 
this reason we estimated the relaxation times by the procedure rec- 
ommended by McCrum et that is, from the frequency of maximum 
loss. This estimation is plotted in Figure 38 (on page 273). Although one 
might expect small differences between the two methods of relaxation 
time estimates, that is, a factor of 2 or so, the results in Figure 38 show 
that there is a difference of about 4 orders of magnitude. 

This observation is well known and in general there are two explana- 
tions. The first one is based on stating that a viscoelastic measurement is a 
macroscopic displacement while the dielectric measurement is a micro- 
scopic displacement. For this reason, several thousand microscopic 
displacements (dielectric) are required to make one macroscopic displace- 
ment (viscoelastic). Another method of comparison has been suggested 
and that is to compare the dielectric relaxation time to the viscoelastic 
relaxation time calculated form the modulus related to the compliance 
through G * ( w )  = l / J * ( w ) .  It is the view of the present authors that such 
comparisons are not properly made. 

Since Scaife claims that p * ( w )  should be used for dielectric com- 
parisons and the arguments given in Section 1V.B support his contention, 
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the question to be addressed is “What is the viscoelastic equivalent of the 
complex polarizability?” It is possible to construct a function analogous to 
the complex polarization of a sphere imbedded in a medium of E,. This 
quantity is given by [complex distortion S * ( w ) ]  

J*(o) - J ,  
S * ( w )  = 

J * ( w )  + J ,  

In this equation J ,  is the high-frequency limiting value of the real 
compliance and is the counterpart of E, = 1 in the corresponding electro- 
static equations. The ratio of relaxation times by analogy with the 
dielectric case is given by 

In this expression 1, is the extrapolated value of J ’ ( w )  to very high 
frequencies, while J, is the extrapolated value to very low frequencies. 



268 S .  HAVRILIAK, JR., AND S .  J .  HAVRILIAK 

1.00 
a 
W 
I- y 0.80 

a 

- ---.----. ,. - 
/ 

7’ 
/ 

f 
- 

1 2 3  5 10 20 30 50 100 

K PARAMETER 

2 W * 0.40 

I I + --.---. ALPHA BETA 

/ 
f 

f 
/ 

- I /  

Figure 33. Complex plane plot for different values of the shape factor 

This extrapolation is readily accomplished in a complex plane plot and 
represents the condition of J ” ( O ) = O .  Also in this expression rJ is the 
relaxation time for the J * ( w )  data and rs is the relaxation time for the 
6 * ( w )  data. These relaxation times for 6 * ( w )  are plotted in Figure 38, 
and the agreement between the dielectric and viscoelastic relaxation times 
is now remarkable. 

An equation similar to Eq. (86) can be derived rigorously from the 
basic theory of elasticity6” by analogy to the model used to calculate 
p * ( ~ ) ; ~ l  see Figure 39 (on page 274). The viscoelastic analogue is a 
sphere suspended in a continuum of magnitude J,; the stress field is set 
by clamps. The result of an elastostatic analysis is given by Eq. (89). 

J* (w)  - 1, 
J*(w)  + +Jr 6 * ( w )  = 

The difference between Eq. (86) and (88) is slight. 
The result of applying this equation to the viscoelastic (Y process of 

poly(n-hexyl r n e t h a c r ~ l a t e ) ~ ~ ? ~ ~  is given in Figure 40 (on page 275) for 
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Figure 34. Dependence of the a and p parameters on the shape factor. 

6 * ( w ) .  The data in these figures can be analyzed using rigorous statistical 
techniques. Arrhenius rate plots for the relaxation times and their 95% 
confidence intervals for the dielectric and viscoelastic data are given in 
Figure 41 (on page 276). It is clear from these figures that the shapes of 
the complex plane plots are not only similar but that the rate plots 
overlap within their 95% confidence intervals. 

Similar results64 are obtained for poly(n-hexyl methacrylate), poly(n- 
butyl methacrylate), poly(methy1 acrylate), and poly(viny1 acetate). In all 
cases the results follow the same pattern. The relaxation frequences for 
J"(w)  data are 1000 to 10,000 times slower than they are for the 
corresponding dielectric ones. However, in the case of 6 * ( w )  and p * ( w )  
comparisons, they are within the 95% confidence intervals. It shoul? be 
pointed out that there is very little difference between the relaxation 
times estimated from p * ( w )  and E. * (w)  data because the ratio E ~ / F ,  = 3-5. 

A comparison of dielectric and viscoelastic relaxation LY process has its 
own set of difficulties because the viscoelastic processes are small and the 
parameters Jo and J ,  highly temperature dependent. Nevertheless, the 
data can be analyzed and comparisons made. A comparison of the 
relaxation parameters for the LY processes of poly(viny1 chloride):' 
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Figure 35. Dependence of E, ,  F, ,  and AE on the shape factor. 

po lycarb~nate ;~~~’  and poly(bute1ene t h e r a ~ h t h a l a t e ) ~ ~ ’ ~ ~  show them to 
be the same within experimental error. 

The results of this section show quite clearly that the application of 
Scaife’s remarks to the comparison of dielectric and viscoelastic relaxa- 
tion times changed their ratio (viscoelastic/dielectric) for the (Y process of 
polymers from several thousand to less than 2. It should be emphasized 
that since E ~ / E , = ~ ,  a similar result would have been obtained from a 
comparison of E * ( w )  and 6 * ( w )  data. Once again this method would be 
similar to comparing dissimilar quantities. In the case of small viscoelastic 
dispersions, that is, when J o / J z  5 3 ,  the relaxation times are also similar. 
This is important because it shows that scaling depends on the J , /Jr  ratio 
and not that viscoelastic responses are always several thousand times 
slower than the corresponding dielectric ones. 

The results obtained from these dielectric-viscoelastic comparisons 
experimentally verify Scaife’s remarks to be correct, that is, dielectric 
relaxation data should be analyzed in the form of p * ( o )  rather than 
E * ( w ) .  A detailed analysis of the Glarum-Cole cavity model shows that 
their results, though mathematically elegant, simply do not represent 
the condition of real polar systems because there are many examples of 
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Figure 36. Dependence of In f, on the shape parameter. 

polar liquids that have relaxation shapes similar to those of poly- 
m e r ~ . ~ ~  Consequently, even simple polar liquids probably contain long- 
range interactions during relaxation similar to those in polymers. 

I. Small Molecules 

Apart from an occasional reference to polymers, the equations developed 
in Sections IV and V are general and not necessarily limited to long-chain 
molecules. However, their application to small molecules is handicapped 
by the lack of information on Do,  though y can usually be estimated 
reasonably well because of the preponderance of x-ray data on small 
molecules. Smyth' has reviewed, quite extensively, the dielectric prop- 
erties of polar solids. In his work he attributed the low values of E ~ )  to 
solidification, which usually fixes the molecule with such rigidity in the 
lattice that little or no orientation of the dipoles in an externally applied 
field is possible. Therefore the orientation polarization is zero, and the 
dielectric constant depends on the same factors as those in the nonpolar 
molecular solid. The dielectric constant temperature curves of these polar 
molecules show curves of great discontinuity at the melting point, for in 
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Figure 37. Complex plane plots of E * ( w )  and J * ( w )  for poly(n-hexyl methacrylate). 

the case of the nonpolar solids the changes in E,, at the melting point are 
small and are attributed to the slight changes in density. 

Nitromethane, which has a large dipole moment and consequently 
makes a large contribution to the orientation polarization, affords a 
particularly striking example of this change at the melting point. For 
nitromethane the melting point is -29”C, the density 1.13, and the 
dielectric constant is 44 in the liquid phase while in the solid phase q, is 
3.5. If we assume the compliance to be very large, then gp2 calculates to 
be 20.6. To compute the dielectric constant of the solid we need to know 
Do,  information that is not available. However, the tensile compliance of 
some salts such as lithium sulfate and rochell salt” are approximately 
10-12cm2/dyn. We can assume D,, to be the same because it is a very 
polar solid. The strain of the molecule can be estimated from the 
structure of the molecule. N i t r~methane~’  is a Y-shaped molecule with a 
small fantail at one end due to the 2 hydrogen atoms. The dipole moment 
of the molecule lies along the axis, which bisects the O N 0  bond angle. 
Orientation polarization can take place in two ways, either by rotation in 
the plane of the molecule or by rotation about the axis perpendicular to 
the plane. The least restricted motion is by rotation in the plane of the 
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molecule. The cross-sectional shape of this molecule is approximately an 
ellipse with minor axis of 1.4 A and a major axis of 3.65 A. Therefore en 
calculates to be about 1.61 and 1 x for the two directions. In other 
words the entire orientation process has been reduced in magnitude 
("frozen out") to a very low and unobservable level. The actual value of 
3.5 (experimental) contains contributions to q,, that is, E,,  which were 
specifically ignored in the present development. 

Hydrogen iodide poses an equally interesting problem. Again, Do for 
this material is not known, but since it is a weakly polar solid, we shall 
assume D,, to be about lOP"cm2/dyn, which is probably midway 
between salts and organic glasses. The molecule can be represented by an 
ellipse with a minor axis72 of 1.4 A and a major axis of 1.6 A,  so that y 
calculates to be 0.12. The density of the liquid is taken to be 2.85 g/cm', 
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Figure 39. The viscoelastic model used to calculate the complex distortion. 

the melting point -56°C and the dielectric constant of the liquid is 3.6 
while that of the solid is 3.8. The slight increase of E,, upon solidification 
is attributed to an increase in the density. Under these conditions gp2 
computes to be 4.24, assuming D,, of the liquid to be very large. Using 
this value for gp2 and the stated values for y and Do,  for the solid 
computes to be 2.7. In other words there may be a slight reduction in F,, 

but nothing significant. The failure to reduce the dielectric constant to a 
very low value is due to the nearly spherical shape of the molecule. 

We could continue the discussion for the other small molecules 
described by Smyth with equally good results. However, in all cases the 
quantitative nature of the discussion is seriously limited because Do is 
unknown, though y can be estimated with some certainty because x-ray 
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crystallographic information is available. In the application of Eq. (46) to 
polymers, the reverse situation is usually the case. Compliances are well 
known but structural information is lacking, making it difficult to access 
Y. 

J. Electromechanical Properties of Some Polymers 

The basic assumption throughout this work is that an electric field induces 
a distortion of the test specimen, thereby giving rise to a strain energy 
that must be included in the perturbation term of the Hamiltonian. Let us 
now consider the following edanke experiment based on the apparatus 
in Figure 42 (on page 277). Starting from the bottom, we have a rigid 
optically flat support fabricated from glass or quartz. Sputtered onto this 
support is a gold electrode and filmed on this electrode by spinning from 
solution is a thin polymer specimen such as polycarbonate or PMMA. 
Deposited on this polymer film are two small gold disks that are 
electrically isolated from each other and are of optical quality to serve as 
electrode light reflectors. Above this compound electrode and shining a 
light on the two electrodes is an optical interferometer, which carries out 
the following functions. A colluminated laser light beam is split into two 

8 
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Figure 42. Schematic diagram of the gedanke experiment discussed in the text. 

components and each is directed at one of the gold reflecting disks. When 
the light beams are reflected back to the interferometer an interference 
pattern is established in the analyzer. Any change in the optical path 
length, such as a thickness change in the polymer film thickness, will shift 
the pattern. A constant electric voltage is now applied across one of the 
top electrodes and the base electrode. If the electric field causes any 
dimensional changes in the thickness of the film, the interference pattern 
will shift and this shift is directly related to the optical path length change, 
hence a change in the film thickness. Since the film thickness is known, 
the strain (change in thickness/thickness) is measured. The constant 
electric voltage can be replaced by an oscillating electric voltage so that 
the strain can be measured as a function of oscilator frequency. Obvious- 
ly, these measurements can be made as a function of temperature. 

An elegant version of this simple device just described above has been 
constructed and reported by Winkelhahn and Neher74 and is referred to 
as a Nomarski interferometer. This device uses a 2-pm film with a 
potential of 40Vipm across the film, has a displacement sensitivity of 
1 pm (picometer), and a frequency range of 100 Hz to 100 KHz. This 
device was used to measure the viscoelastic properties of PMMA. A plot 
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of the real and (10 times the) imaginary parts of Youngs modulus 
calculated from the dimensional changes of the film and at a frequency of 
999 Hz is given in Figure 43. There is obviously a dispersion in the glass 
transition region of PMMA nominally taken to be 100°C, since there is a 
loss maximum in these results at about 100°C. Below 80°C the data is 
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quite noisy and there may be another loss maximum which would be 
related to the a process of PMMA. In any case, performing these 
experiments at various frequencies and plotting the temperature at which 
the loss becomes a maximum yields the results shown in Figure 44. In 
addition, data taken from the literature7' is also shown in Figure 44. The 
similarity of the electromechanical data with the dielectric a process is a 
further conformation that the two processes are similar. 

These results clearly show that it is now possible to measure viscoelas- 
tic properties by means of dielectric measurements. The advantage here is 
that dielectric measurements can be made to very high frequencies, that 
is, at least 100 KHz relative to viscoelastic measurements, which can be 
made only up to 10-100KHz. 

VII. CONCLUSIONS 

The issues mentioned in the Introduction were addressed. Some of the 
results were previously reported and before the elegant experimental 
work of Winkelhahn and Neher. These authors verified the basic 
assumption in this work, which is that the polarization process must be 
accompanied by a distortion of the dielectric test specimen, which gives 
rise to a strain energy term. The result of incorporating the strain energy 
into the perturbation term of the Hamiltonian at equilibrium is given by 
Eq. (46). These results were obtained neglecting the reaction field 
because the assumption was made that the long-range correlations cannot 
be represented by electrostatic forces. 

The evidence presented in Section VI shows the importance of 
incorporating this strain energy term in the perturbation term of the 
Hamiltonian. In this work only the results of Eq. (46) were discussed for 
cases where the reaction field can represent long-range interactions. 
Although this equation was derived for the equilibrium case, the time 
dependence of the tensile (or shear) converts this into a time-dependent 
case. The agreement between the DiMarzio-Bishop model is also a 
verification of the basic assumption. Consequences of a fortuitous 
cancellation of terms in the denominator, that is, ( E ~  + 2 ) ,  due to the 
acceptance of the reaction field, was studied. 
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1. Conclusions 

A. INTRODUCTION 

Fine magnetic particles have generated continuous interest since the late 
1940s as the study of their properties has revealed to be very challenging 
scientifically and technologically. The advancement of the understanding 
of the magnetic behavior of fine particles, since the pioneering work of 
NCel,’ has been a very important contribution to the development of 
fundamental theories of magnetism and in modeling magnetic materials, 
as well as remarkable technological improvements, for example, in the 
information storage and data processing field, fostering the development 
of magnetorecording media with higher and higher density. 

has grown 
enormously, with increasing attention devoted to the effect of nanoscale- 
size confinement on the physical properties and with regard to their 
potential in the nanoscale engineering of materials with very specific 
properties. Nanostructured materials, modulated on a length scale less 

In the last few years the interest in fine magnetic 
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than 100 nm, are known to exhibit properties different from, and often 
superior to, those of conventional materials that have phase or grain 
structures on a coarser size s c a ~ e . ~  

Among the enhanced properties of nanostructured materials, the 
magnetic ones represent a very good example, with important technologi- 
cal implications, for example, enhanced remanence and giant coercivity in 
nanostructured permanent magnets. With decreasing particle size, an 
increasing fraction of atoms lies near or on the surface and interfacial 
regions (e.g., for grain sizes of 100, 10 and 5 nm, it corresponds to about 
1-3%, 15-30%, and 30-60%, respectively), making the effect of the 
surface and interface electronic structure on the magnetic properties more 
and more important. As a matter of fact, the intrinsic magnetic properties 
of a material (e.g., spontaneous magnetization and magnetocrystalline 
anisotropy) are strongly influenced by the particle size. The more 
disordered atomic arrangement and the lower number of atomic neigh- 
bors on the surface with respect to the bulk are responsible for the 
decrease in the spontaneous magnetization of a ferromagnetic material 
with decreasing particle size. On the contrary, a nonmagnetic or anti- 
ferromagnetic material may acquire a net moment for low enough particle 
size. Moreover, the total anisotropy energy may increase with decreasing 
particle size, below a certain size, because of the growing surface 
anisotropy contribution. 

Ultrafine magnetic particles are commonly present in different kinds of 
materials (e.g., rocks, living organisms, pigments, soils, ceramics, atmos- 
pheric aerosol, and corrosion products). For this reason, the study of 
superparamagnetic properties can be applied to different branches of 
science and technology: allowing interesting data to be obtained. For 
example, in catalysis: where the particle volume distribution can be 
determined and the effect of chemisorption and chemical reaction on 
surface electronic properties can be checked; in fine arts: for the 
reconstruction of the production techniques of ancient ceramics and for 
authentification of paintings; in mineralogy7 and in paleornagnetism: for 
reading the geomagnetic record in rocks; in biology? for a better insight 
in the structure and for a better understanding of the functions of iron 
storage proteins, like ferritine; in magnetorecording,” where the smallest 
suitable particle size can be determined, ultimately limited by super- 
paramagnetic relaxation, allowing the maximum recording density to be 
reached. 

The chapter is organized as follows: In Section A a general intro- 
duction to the scientific problem has been presented. In Section B the 
general properties of fine magnetic particles will be described and the 
basic concepts of superparamagnetism will be introduced. In Section C 
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the different forms of anisotropy energy will be described in detail. In 
Section D the calculation of the relaxation time will be reported and the 
different proposed models will be described. In Section E the effects of 
interparticle interactions on the relaxation time will be discussed and their 
modeling will be reported. In Section F the experimental results obtained 
by different techniques will be reported and compared with the theoret- 
ical predictions. In Section G the quantum effects on the magnetic 
properties of fine particles (e.g., quantum tunneling of the magnetization) 
will be discussed and some experimental results will be reported. In 
Section H the properties of fine antiferromagnetic particles will be 
discussed. In Section I some conclusions will be drawn on the state of the 
art of the research on fine magnetic particles. 

B. GENERAL PROPERTIES OF FINE PARTICLES: 
SUPERPARAMAGNETIC BEHAVIOR 

B. 1. Single-Domain Particles 

It is well known that a magnetic body has a multidomain structure, that 
is, it is divided into uniformly magnetized regions (domains) separated by 
domain walls (Bloch walls) in order to minimize its magnetostatic energy. 
However, the energy to be minimized is the total energy, including, in 
addition to the magnetostatic term, the exchange and the anisotropic ones 
as well as the domain wall contribution. Therefore, it is the final balance 
of energies that determines the domain structure and shape. By reducing 
the dimension of the crystal, the size of the domains is also reduced and 
their structure may change, as well as the width and the structure of the 
walls. Due to the energy cost of the domain wall formation, the balance 
with the magnetostatic energy limits the subdivision in domains to a 
certain optimum domain size. As a matter of fact, there is a corre- 
sponding lower limit in the crystal size, below which a single-domain” 
structure does exist, since the energy increase due to the formation of 
domain walls is higher than the energy decrease obtained by dividing the 
single domain into smaller domains. 

For typical magnetic materials the dimensional limit is in the range of 
20-800 nm, depending on the spontaneous magnetization and on the 
anisotropy and exchange energies. For spherical crystals the characteristic 
radius is given R,, =9E,lp.,M:, where M ,  is the saturated 
magnetization and E, is the total domain wall energy per unit area 
[Em 2(K/A)”’,  where K is the anisotropy energy constant and A is a 
parameter representing the exchange energy density]. Typical values l4 for 
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R,, are about 15 nm for iron, 35 nm for Co, 100 nm for NdFeB, and 
750 nm for SmCo,. 

The change from a multidomain to a single-domain structure is 
accompanied by a strong increase of the coercive field (He K / 3 M s  for 
uniaxial symmetry). 

B.2. Superparamagnetic Particles 

The anisotropy energy in a single-domain particle is proportional, in a 
first approximation, to the volume V. For uniaxial anisotropy the 
associated energy barrier, separating easy magnetization directions (i.e., 
the low-energy directions of the spin system) is E, = KV. Thus, with 
decreasing particle size the anisotropy energy decreases, and for a grain 
size lower than a characteristic value, it may become so low as to be 
comparable to or lower than the thermal energy kT.  This implies that the 
energy barrier for magnetization reversal may be overcome, and then the 
total magnetic moment of the particle can thermally fluctuate, like a 
single spin in a paramagnetic material. Thus the entire spin system may 
be rotated, the spins within the single-domain particles remaining mag- 
netically coupled (ferromagnetically or antiferromagnetically). The mag- 
netic behavior of an assembly of such ultrafine, independent magnetic 
particles is called superparamagnetism .15-19 

The superparamagnetic behavior is exhibited by particles with dimen- 
sions in a defined range. If they are too small, almost all the atoms lie on 
the surface, leading to electronic and magnetic properties strongly 
modified with respect to the bulk ones, and the superparamagnetic model 
cannot be applied. This does not mean that no relaxation of the magnetic 
moment m occurs, but the laws governing it are expected to be different. 
It is difficult to state precisely a lower dimensional limit for super- 
paramagnetic behavior, as it depends on several parameters. This should 
correspond, in our opinion, to a grain diameter of about 2 nm. As far as 
the upper limit is concerned, it is given in principle by the characteristic 
size for a single-domain particle, as long as the single-domain state and 
structure are effective (some uncertainties remain for some particular 
cases).20-22 Actually the characteristic grain size of a magnetic material for 
superparamagnetic relaxation depends on the anisotropy constants and 
M ,  values. As an example, for uniaxial anisotropy and K = 5 x lo5 erg/ 
cm3, for spherical particles this corresponds to a characteristic diameter 
+c 5 20 nm. 

For fine magnetic particles the actual magnetic behavior depends on 
the value of the measuring time (7,) of the specific experimental 
technique with respect to the relaxation time (T) associated with the 
overcoming of the energy barriers. As pointed out in the following 
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sections, 7 varies exponentially with the E,IkT ratio. If 7,>>7, the 
relaxation appears to be so fast that a time average of the magnetization 
orientation is observed in the experimental time window, and the 
assembly of particles behaves like a paramagnetic system (superparamag- 
netic state). On the contrary, if 7, <<7, the relaxation appears so slow 
that quasi-static properties are observed (blocked state), like for magneti- 
cally ordered crystals, although strongly influenced by the particle surface 
structure. The blocking temperature T,, separating the two states, is 
defined as the temperature at which T, = 7. Therefore T, is not uniquely 
defined as well as dt,, but it is related to the time scale of the experimental 
technique. As an example, for Fe,O, (K  = 4.4 lo5 erg/cm3) at 290 K, the 
characteristic grain diameter for superparamagnetism, below which super- 
paramagnetic relaxation and above which quasi-static properties are 
observed, is +c z 17 nm for dc susceptibility measurements, while it is 
+c z 9 nm for Mossbauer spectroscopy experiments, having a much 
shorter measuring time. The blocking temperature T,  for a magnetic 
particle increases with increasing size and for a given size increases with 
decreasing measuring time, and then the observation of a superparamag- 
netic or blocked state depends on the experimental technique (Fig. B. l ) .  
The highest value of T ,  is represented by the Curie (or Neel) tempera- 
ture, at which the transition from the superparamagnetic to the para- 
magnetic state occurs. 

The techniques currently used to study the superparamagnetic relaxa- 
tion are dc susceptibility (7, is not well defined, estimated to be around 
100 s, but it depends on the type of magnetometer and on the measuring 
procedure), ac susceptiblity (7, = 102-104 s for experiments at very low 
frequencies; 7, = 10-’-10-~ s for classical experiments; 7,,, = 10-~-10-~ s 
for measurements at very high frequencies, very difficult to realize, so 
far), Mossbauer spectroscopy (time window, lO-’ - lOPy s for 57Fe), 
ferromagnetic resonance (T, = s), and neutron diffraction (time 
window, 10-s-10-’2 s, depending on the type of experiments). 

As pointed out in the next section, the magnetic anisotropy can often 
be considered uniaxial, with the total magnetic anisotropy given by 

E(8)  = E,sin28 

where 8 is the angle between the easy axis ZOZ’ and the magnetization 
vector (Fig. B.2) and E, (=W) is the energy barrier (i.e., the maximum 
anisotropy energy value for 8 = n /2 ) .  In zero magnetic field, according to 
the Eq. (B. l ) ,  two symmetric minima exist for 8 = 0 and 8 = n separated 
by an energy barrier equal to KV. 

In the presence of a magnetic field H applied along the easy axis, the 



290 J. L. DORMANN, D. FIORANI, AND E. TRONC 

I I 
I I a 

Blocked i I 
I 
I 

I 
I I I I i T  I 

-1 5 . 
TI T2 Tc 

Figure B. l .  Temperature dependence of the relaxation time 7 for fine particles for 
three E, values (full lines), T,  values (full circles) for two experiments with measuring time 
T~~ and T , ~  and magnetic state seen by the measurements (marked by the open circles) at 
two given temperatures T ,  and T2 according to E ,  and T,,, values. 

energy of a ferromagnetic particle becomes 

E(8) = E,sin28 - HVM,,cos 8 03.2) 

where M,, is the nonrelaxing magnetization (see Section B.3). For 
H < 2E,/(VM,,) (=2K/M,,) there are still two minima at 8 = 0 and 
8 = T, but they are no longer equivalent, since the energy barrier 
between 8 = 0 and 8 = n [AE = EB(l  + HVM,,/2E,)2] is larger than that 
between 8 = 7~ and 8 = 0 [AE = E,(1 - HVM,,/2EB)2]. For H > 2E,/ 
(VM,,) there exists only one minimum, at 8 = 0. In Fig. B.3, E ( 8 )  is 
reported for various values of HVM,,/2E,. 

At a thermodynamic equilibrium temperature T the probability 
f ( 8 )  d8 that the magnetization forms an angle 8 with the easy direction is 
given by 

f ( 8 )  = (l/Z)exp(-E/kT)sin 8 03.3) 

where 2 = I," exp(-ElkT)sin 8 do. For E >> k T  and H = 0, f ( 8 )  is finite 
only in correspondence with the two minima (Fig. B.4). The probability 
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Figure 8.2. Usual axis system for fine particles. The easy axis of the magnetization is 
along zOZ’. 

will be the same for 8 = 0 and 8 = m. The magnetization can then be 
considered fixed in one of two directions corresponding to the energy 
minima. This is the situation in large magnetically ordered crystals. If H 
is small the probability will be different for the two directions (higher for 
8 = 0). If H is high so that H V M ,  >> kT,  f ( 8 )  is finite only for 8 = 0. For 
lower anisotropy energy values and/or H values, f ( 8 )  becomes broader 
around the energy minima, and the magnetization can fluctuate around 
the easy directions. This corresponds to vibrations in the potential well, 
that is, transverse relaxation, implying an m component, leading to 
transverse susceptibility. Finally for E 5 kT and H < 2E,/(VM,,), f ( 8 )  is 
finite for every 8 value, that is, the magnetization has a significant 
probability of overcoming the energy barrier separating the two minima 
(superparamagnetic relaxation). 

B.3. Complexity of Actual Fine-Particle Systems 

Recently, new interesting phenomena, from both fundamental and 
technological points of view, exhibited by fine magnetic particles have 
attracted much attention, for example, macroscopic quantum tunneling of 
the magneti~ation:~ magnetocaloric effectz4 well above liquid helium 
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Figure B.3. Dependence of the total energy of an uniaxial particle as a function of the 

angle between the magnetization vector and the easy axis, with H applied along the easy 
axis. 

temperature, and giant m a g n e t o r e s i ~ t a n c e . ~ ~ ’ ~ ~  These topics will be 
discussed in the next sections. The increasing technological prospects of 
fine magnetic particles make the need for a comprehensive theoretical 
description and modeling of their properties more and more important. 
Unfortunately, the actual situation in materials consisting of fine particles 
is very complex, and it is often necessary to account for the simultaneous 
presence of different factors. 

First of all, in actual systems there is always a distribution of particle 
size, more or less broad. Moreover, different terms can contribute to the 
total anisotropy energy of a single-domain particle (see Section C), for 
example, magnetocrystalline, magnetostatic, shape, stress, and surface. 
The last one, which is closely related to the detailed chemical nature of 
surface and grain boundary, may become the dominant contribution to 
the anisotropy energy for particles smaller than about 4-5 nm, like for 
ultrathin films. Many studies have been devoted to surface magnet- 
ism27-29 and to magnetism in films where the thickness becomes compar- 
able with the range of exchange forces (for reviews see Refs. 30 and 31). 
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Probability f(0) of finding the magnetization at an angle 0 from the easy 
axis, for an uniaxial particle, as a function of E,IkT and of the applied field. 

In this case, the broken symmetry in surfaces and interfaces results in a 
strong magnetic surface anisotropy (see Section C ) .  Weakened exchange 
coupling, in combination with surface anisotropies, results for these 
virtually two-dimensional systems in the temperature dependence of the 
magnetic order, strongly different from that for three-dimensional bulk 
magnets. Moreover, the magnetic moment per spin is modified for a 
transition metal with respect to the bulk value, depending on the metal, 
the interface nature, the defects in the surface, and the depth of the layer. 
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This is effective in general for the two-three first layers. Likewise, 
magnetic perturbations are expected at the surface of fine particles. They 
are not negligible, becoming more and more important with decreasing 
particle size. For example, the two first layers represent about 40% of the 
volume for a spherical particle with a diameter of 4nm. The possible 
effect of these perturbations on the relaxation time will be discussed in 
Section D. 

Furthermore, surface disorders lead to a magnetic moment (ml value 
different from that expected from the saturation magnetization of the 
bulk material and the particle volume V. We define the nonrelaxing 
magnetization M,, for fine particles as the ratio Iml/V, in the absence of 
any relaxation effect. Thus, M,, is measurable directly only if the 
relaxation is not appreciable. M,, varies with temperature and depends 
on the magnetic field, in so far as the field modifies the magnetic 
irregularities occurring at the particle surface, and it could also depend on 
the interparticle interactions. 

Experimental determinations of M,, for fine particles show some 
inconsistencies. This is not surprising, as detailed studies on ultrathin 
films have shown that M,, changes may depend on several parameters. 
Generally, M,, is lowered with respect to the saturation magnetization 
value for the corresponding bulk material. The decrease should be mainly 
due to spin canting at the surface, that is, disorientations of spins 
directions, as evidenced by Mossbauer spectroscopy  experiment^.^^-^^ A 
decrease of the magnetic moment per spin at the surface is also possible 
for metallic  particle^.^' However, for the present it is difficult to predict 
such effects because of the lack of systematic studies on the different 
types of particles. 

Another effect due to the disorder induced by the size confinement 
and by the surface contribution is the decrease of T, with respect to the 
bulk ferromagnet value. 

Finally, interparticle interactions (dipolar and exchange interactions 
too, if the particles are in contact or if superexchange is possible through 
a suitable medium) are almost always present, due to the range of the 
interactions and the difficulty in controlling the particle dispersal com- 
pletely. The interactions can give an important contribution to the total 
anisotropy energy. This implies that in granular materials, where fine 
magnetic particles are dispersed in a nonmagnetic medium, the interparti- 
cle interactions and the specific particle arrangement need to be taken 
into account. 

So far, most of the theoretical models did not account for such a 
complexity, often neglecting important terms, for example, the surface 
and interparticle interaction anisotropy energy. The development of 
theoretical models requires materials where the main parameters, for 



MAGNETIC RELAXATION IN FINE-PARTICLE SYSTEMS 295 

example particle size and shape, dispersion state, chemical state of the 
surface can be controlled independently. Synthesis methods supplying 
good systems for testing theoretical models actually need to be de- 
veloped. 

C. ANISOTROPIES IN FINE PARTICLES 

In bulk materials, magnetocrystalline and magnetostatic energies are the 
main sources of anisotropy. In fine particles, other kinds of anisotropy 
can be of the same order of magnitude as these usual anisotropies. As the 
properties are stated by the relaxation time T of the particle magnetic 
momert m, T being itself governed by the energy barrier EB,  it is 
important to know all the possible sources of anisotropies and their 
contribution to the total energy barrier. On the other hand, the calcula- 
tion of T has been performed precisely for the uniaxial symmetry, and 
approximative formulas exist for cubic symmetry and for the case where a 
field (unidirectional symmetry) is superimposed to uniaxial symmetry (see 
Section D). 

We will discuss first the various anisotropies that can play a role in fine 
particles, not considering the effects of an applied field that have been 
included in the T calculation (see Section D) and the effects of the 
interparticle interactions, treated in section E. Second, we will try to give 
some clues for resolving the complicated problem where either the 
magnetocrystalline anisotropy cannot be reduced to the first term K ,  or 
two anisotropies to be added have not the same symmetry. Reviews on 
the anisotropies encountered in fine particles can be found in Refs. 17 
and 18. 

C . 1 . Usual Anisotropy Energies 

C .  1. I. Magnetocrystalline Anisotropy 

Magnetocrystalline energy can show various symmetries, but uniaxial and 
cubic forms cover the majority of cases. For uniaxial symmetry, the 
energy is given by 

E,, = V ( K ,  + K,sin20 + K2sin40 + * . -) (C.1) 

while for cubic symmetry 

K2 + - sin20 sin220 sin22q + . . . 16 
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Figure C. l .  Usual axis system for fine particles. 

in the usual coordinate axes (Fig. C.1). 
The T calculations have been performed for these two symmetries by 

neglecting K, (Section D). But when K2 is not negligible, the problem of 
the validity of the T calculation and of the E, value is raised. This 
situation corresponds to real cases. For example, numerous studies have 
been devoted to y-Fe,O, particles. For bulk y-Fe,O,, K ,  is negative and 
the easy directions lie along [llO]-type axes. This means that K, > IK, 1 
and therefore K ,  is not negligible with regard to K , .  We discuss this 
problem in Section C.3. 

In uniaxial symmetry, a negative value for K ,  leads to the (110) easy 
plane (6 = .rr/2). Then, m is able to rotate freely in this plane. However, 
there always exist other small anisotropies that cause energy barriers in 
this plane. Uniaxial T formulation is not applicable and the effective E,  
value is strongly lowered with regard to V K ,  as it is relative to the weak 
anisotropies in the (110) plane. 

C .  1.2. Magnetostatic Anisotropy 

The second usual anisotropy comes from magnetostatic energy. As the 
particle is a single domain, this energy is related to the m components and 
can be expressed exactly only if the particle has an ellipsoidal shape. The 
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determination of the demagnetizing field is a classical problem in 
magnetism. Here also, usual approximations can be utilized and the 
magnetostatic energy can be written as 

1 
2 v  = - (N,rnZ + N p z ;  + N,rnZ) 

where rn,, my,  and rn, are the m components and N,, N, , ,  and N, are the 
demagnetizing factors relative to the particle shape (Fig. C.1) and V is 
the particle volume. 

For an ellipsoid of revolution with the major axis along the [OOl] 
direction, the &dependent part of the energy is given by 

Em, = ( m 2 / 2 V ) ( N ,  - N,)sin20 (C.4) 

with m = Im(. 
Em, has the uniaxial symmetry and for a prolate ellipsoid the aniso- 

tropy constant is positive. For uniaxial magnetocrystalline energy and if 
the two [OOl] axes coincide, which is generally the case, the two constants 
add. For a sphere Em, = 0 and for an elongated particle of acicular type 
Nx=2n and N, -0. In this case, the anisotropy constant is equal to 
nm2/V. We note that the oblate ellipsoid shape does not seem usual, 
which generally prevents a negative value of the anisotropy constant. 

C.2. Other Anisotropy Energies 

C.2.1. Surface Anisotropy 

The main origin of other anisotropy energies is related to surface effects. 
The first effect comes from the existence of the surface that represents a 
discontinuity for magnetic interactions. This leads to magnetostatic 
energy already discussed but also to a superficial energy, which for cubic 
symmetry has often the simple form:6 writen by surface unit: 

(Es , ) t  = Kscos28' 

where 8 '  is the angle between m and the perpendicular to the surface. K, 
depends on the magnetostriction constant Aloe and A,,, and is of the order 
of magnitude of 0.1 to 1 e r g / ~ m ' . ~ ~  For an ellipsoid of revolution, the 8 
dependent part of the anisotropy energy is given in the usual axis system 
(Fig. C.1) by 

E,, = K,F(e)S sin28 (C.5)  
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;in e + eV1- e‘ 

where S is the particle surface, e is the ellipticity with e2 = 1 - b 2 / a 2  and 
2a and 2b are the lengths of the major and minor axes, respectively. K, 
can be positive or negative. 

For weak e values, F(e) reduces to 

2 4 F(e)=&e +&e 

The Nee1 calculation is simple and it is not fully rigorous. However, it 
permits the description of the properties in a first approximation. 

The effect of this anisotropy has been clearly evidenced for thin films 
where, for K, < 0, perpendicular magnetization has been observed in 
many ultrathin film systems instead of parallel magnetization as expected 
from magnetostatic However, for a surface of low symmetry, 
a second term for the surface anisotropy occurs, which is written by 
surface unit as follows: 

where 8’ and cp’ are related to the magnetization in the axis system of the 
surface. The orders of magnitude of Ksp and K, are similar.30 For fine 
particles the Oy axis in the axis system of the surface has to be defined. 
One can consider that the angle between this axis and the tangent to the 
ellipsis is equal to 8. In this case3’ we obtain by using the same method as 
in NCel calculation: 

E,, = K,,S[+ + F(e)cos2&]sin28 (C.8) 

with F(e) given by (C.6) or (C.7). 
The second term in Eq. (C.8) has the same form as the Nee1 term 

(C.5), also leading to an additional anisotropy energy with uniaxial 
symmetry. However, it does not vanish for a perfect sphere unlike the 
NCel term. In fact, the second term only occurs for surfaces of low 
symmetry, but in our opinion, the imperfections in the surface lead to this 
low symmetry. Therefore, for any particle shape, surface anisotropy has 
to be taken into account, adding (or substracting according to the signs) 
to the magnetostatic Em, and magnetocrystalline anisotropies. 

This could lead to unexpected variations with V. For example, let us 
consider the variation of Em, + E,, vs. V,  when K, < 0 and K, ,  = 0, and 



MAGNETIC RELAXATION IN FINE-PARTICLE SYSTEMS 299 

its effect on the relaxation time. For large V,  Em, dominates and [OOl]  is 
the easy axis. Decreasing V,  there is no contribution to the anisotropy for 
a certain volume V, corresponding to a surface S, such that 

Below V,, (110) 
Now, by taking 

becomes the easy plane. 
into account the magnetocrystalline anisotropy, sup- 

posed with uniaxial symmetry, there is another limit volume such as 

(C.10) 

Generally, K ,  values are strong and the easy plane will be effective 
only for very small V. If the magnetocrystalline anisotropy is cubic with 
generally smaller K ,  values, the uniaxial anisotropy related to Em, + E,, 
dominates as we shall discuss in Section C.3.2. However, for V near V,, 
the anisotropy becomes again cubic, and below V, another change of 
regime occurs. This could be an explanation of the very unusual 
properties observed on Fe particles by Mossbauer ~ p e c t r o s c o p y ~ ~  where 
by decreasing the particle size, the spectra evolve from magnetic toward 
superparamagnetic shape, afterward becoming again almost magnetic. 

The effect of the s u r f a ~ e ~ ~ - ~ ~  has been well demonstrated mainly by 
Mossbauer spectroscopy. Changes in the surface state induce variations of 
E, and thus changes for the Mossbauer spectra. 

C. 2.2. Strain Anisotropy 

The second effect due to the surface is related to strains. Because of 
magnetostriction, strains are effective in the m direction. But the 
corresponding energy is weak, and the 0 dependence will be still weaker 
in cubic symmetry if A,,, -A,, ,  = A,. However, if exterior strains occur, 
the 0-dependent part of the magnetoelastic energy can be written: 

E,, = -- A,aS cos20n (C.11) 

where u is the strain value by surface unit and 0" the angle between m 
and the strain tensor axis. 

Unfortunately, it is not possible to give a general formulation for 
accounting for strains because various cases occur depending on the 
sample and on the elaboration method. Nevertheless, if possible, an 
evaluation of strains and their effects will be useful. 



300 .I. L. DORMANN, D. FIORANI, AND E. TRONC 

C.3. Combination of Anisotropies 

The 7 calculation has been performed only in uniaxial and cubic 
symmetries by neglecting K,. Then, there is a difficulty if K, cannot be 
neglected or  if the anisotropies that act have not the same symmetry. 

In this case, in our opinion, if the relaxation paths remain the same 
with regard to the symmetries where 7 has been calculated, the 7 
formulation applied to the actual energy barrier is almost exact. Perhaps 
small modifications of the T~ factor (see Section D) occur. This is the case 
for uniaxial symmetry when the K ,  constant is taken into account. Then, 
E, = V ( K ,  + K , ) .  

If now the relaxation paths are not too changed, the T formulation 
using the actual E, is still valid in first approximation. However the T~ 
factor is probably modified. For example, let us consider the asymptotic 
expressions of the eigenvalues for cubic symmetry (see Section D) when 
K ,  is neglected. 

with E, = K,V/4 for K,  > O  and 

(C.12) 

( C .  13) 

with E, = lK,lV/l2 for K ,  < O .  
For K,  > 0, the easy axes are along [001]-type directions and the 

relaxation paths are through [Olll-type axes while for K,  <0, the easy 
axes are along [Ill]-type directions and the relaxation paths are also 
through the [OllJ-type axes. 

We can see from Eqs. (C.12) and (C.13) that the prefactor of the 
exponential for K ,  > 0 is two times the one corresponding to K ,  < 0. 

Fortunately, the variation of the prefactor has an important role only if 
this variation is large because the 7 value is mainly stated by EB through 
the exponential. Nevertheless for an accurate adjustment, it will be more 
advisable to establish a precise formulation for T. 

We discuss below two cases, the cubic symmetry when K ,  is not 
negligible and the mixing of cubic and uniaxial symmetries. In fact, there 
are also other combinations that can occur like, for example, the addition 
of two uniaxial symmetries with different easy In this case, 
particular examinations will be needful. 
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TABLE I 
Easy Axes, m Relaxation Paths, Estimation of the T Calculation Validity and Energy 

Barriers for Cubic Symmetry When K ,  Is Not Negligible with Regard to K ,  (see text) 
~ ~~~ 

7 

Easy Paths Calculation 
Axes through Axis Validity E,IV 

K ,  > O  
K ,  > - 2 K ,  loo11 Ill01 Correct 

- 3 K ,  < K L  < - 2 K ,  [Ool] D, Correct 

-9KI < K ?  < - 3 K ,  [OOl] D,, [l l l] ,  D,  Approx. 

K ,  < - 9 K ,  11111 D , ,  [IOO], D, Approx. 

K ,  < O  
K Z > ( - g ) K L  11101 D, Approx. 

- 2 K ,  < K Z  < ( - q ) K ,  [Il l]  D , ,  (1101, D, ? 

K ,  < - 2 K ,  [ill] (1101 Correct 

C.3.1. Cublic Symmetry When K ,  Is Not Negligible 

The results are summarized in Table I. In the table, D ,  and D,  represent 
particular extremum directions for E,, . However, these directions only 
exist in certain ranges of K ,  and K2 values. For 0 I 8 I 712 and 0 5 cp 5 
7r12 in the usual axis system (Fig. C.11, D ,  is given by (C.14), the other 
directions being deduced by symmetry. 

(C.14) 
?i- 

cp =T and 8 =arcsin 

This extremum exists only if 0 5 -2K, l K ,  5 1. For this extremum 

(C.15) 
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Directions D,  are defined by 

1 

2K1 I I Kl + K *  

7 T 1  - _ _ _  - arccos 1 + (C.16) 

This extremum exists for the same condition 0 5 - 2 K ,  / K ,  5 1 and the 
E,, value is the same (C.15). 

Several axes are sometimes mentioned for the path (Table C.l ) .  This 
means that m jumps over a main energy barrier and jumps also over a 
secondary energy barrier indicated between brackets. For K, < 0 and 
-2K, < K, < (-$)K,, the two energy barriers have the same order of 
magnitude, which leads to uncertainties in the T formulation. But, in 
general, we think that the T cubic formulation is usable with some 
modifications for the T,, prefactor. 

It is interesting to define the order of size of E, for y-Fe,03 because 
numerous studies have been devoted to fine particles of this material. For 
bulk, easy directions correspond to [110] axes with K, = -4.7 lo4 erg/ 
cm . Therefore K ,  < 0 and K, > - $ K , ,  but no precise datum exists for 
K,. From Table C . l ,  EB is equal to V/Kll/4 only for very high K, values. 
For K, = -$K,, just at the limit, EB =0.012V\K1)/4, when for K2 = 

1.5(-$K1) and 2(-$K,), E,  = 0.17V(K1\/4 and 0.31V1K11/4, respective- 
ly. Therefore, except for high K, values, E, is reduced with regard to the 
VIK, I / 4  value, which could be taken by assimilating the actual relaxation 
between [110] axes to the relaxation between [OOl] axes. Taking into 
account the low value for K,, this means that the other anisotropies such 
as the magnetostatic anisotropy will dominate the magnetocrystalline one. 

3 

(2.3.2. Mixing of Cubic and Uniaxial Symmetries 
The problem of mixing of cubic and uniaxial symmetries is similar to 

the one discussed above. Either the relaxation paths are the same or 
similar to those resulting from one of the anisotropies, and then the 
corresponding formulr can be applied with the actual energy barrier, or 
the contributions of the anisotropies to the total energy are similar and 
the T prediction is difficult without particular calculations. 

Let us consider the mixing of uniaxial anisotropy with a constant K,,, 
first with simple cubic anisotropy with K ,  > 0 and K ,  = 0 and second with 
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cubic anisotropy with K ,  < 0 and K ,  > ( - $ ) K , ,  which leads to [llO]-type 
easy axes. 

C.3.2.1. Simple Cubic Symmetry ( K ,  > 0, K ,  = 0 )  and Uniaxial Sym- 
metry. In this case, the relaxation paths relative to uniaxial symmetry 
remain unchanged for K,, > K, ,  except that m now relaxes rather 
through [loo] or [OlO] axes. The energy barrier is equal to K,,Vand the 
uniaxial formulation is applicable. 

For K ,  12 < K,, < K , ,  the maximum for 6 = ~ / 2 ,  cp = 0, or 7 ~ / 2  splits 
into a minimum and two maxima (Fig. C.2). There are a main and a 
secondary energy barriers. The effect of such a situation on the properties 
depends on the kind of measurements. For magnetization experienced 
along a direction, only the relaxation time 7 relative to the main barrier is 
effective because T being proportional to exp[E,/kT], T relative to the 
secondary barrier is much smaller than 7 relative to the main barrier. In 
our opinion, the uniaxial formulation remains valid" with E, given by 

(C.17) 

However, for measurements that experience all the 7, such as 
Mossbauer spectroscopy, there is a difficulty when the volumes are 
distributed. For example, supposing that the main E B / V  ratio is equal to 
three times the secondary E,  /V ratio, the relaxation time corresponding 
to the secondary barrier of a particle with a volume 3V will be the same as 
T corresponding to the main barrier of particle with a volume V. This 

(arbitrary unit) T 
Figure C.2. &dependent part of the anisotropy energy for cp = 0 in the case of the sum 

of two components with the one having the uniaxial symmetry with a constant K,, and the 
second having the cubic symmetry with a constant K, > 0 ( K ,  = 0) and K,,  > K, .  
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means that the results of the two kinds of experiments are not directly 
comparable. 

For O <  K,,IK, CO.5, a new maximum occurs for cp = n I 4  and 

which leads to complex paths for K,,IK, I 0.3-0.4. Then, the uniaxial 
formulation becomes doubtful. 

For K,, < 0, m relaxation occurs in the (110) plane with E, = V K ,  14. 
In this case, we do not know what formula has to be applied. For 
lK,,I/K, 5 0.3-0.4, the same problem arises as for K,, > 0, complex 
paths being present. In all cases the T cubic formulation is valid only for 
very weak values of Kl,. 

C.3.2.2. Cubic Symmetry with [l lO]-Type Easy Axis and Uniaxial 
Symmetry. For uniaxial anisotropy adding to cubic anisotropy with K ,  < 
0 and K ,  > (-:)K, such that [llO]-type directions correspond to easy 
axes, the determination of the rn relaxation paths is not easy because it 
depends on three parameters and for y-Fe,O,, the K, value is unknown. 

For positive K,, values and K,, > IK,I, the relaxation paths are similar 
to those resulting from uniaxial symmetry though the relaxation occurs 
rather through the [ l l O ]  axes in the (011) plane. In this case, the T 
uniaxial formulation is applicable with En = V(K,,  + K ,  14). For K,, < 
IK,I, the relaxation paths are complex. The easy directions lie along the 
cp = 0 and 8 = (+)arccos(-K,,/K,)-type directions, and there is trans- 
verse relaxation through D, axis defined by 

n 2 1  

cp = 7 and cos 8 =- [(3K, + 2K,) 2 q ( 3 K ,  + K,)’ + 12K,,K,] 
3K2 

(C. 18) 

and longitudinal relaxation through D,  and the 8 = n12, cp = n / 4  axis. 

netization measurements, is given by 
The longitudinal En value, which is the correct parameter for mag- 

(C.19) 

Due to the complicated paths, it is not clear that the T uniaxial 
formulation is still valid. In our opinion it is correct in first approximation 
for K,,/lK,l 20.3-0.4. 
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For measurements that experience all the relaxation times, those 
related to longitudinal as well as transverse relaxations are to be 
considered. 

For negative K , ,  values and IK1,l > IKII, the relaxation paths are 
always in the (110) plane with easy directions along [llO]-type axes in this 
plane and E, = /K11V/4. For \K,,I<IK,1 and until lKlul about 0.3- 
0.41K,I, the easy directions are the same but the relaxation paths are 
through D, axes defined by 9 = 0 and 0 = arccos[(K, - K,,)/2KI] and 
symmetrical axes and E ,  = (VK,,/K,)(Kl, - 2K,). For lower IK1,l values 
the relaxation paths are complex. In all cases, it is difficult to define a T 

formulation. 

C.4. Conclusions 

As demonstrated, the anisotropies for fine particles do not generally have 
a simple form, and this leads to uncertainties concerning the use of the 
known T formulas. Fortunately, as we shall discuss in Section D, T can be 
expressed for E,lkT higher than about 3 by 

T = ~,,exp[E,/kT] (C.20) 

where r0 depends on various parameters and of the symmetries and the 
relaxation paths. 

With such a formula, the main T variation comes from E,/kT through 
the exponential. From experimental data, it will be possible to determine 
E, and T ~ ,  but it will be difficult to relate E, to the anisotropies without a 
precise knowledge of their origins and their symmetries. The same 
problem will occur for T,,, in addition to the uncertainties on the 
formulation. 

Finally another problem comes from the measured phenomenon. The 
results of two experiments that experience the same phenomenon with 
the same process are evidently comparable. In the contrary case, pre- 
cautions have to be taken. 

D. RELAXATION TIME CALCULATION 

The calculation of the relaxation time T of the magnetic moment m of a 
particle is very important because the T value states all the experimental 
results. Accurate formulas are needed but difficult to establish because an 
actual sample of fine particles does not correspond to any simple case, 
due to the various anisotropies, the interparticle interactions, the surface 
effects, and so forth. On the other hand, experiments do not always 
measure the same parameters and the formulas have to be adapted. 
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In this section, we state the problem and define the relaxation time 7 in 
Section D.l. We describe NCel’s model in Section D.2 and Brown’s model 
in Section D.3. In this latter section, we discuss in some details the model 
hypotheses and their validity; we give the results of 7 calculations and 
approximative formulas in the case of uniaxial symmetry with and without 
applied field and in the case of cubic symmetry. Some other cases are also 
discussed. Finally we give some comments in Section D.4. 

D.l. Problem Statement 

Let us consider a system of N particles with uniaxial symmetry. In the 
absence of a field, the anisotropy energy in the usual axis system (Fig. 
D. l )  is equal to 

where K is the anisotropy constant and V the particle volume. 
For K 2 0, the easy axes are along Oz and Oz’ and the energies at the 

minima have the same value. Therefore, the two energy minima are 

t‘ 

Figure D.l. Usual coordinate axis system. The easy axis of the magnetization is along 
ZOZ’. 



MAGNETIC RELAXATION IN FINE-PARTICLE SYSTEMS 307 

equally populated when the thermodynamic equilibrium has been at- 
tained. 

Now, let us consider that P particles have their magnetic moment m 
around Oz and N - P particles around Oz' at a given time t. After a time 
dt, the numbers of particles that have m along Oz and Oz' are modified 
and the change is given by 

. .  

where 1/(27) is the probability by time unit for a reversal of m. 
From Eq. (D.2), the magnetization along Oz can be written as 

M = M,,S, exp(-t/r) (D.3) 

where M,,  is the value of the nonrelaxing magnetization of the particle 
(see Section D.3), So is the initial value of 2PIN - 1, and 7 is identified 
with the relaxation time. 

When a field H is applied along Oz, E becomes 

E = KV sin28 - HM,,V cos 8 (D.4) 

Now, the two energy values at the minima are not equal, and so two 
probabilities have to be defined: l / r +  for the jump from the lowest 
minimum toward the upper minimum and 1/7- for the opposite reversal 
(Fig. D.2). 

Equation (D.2) becomes 

and the magnetization along Oz is now 

M = M,,[S ,  + (So - S,)exp(-t/~)J (D.6) 

with 

and 

+ -  
7 - 7  s, =- 
7 + 7  
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(arbitrary unit) 1' 

Figure D.2. 0 dependence of the total energy when a field is applied along the easy 
axis. T +  and 7- are the two relaxation times (see text). 

The thermodynamic equilibrium is attained when t >> r or if So = S , .  
Now, the magnetization along H is not equal to zero. This means that, on 
average, a part of the magnetization is blocked in the lowest minimum, 
equal to S , ,  the remaining part 1 - S ,  relaxing with a relaxation time r 
given by (D.8). 

We note two points. First, the Eq. (D.8) gives for H = 0 

7+ = 7 -  = 27 

which is in agreement with the Eqs. (D.2) and (D.5). This means that the 
probability fo rm reversals without a field is 1/(27), while with a field, it is 
l / ~ +  and 117- according to the minimum. These definitions have been 
made in order to retain the same formula [Eqs. (D.3) and (D.6)J for the 
decay of the magnetization. Second, without field, the probability is equal 
to 1 for At = 27. Thus one may say that 27 is the time for a direction 
change for m and to go forward and back, the time is 47. 

D.2. Relaxation Time Calculation. Neel's Model 

The first r calculation was performed by Niel.' He supposed that the 
particle spins are rigidly coupled and that synchronous rotation of the 
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spins occurs when m is reversed. He considered only the case of uniaxial 
symmetry and the calculation has been only performed for E,IkT >> 1,  
where E, is the energy barrier, that is, when the spins are mainly along 
the easy directions. The equivalence of the spins to a gyroscopic system 
allows one to derive the following expression for the relaxation time: 

T = TONexp(a) 03.9) 

with 

kV 
kT 

a = -  

and 

(D.lO) 

( D . l l )  

where -yo is the gyromagnetic ratio, A, is the longitudinal magnetostriction 
constant, and G is Young’s modulus. 

D.3. Relaxation Time Calculation. Brown’s Model 

NCel’s calculation of T was criticized by B r o ~ n ~ ~ - ~ ’  because the system is 
not explicitly treated as a gyromagnetic one and it supposes a discrete 
orientation approximation (m is essentially along the easy directions). He 
supposed that the magnetic moment orientations may be described by a 
Gilbert equation augmented by a random field term h(t), which is 
assumed to be white noise: 

(D.12) 

where -yo is the gyromagnetic ratio, 7) the damping constant, and U the 
barrier potential. Now this is the Langevin equation of the process. With 
an applied field, 

U = E - m - H  

The probability density of the orientations W(0, p , t )  of m obeys a 
Fokker-Planck equation and can be written in the general form: 

(D.13) 
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(D. 14) 

where F,(8, cp) and A,/T~ are, respectively, the eigenmodes and the 
eigenvalues of the Fokker-Planck equation, and Ci, are coefficients that 
depend on the initial conditions. 

For an axially symmetric potential, the Fokker-Planck equation 
becomes 

I/ >I  a [ s i n e ( T + m z W  7 --__- aw - 
at sine a0 

(D.15) 

A review devoted to an introduction and to detailed notes on aspects 
of the theory of magnetic relaxation, and which also treats the solid-state 
relaxation as well as the dynamic behavior of suspensions of single- 
domain ferromagnetic particles in fluids, can be found in Ref. 49. 

0.3 .1 .  Hypothesis Discussion 

The use of Gilbert’s equation and the meaning of the parameters used in 
it need some discussions. In fact, the Gilbert equation is concerned with 
spins and their influence on the determination of the relaxation time of 
the magnetic moment m set. Brown has overcome the difficulty of 
different directions of spins by supposing that the particle spins are 
parallel, with the same moment and that they are rigidly coupled. 
However, at the particle surface, disorders exist for the spin directions 
and variations of moments can be present (see Section B). 

Our first question concerns the validity of the hypothesis of rigid 
coupling, necessary for synchronous rotation. Numerical experiments 
have shown the existence of new micromagnetic structures, such as the 
flower state, which leads to nonuniform modes for magnetization reversal 
in fine particles (see, e.g., Refs. 20 and 22). Furthermore, at the edge of 
the particles, the moments are not collinear with the core magnetization; 
and on decreasing the field, the magnetization reverses via fanning and 
(or) vortex f o r m a t i ~ n . ’ ~ - ~ ~  Nevertheless, recent calculationss3 have con- 
sidered very small square or circular particles with two kinds of 
anisotropies: (i) random bulk anisotropy, which is equivalent in the limit 
1-0 to the Stoner-Wohlfarth models4 for a finite collection of random 
anisotropy noninteracting moments, and (ii) surface anisotropy only on 
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the sites in the boundary of the particle. The results show that deviations 
from the uniform mode occur only for high anisotropy values with regard 
to the exchange coupling, KIJ of an order of the unity or higher. 
Furthermore in this case, one may conjecture that for an assembly of 
particles, the properties do not differ greatly from those resulting from a 
uniform mode due to the distribution of particle shapes, which leads to a 
distribution of jumps in the hysteresis loop. 

Recent measurements on an individual y-Fe,O, particle (prolate 
ellipsoid of 300nm long and 65nm wide)55 have shown that for large 
angles (>30°) between the field and the particle axis, the switching field is 
in agreement with that predicted by the Stoner-Wohlfarth model (uni- 
form mode), while for weak angle the switching is best represented by a 
curling mode. We note that in our opinion the concept of a single-domain 
state is questionable for such a particle size. Measurements of the 
switching probability P(t)  when a field is applied (several values around 
1070 Oe have been used) have shown that the classical law P(t) = 1 - 
exp[-t/~)] (see Section D. l )  is not obeyed. This questions the validity of 
the Neel-Brown However, the measured properties correspond 
to a very particular case. Due to the large size, m relaxation does not 
occur without applied field. In order to observe thermal relaxation, the 
applied field has to be adjusted very precisely in order that the difference 
between the anisotropy energy and the Zeeman energy CjH.Sj  has the 
same order of magnitude as kT, in this case much smaller than each of 
the terms. Then, the disalignments of S in the particle surface due to its 
effect, including defects, are of fundamental importance because they 
give the value of the energy difference. Here the P( t )  calculation is 
complicated. Furthermore, it is not certain that after several cycles, the 
surface S state is the same because it is likely that for these spins multiple 
energy minima are present. Under low field, for fine particles that exhibit 
thermal m relaxation without field, the problem is completely different 
because the energy mainly comes from the anisotropic part. In our 
opinion, precautions must be taken for the interpretation of the results 
when the Zeeman and anisotropy energies are almost equal. 

Very recent  measurement^^^ on single Co particle patterned by 
electron beam lithography with a thickness of 30nm and an elliptic 
contour with axis between 50 and 150 nm have shown that only a particle 
of 80 X 50 nm size is single domain with a magnetization reversal in good 
agreement with the Stoner-Wohlfarth model, that is, the uniform mode. 
However, there is a distribution of switching fields, whose width increases 
with decreasing temperature, the temperature dependence of the mean 
switching field being in agreement for T > 1 K with the two-level model; 
1 - P(t)  is well described by a stretched exponential in agreement with 
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the picture of multiple energy minima. Below 1 K,  the properties are in 
favor of macroscopic quantum tunneling (see Section G).  

In our opinion, in spite of spin disorders in the surface, the spins 
basically remain rigidly coupled mainly because the exchange force is 
strong with regard to the anisotropy, and the uniform mode is a good 
approximation, in agreement with Ref. 44. However, it is probable that 
some deviations occur for the surface spins during the m reversal, which 
perhaps lead to a slight modification of the T~ factor. Nevertheless, for 
very high values of the anisotropy or when a field is applied and when the 
Zeeman energy almost balances the anisotropy energy, the question 
remains open. 

The second question concerns the meaning of the parameters in the 
Gilbert equation (D.12). The spin motion depends on 'yo, q, and the spin 
moment. Then, T is also dependent on the same parameters. Neverthe- 
less, the magnetic moment per spin is different for the surface and the 
core of particles, and it is probable that q is also different. However, due 
to the rigid coupling of the spins, T is the same for all the particle spins. 
Therefore, the Gilbert equation must be considered as operating on a 
mean particle spin or in other words, on m. In this case, averaged 
parameters are to be used for q and the magnetization. For the former 
parameter, the problem is quite similar to those existing in bulk materials 
with some defects. We may expect that 77 values for particles will be larger 
than those observed for the corresponding bulk materials.58 For the latter 
parameter, it is a little more complicated. The variation of the magnetic 
moment per spin at the surface is to be taken into account. However, the 
problem of the disorientations remains. With an applied field, the 
potential U depends on M - H  and a useful parameter is the averaged 
magnetization along H. Nevertheless, the kind of average to be per- 
formed on the Gilbert equation is not evident. In our opinion, the best 
way is to consider the averaged magnetization along the core spin 
direction, which is called the nonrelaxing magnetization M,, .  

This approach is supported by the results obtained on fine particles in 
which the bulk magnetic state is antiferromagnetic (see Section H).  To be 
more specific, the magnetic state of these particles corresponds to an 
uncompensated antiferromagnetism, with a magnetic moment propor- 
tional to n p ,  with 4 5 p  5+,  n being the spin number of the particle. With 
our M,, definition, M,, is strongly lowered in comparison with ferromag- 
netic materials, which causes a large decrease of T~ (see below) in 
agreement with the observed results (see Section H). 

Finally, it is useful to define a dimensionless constant q, related to q58: 

(D.16) 
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where M,,(O) is the value of the nonrelaxing magnetization at zero 
temperature. Changes of 7, with temperature are possible. In this case, 
the T~ value is given by: 

(D.17) 

B r o ~ n ~ ~ - ~ ’  has suggested taking 7, = 1 and neglected the thermal 
variation of Mnr. At present, only a few significative results have been 
published. A value of 7, of the order of unity O C C U ~ S ~ ~ , ~ ~  but lower values 
also occur.” 

0.3.2. Calculation Without Applied Field in Uniaxial Symmetry 

Equation (D. 15) has been transformed into a Sturm-Liouville problem 
for the case of longitudinal relaxation. 

Brown4’ assumed that the corresponding relaxation time is given by 

“ D 7 =- 
A, 

(D.18) 

where A1 is the smallest nonvanishing eigenvalue of the Sturm-Liouville 
equation. This is true if Al  << A,, k 2 2 ,  since all the exponential 
functions exp(-A,t/TD), k 2 2, in (D.13) are small compared with 
exp(-A,t/T,) except in the very early steps of the approach to equilib- 
rium. This is checked except for low a values. 

for a << 1, which has been 
refined later? and one for a >> 1, which has been checked numerically.60 
For a >> 1, T is given by 

Brown derived an approximate 

v7T - 3 / 2  
T = T~ 7 a exp(a) (D.19) 

For a << 1, T is given by (D.18) with 

A , = 2 ( 1 - 5 ~ ~  + & a 2 )  (D.20) 

Recently, there has been a revival of interest in the problem of 
calculating T for the purpose of obtaining a T formula valid for any a 
value. In fact, this was important for experiments with short measuring 
time T,, for example, Mossbauer spectroscopy (see Section F.6), which 
allows one to detect relaxation times corresponding to a value in the 
range of 2-4. 

First, Bessais et al.’x361 have solved the Fokker-Planck equation by 
another method and have derived an expression for A, valid for any a 
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value: 

A, = (I + %) 5 1 2  exp(-a) (D.21) 

Later Aharoni62 proposed a formula that seems a combination of the 
approximate Brown formulas for a >> and a << 1: 

(D.22) 

Finally Coffey et al.63,64 defined the longitudinal relaxation time r as 
the correlation time, that is, the area under the curve of magnetization 
autocorrelation function. In this case 

(D.23) 

where A, are the eigenvalues and A, their amplitudes. They have shown 
that only A, has to be considered in (D.23), r being determined with very 
good accuracy. They have derived an exact analytical solution for T and 
checked Brown’s approximation for (Y >> 1. In fact, a better approxi- 
mation is obtained by multiplying expression (D.19) by 1 + l / a ,  yielding 

(D.24) 

This formula has been compared to the exact solutions.64 For a = 2, 
2.5, 3, and 3.5, the error is 41, 20, 9,  and 3%, respectively. Therefore 
(D.24) can be used reasonably for a 2 3 .  

Furthermore an approximate formula valid for any a has been 
derived6’: 

This formula has been also compared to the exact solutions and the 
other approximate formulas.65 It is clear that (D.25) is the best formula 
with an error smaller than 8% (this value is obtained for a = 0.5, the 
error decreasing as (Y increases). Nevertheless, in our opinion, if a > 3, 
Eq. (D.24) is more convenient for application. 



MAGNETIC RELAXATION IN FINE-PARTICLE SYSTEMS 315 

We note that in the notations of Coffey et al., A, differ by a factor of 2 
from that used by Brown. 

0.3.3. T Calculation with Applied Field in Uniaxial Symmetry 

The calculation was initially performed with the field direction along the 
easy axis because, in this case, the uniaxial symmetry is not broken and 
the calculations are not too complicated. However, for an assembly of 
particles, the easy axis is in a random position and the probability to  find 
Happ parallel to easy axis is equal to zero. 

For a >> 1, in the Nee1 model’: 

and in the Brown 

-312 * v %  a 
7 =- exp[a(l * h)’] 

2 To (1 & h)( l  - h)2 

with 

MnrHapp 
2K h =  

(D.26) 

(D.27) 

(D.28) 

We note that in the two formulas, the only differences occur for the T~ 

factors, which has little importance because T is mainly governed by the 
exponential factor. 

This formula has been checked numerically.h6 It is a good approxi- 
mation for a 2 3 and low values of h depending on a ,  for example, for 
h < 0.5 and a 2 5.  However, as we will discuss below, Eq. (D.27) is valid 
only for low h values because (D.18) holds only for these values. 

For a << 1 

(D.29) 

This formula has been also checked numerically66 and yields a good 
approximation for a 5 1.5. 

Very recently, Coffey et al.67 have calculated the different eigenvalues 
A, and their amplitudes A ,  in the case of an applied field parallel to the 
easy direction. It is supposed that a weak constant applied field AH is 
removed to the field H at t = 0 .  Then, the decay of the longitudinal 
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component of the magnetization may be expressed as follows: 

(D.30) 

where lml is the modulus of the magnetic moment equal to M,,V. 

smallest eigenvalue is only considered, T reduces to 
The longitudinal relaxation time 7 is given by Eq. (D.23). If the 

T = T D / A ,  (D.31) 

The results of the calculation performed for k values until 10 show that 
the longitudinal relaxation time has a behavior very different from rDA l’ 
above certain critical values of the parameters a and h .  For example, 
rA, /rD 1 for LY 5 2 and h 5 0.1, but for h = 0.4 and a = 20, TA, /To ;; 3 

This comes from the fact that the A ,  values are much higher for 
k = 4 and 5 than for k = 1.  For measurements performed over a long 
period, as for the relaxation of the thermoremanent magnetization, only 
the first mode, that is, the one corresponding to A, operates because 
A, << A, (k  # l ) ,  but for short measuring time as for frequency-dependent 
susceptibility, the mode k = 5 can dominate following the h values. This 
leads to the existence of high-frequency relaxation mode, in addition to 
that arising from the low-frequency mode associated with the m reversal. 
This results in a high-frequency loss, which for small h values displays 
itself as a shoulder in the conventional low-frequency peak for h = 0 and 
then predominates as h increases. 

Calculations of the longitudinal relaxation time when the field is 
applied along a direction with an angle t,b with regard to the easy axis 
have also been performed very recentlyP’ We recall that this case is of 
fundamental interest because in actual samples, the easy directions are in 
random position (except for very special samples). Indeed the calculation 
is very complicated as the axial symmetry is destroyed. Two assumptions 
have been made in order to simplify the calculations. First, the longi- 
tudinal relaxation time has been expressed using (D.31). However, the T 

calculation for Happ parallel to the easy axis (see above) has shown that it 
is not valid for experiments with a short measuring time when h is high. 
Second, in the Fokker-Planck equation in spherical polar coordinates, 
the gyroscopic terms [those in (7p0M,,)-1] have been neglected. This is 
correct only if (7poM,,)p1 is small, which is not the case. However, these 
terms would mainly influence the high-frequency behavior of the system 
and therefore can be neglected in first approximation. 

The results show that a pronounced difference appears for h > 0.1 and 
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a > 0.5 following $. For $ = r r /2 ,  an approximate formula based on the 
Kramers transition state theory is given, valid for h 2 0.3 and a >> 10, 
which is 

(1 - h)( l  + h)", 
h,(;)=2G h exp[-a(1- h),] (D.32) 

Using a discrete orientation model, Pfeiffer69 has calculated the 
relaxation time T under applied field in any direction for the simplest case 
of the two-state model. Neglecting the variation of the preexponential 
factor 7" with the applied field, Pfeiffer writes: 

(D.33) 

where Kvg,/2 and KVg,/2 are the barriers for the upper and lower 
minima, respectively, and Ag = g, - g, . 

This expression is only valid for sufficiently large a,  that is, if m is 
mainly fixed in the minima. In addition the factor [l + exp(-a Ag/2)]-', 
which varies between 0.5 and 1 may be neglected as the uncertainties on 
the 7o factor are probably of the same order of size. 

Approximate expression is derived for g, 70: 

0.86+1.14/1, 

2 (D.34) 

where h, is the reduced field at which the lower barrier vanishes, given 
by71 

(D.35) 2 3  (1 - h,) - F h z s i n 2 2 ~  = 0 

or by'" 

h, = [cos,'~$ +  in*'^$]-^'^ (D.36) 

In fact, for actual samples with easy directions in random position and 
h not too small, the relaxation time is given, with a fair approximation, 
by its value for $ = rr/2.71 On average the m population, which relaxes, is 
equal to (see Section D.l )  

27 - 
T + + T -  

p z 1 - s  = (D.37) 

S, being given by (D.7). 
For $ different from 7r/2, the potential wells are unequal and for h not 
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too small r +  >>r- and P z O .  In addition, the probability to find Ifapp 
perpendicular to the easy direction is maximum. Then the effective 
longitudinal relaxation time is given by (D.32). 

Usually, Brown's approximation for Happ parallel to the easy direction 
(D.27) is used (see Section F.2). For h not too small, r = r -  from (D.8). 
In this case, one can compare r(+ = 0) and r(+ = 7r/2): 

For example, this ratio is equal to about 0.8 for a = 20 and h = 0.5 but 
can strongly vary with a and h. Though the argument inside the 
exponential is the same in the two formulas, the error caused by the use 
of (D.27) is appreciable, depending on the values of h and a. 

0.3 .4 .  r Calculation in Cubic Symmetry 

In this case, the axial symmetry is also broken, and until now the 
eigenvalues A, of the Fokker-Planck equation have been obtained 
numerically. Approximations are also necessary for obtaining the asymp- 
totical values (a  + 0 and 00). 

For K ,  > 0 and K, = 0, six easy directions of [Ool] type exist. The three 
first A, have been calculated for a > 1 and it has been shown that for 
a >> 1, the two first are enough for describing the m relaxation" with 

A, = 3A, I2 (D.38) 

For a >> 1, two approximate expressions have been derived, quite 
similar. The simplest can be written, valid for a 2 10 as 

with r1 = T ~ / A , .  
For small a values, A, Z.73 This value is a good approximation for 

(Y 5 5 .  
For K, < 0 and K, = 0, eight easy directions of [111] type occur. The 

four first A, have been calculated for a 2 1, and for a >> 1 the three first 
describe the m with 

A 2 = 2 A ,  and A,=3A, (D.40) 
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The simplest approximate expression for A, is 

(D.41) 

For small a values, A, ~ 2 . ' ~  The limit of validity of Eq. (D.41) is 
higher, a 2 30, but this is also true for the low-energy approximation 
(A,  2 2) which can be used for a 5 10. 

However, Eqs. (D.39) and (D.41) must be used with some caution for 
large a values due to the lack of numerical verification. 

Two points have to be underlined. First, the high- and low-energy 
approximations do not overlap as it is the case for the first formulas for 
uniaxial anisotropy and a unique formula remains to be established. 
Second, the limits of validity of the formulas are related to a. If the limits 
are related to the argument inside the exponential, that is, a / 4  and a/12, 
they are similar to those operating in uniaxial symmetry. 

The existence for two ( K ,  > 0) or three ( K ,  < 0) relaxation times 
prevents the determination of an effective relaxation time valid for any 
experiment. Particular analysis for each technique will be required. For 
example, let us consider a particle including N spins with K ,  > 0. If at 
t = 0 ,  all the spins are along the [OOl] axis (8 = O ) ,  at a given time after, 
the populations N , ,  N2,  and N3 along the 8 = 0, 8 = ~ / 2 ,  and cp = 0, 5712, 
T, 3 ~ 1 2 ,  and 8 = T axes, respectively, will be for a >> 1: 

N 
6 N ,  = - [l + 3 exp(-t/T,) + 2 exp(-t/.r,)] 

4N 
6 N2 = __ [l - 3 exp(-t/~,)] 

N 
6 N3 = - [l - 3 exp(-t/T,) + 2 exp(-r/.r,)] 

The magnetization M measured along the [OOl] axis is equal to 

Then, the magnetization depends only on the first relaxation time 7,. 

On the contrary, for Mossbauer spectroscopy, which experiences any 
direction, the two relaxation times have to be considered. 
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Finally, we note that for K ,  > 0, A, has been calculated when a field is 
applied for two a values.7s 

0.3.5. 7 Calculations in Some Other Cases 

0.3.5.1. Curling Mode. As we have discussed above in Section D.3.1, 
the curling mode for m rotation is brought into play for large particles, 
being energetically more favorable than the coherent mode. Several 
calculations for spheres of cubic symmetry have been p u b l i ~ h e d . ' ~ - ~ ~  The 
main result concerns the r variation with the particle diameter Cp. For 
small particles, a coherent mode occurs, and the energy barrier (and 
therefore also T) increases steadily up to a certain value of 4. When that 
4 is reached, reversal by curling becomes energetically easier than by 
coherent rotation, and the energy barrier (and therefore r )  decreases. A 
further increase of 4 will increase the barrier for reversal by curling, and 
the increase in 7 will be resumed.79 In this calculation the anomalous 
decrease of 7 with increasing Cp was obtained as a general phenomenon, 
not just limited to cubic symmetry. However, the anomaly disappears if 
the anisotropy is either too large or too small, and it requires rather 
narrow range of anisotropy values for the effect to be observed. 

This phenomenon could be a possible explanation" of the anomalies 
detected by Mossbauer spectroscopy on Fe particles where when increas- 
ing the particle size, a decrease followed by an increase of T is ~bserved.~ '  
In the same way, the change of rotation mode could be an explanation" 
of Weil's results for Ni particles." 

0.3.5.2. Elongated Particles. For elongated particles, nonuniform mag- 
netization reversal occurs if the length of particles is higher than a 
domain-wall width. Calculation of the relaxation time r -  out of the 
metastable state for m under an applied field has been performed." A 
Fokker-Planck equation for the m dynamics based on the Kramers 
transition-state rate theory is constructed and the corresponding relaxa- 
tion time is derived. This is applied to elongated particles with easy and 
hard axis anisotropies. For small length, uniform magnetization reversal 
occurs. A formula is given for 7- that is identical to Brown's formula 
(D.27) except that in the preexponential factor 1 - h is replaced by 1 + h. 
For large length, nonuniform magnetization reversal occurs and T - is 
numerically calculated. It is found that 7 ~ enormously decreases (several 
orders of magnitude) for the latter mode with regard to the former. 

D.4. Some Discussions and Conclusion 

The Nee1 and Brown models have been compared in some studies.80283 In 
fact, for uniaxial symmetry and a >> 1, the 7 formulations are very 
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similar [Eqs. (D.9) and (D.19) and (D.26) and (D.27)], the parameters 
inside the preexponential factor being only slightly different. However, 
Brown’s model allows the T calculation for any anisotropy energy and his 
approach constitutes a general formulation of the problem. 

In the context of the Brownian model, other models have been 
developed for the interpretation of the results of particular experiments. 
For example, for Mossbauer spectroscopy where on the one hand 
transitions between nuclear spins are involved and on the other hand the 
measurement encompasses the whole T set. These models will be briefly 
described in Section F.6. This is also the case for ferromagnetic resonance 
where  model^'^^^^ have been developed from Raikher’s calculations.’6 
However the effective eigenvalue method, which allows one to derive the 
initial slope of the magnetization, is not valid when thermal activation 
process is presentP4 New calculationss7 have taken into account this 
problem. Theoretical results are summarized in Section F.7. 

Finally, we want to underline that in our opinion, only one crucial 
problem remains to be resolved for the interpretation of numerous 
experiments, that is, the establishment of simple (approximate) analytical 
formulation for the relaxation times T +  and 7- under applied field in any 
direction with regard to easy axis. This is the requisite condition for 
calculating the part of m blocked on average in the lowest minimum and 
the relaxation time T of the other part, indispensable for modeling 
correctly experiments as zero-field-cooled and field-cooled magnetiza- 
tions, thermoremanent magnetization. Pfeiffer’s  calculation^^^ may be a 
way, but the discrete orientation model does not cover all the cases. This 
is not the case for Coffey’s calculations:’ though the field is assumed to 
be applied along a line of longitude. In addition, no analytical expression 
is available at the present for the latter model. 

Two other interesting problems concern the derivation of approximate 
formulas for T for cubic symmetry or more complex cases, and the study 
of the effect of the magnetic state at a surface due to the break of 
symmetry and the defects on the m reversal, therefore on 7. However, 
quasi-uniaxial symmetry is effective in the most cases (see Section C),  and 
the corresponding T formulation can be used. Nevertheless the T calcula- 
tion suggested in the former problem is important for experiments that 
determine T for all barrier heights such as does Mossbauer spectroscopy. 
As discussed in the Section D.3.1, synchronous rotation is a good 
approximation and surface effects probably lead to only slight modi- 
fications of the preexponential factor. However, the effect can be of 
importance for experiments that determine T for all barrier heights and 
when a field is applied in such manner that the Zeeman energy is 
practically the same as the anisotropy energy (see Section D.3.1). 
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E. INTERPARTICLE INTERACTIONS 

E.l .  Introduction 

Magnetic interparticle interactions always exist inside fine-particle assem- 
blies. They are more or less strong according to the volumic con- 
centration C,.  Magnetic dipolar interactions are always present. If the 
matrix and the grains are metallic, RKKY interactions occur and depend 
on lld:., where d,, is the distance between particles, like dipolar 
interactions. When the matrix is insulating, superexchange interactions 
can exist according to the structure and the nature of the matrix and the 
bonding at the particle matrix interface. From insulating magnetic 
materials, we know that exchange interactions are short ranged, but if the 
bonding is favorable, superexchange interactions may extend until large 
distance. Other more complex effects are possible, as the one recently 
shown:’ where it seems that the interactions modify the surface aniso- 
tropy. The determination of the interaction effects is complex because, on 
one hand, several causes can interplay and, on the other hand, the 
particle assembly shows, except for very exceptional samples, a dis- 
ordered arrangement of particles with volume distribution and easy 
directions in random position. In addition, the thermal fluctuations of the 
particle magnetic moment m do not simplify the problem. 

The interaction effects lead to a modification of the energy barrier E,, 
which depends on the symmetry of the anisotropy of the single particle. 
We remark that if an m reversal does not change the anisotropy energy, 
which is the case for the usual symmetries, this reversal does not change 
neither the interaction energy of dipolar type. This does not mean that 
for a given particle the total energy is unchanged under the m reversal, 
but it is true for the particle assembly. Therefore any model accounting 
for the mean properties of the particle assembly must respect this 
symmetry condition. An E, increase seems likely to occur, as discussed in 
detail in Section E.3. 

Another possible effect of the interactions is a complete change of 
regime with the properties being no longer relevant to superparamagnet- 
ism and the m relaxation being no longer governed by E,. Some 

have considered the possibility of m dipolar order at low 
temperature, analogous to those predicted for spins.92z93 A model leading 
to a transition from superparamagnetism toward m ferromagnetism has 
also been p r e ~ e n t e d . 9 ~ ~ ~ ~  We discuss this point below. 

E.2. Transition from Superparamagnetism Toward Collective State 

For discussing the effects of magnetic interparticle interactions and the 
possible existence of a collective state at low temperature, let us consider 
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that m correspond to superspins S with distance d j  between them. The S 
lattice is disordered, the S modulus is distributed, and the anisotropy is at 
random. The problem of interactions is then similar to those of spin 
interactions in bulk samples, but with another scale. Note that this is an 
ideal view, whereas the actual systems are much more complex, for 
example, (ml can vary with the i r ~ t e r a c t i o n s ~ ’ ’ ~ ~ ’ ~ ~  and the interaction 
effect may not be proportional to the particle volume (see Section E.3). 

E.2.1. Magnetic State at Very Low Temperature 

If the S fluctuations are not present or are very slow (large grains or low 
temperature), the S magnetic state results from the interactions and 
depends on the topology. If the exchange interactions are dominant, since 
the anisotropy directions are at random, the problem is similar to that 
resulting from random anisotropy, but with another scale. Several 
magnetic states have been predicted depending on the strength of the 
random anisotropy, the exchange interactions, and the applied field.9s~99 
We can expect that S shows the same type of magnetic order. In 
particular, no long-range magnetic order should exist without applied 
field. The S phase is speromagnetic, which is very analogous to the spin 
glass phase, though the origin of disorders is not the same. An as- 
peromagnetic phase could arise if a large field is applied and then 
removed, or if the particles are cooled under moderate field and the field 
is suppressed at low temperature. On the other hand, antiferromagnetic 
and ferromagnetic orders have been predicted for spins interacting via 
dipolar interactions in face centered cubic and body centered cubic 
structures, respe~t ive ly .~~, ’~  Very recently, numerical simulation of hyster- 
esis loops of fine-particle systems with random anisotropy directions and 
dipolar interactions have been made at zero temperature.”” The results 
show that in the absence of anisotropy, a coercive field appears due to 
interactions. For high particle concentration, a short-range local order 
exists. Increasing the anisotropy , a crossover is observed between two 
regimes. For low anisotropy, the static properties are roughly the same as 
those observed in the absence of anisotropy. For high anisotropy a single 
particlelike behavior is observed, in agreement with the Stoner and 
Wohlfarth However, no precise indication is given concerning 
the S state. It seems probable that an S disordered state arises, analogous 
to a spin glass phase or a spin glasslike state. We define this point below. 
We remark that the discussion does not apply to particles in perfect 
arrangement with the same volume and the same easy direction. An S 
ferromagnetic phase is expected in this case because the particles are 
indistinguishable. However, a crossover of the properties can be pre- 
dicted as soon as disorders occur. 
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E.2.2. Temperature Dependence of the Properties 

Consider now particles for which, without interaction, the blocking 
temperature TB is smaller than the paramagnetic transition temperature 
T ,  for any measuring time 7,. Note that T ,  can be lowered with regard 
to the bulk value due to the defects inherent to the fine-particle state. For 
a disordered arrangement, each particle possesses its own energy barrier 
E,  and its own T,.  When the interactions act, the energy barriers are no 
longer independent. The regime is still superparamagnetic if the S 
relaxation of a given particle is governed by its own EB,  of course, 
modified by the interactions. A collective state for S will be present if it is 
not possible to define E, for each particle, but only the energy E,,, 
relative to the particle assembly. E,,, surely shows multiple minima in the 
phase space as for the spin glass phase.”’ A schematic diagram is shown 
in Fig. E.l for a given measuring time T ~ .  For a different T,, the TB 
variation must be shifted upward (shorter T,) or downward (larger T,). If 
T ,  increases with the interactions (continuous line), we shall observe, 
with decreasing temperature, paramagnetic, superparamagnetic, blocked, 
and collective states. In this hypothesis, the observation of a direct 
transition from paramagnetism toward blocked state is not possible 

t 
Interactions 

Figure E.l .  Schematic phase diagram for fine particles with magnetic interparticle 
interactions. Case 1, the blocking temperature TB increases with interactions (continuous 
line). Case 2, TB decreases with interactions (dashed line) (see text). 
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because T B  cannot overstep T,  for which the interactions vanish (the 
interactions are proportional to the magnetization square). In the oppo- 
site case, TB decreasing with increasing interactions (dashed line), we will 
observe the same sequence below a critical strength of the interactions. 
Above, the blocked state will be suppressed and a transition from 
superparamagnetism to a collective state will occur. We note that in this 
case, it becomes possible to observe a superparamagnetic state for 
particles for which this state does not occur in the absence of interactions 
(TB > T,). However, the same properties, that is, the disappearance of 
the blocked state, could be observed when TB increases with the 
interactions, if the temperature Tcoll of the appearance of the collective 
state increases more rapidly with the interactions. In this case, the line 
T,,,, could in principle cross the line TB (Fig. E.l) because the blocking 
process and the collective freezing are not governed by the same rules. In 
our opinion, this strong increase of Tco,, with the interactions does not 
seem possible when the interactions are of the dipolar type (see Section 
E.2.5), but it could arise when the interactions are of a different type, for 
example, exchange or superexchange interactions. Finally, it is worth 
noting that the collective state cannot be ferromagnetic due to the 
disordered arrangement of particle magnetic moments. 

However, a transition from superparamagnetic toward ferromagnetic 
state has been predicted when the interactions are of exchange type and 
the anisotropy is negligible with respect to the This case 
is indeed very particular and, in our opinion, there is only a little chance 
that it occurs. The model actually appears to be oversimplified. The 
interactions among atoms at the particle interfaces are taken as equiva- 
lent to exchange interactions between the particle moments m; the 
particles are considered as identical and possible negative sign for the 
exchange constant is not foreseen. The taken hypothesis lead inevitably 
to a ferromagnetic m order. The model has been applied to Mossbauer 
results for fine particles of goethiteP5 which shows an antiferromagnetic 
state for bulk material (the exchange constant between the spins is 
negative). The observed properties may actually be due to a decrease of 
the Nee1 temperature TN caused by defects'02 and no definitive proof of 
the model, like the existence of superparamagnetic or paramagnetic 
properties between TN related to the bulk and the temperature of 
appearance of blocked (or antiferromagnetic) properties, have been 
supplied. 

E.2.3. Properties of the Collective State 

The sketching of the properties of the collective state is useful, but it is 
difficult to do from experimental data because there are very few results 
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that can be retained. First, the experiments on fine-particle assemblies 
have generally been performed with one or two techniques, the usual case 
being zero-field-cooled magnetization M,,, or  (and) Mossbauer spec- 
troscopy. However, for the first experiment, T, is not well known (see 
Section F.2), and for the second there is difficulty in the determination of 
T ,  due to the lack of an accepted model for lineshape in Mossbauer 
spectra under superparamagnetic relaxation (see Section F.6). In addi- 
tion, the two T, values are very different (T, = lO-'s for Mossbauer 
spectroscopy and T, = 102-103 s for MzF,-). This leads to a large differ- 
ence between the deduced T,  values, which does not allow the knowl- 
edge of the actual variation of the relaxation time T with temperature. 
Second, there are very few data on the same set of particles with variable 
interparticle interactions, which would permit following the T, variation 
with growing interactions, and finally there are also very few data on fine 
particles without (or negligible) interactions due to the difficulty in 
preparing such samples. Then some uncertainties remain on the validity 
of the NCel-Brown model. 

Because of the S-disordered arrangement, the collective state prop- 
erties must be of spin glass type. But are they similar to those of a spin 
glass phase or  to those of a spin-glass-like state? At  present there is a 
general agreement for considering that the transition toward a spin glass 
phase corresponds to a true thermodynamic transition with critical 
exponents and order parameter, the susceptibility pertinent for classical 
order being replaced by the nonlinear susceptibility xn,, which therefore 
diverges at the transition temperature. In addition, the variation of the 
freezing temperature Tf with T, is very small (Table 11) and the low- 
temperature phase is nonergodic with a hierarchical and ultrametric 

TABLE I1 
Values of the Criterion ATrl(T,A log v) Evaluated Near v = 50 Hz for Different Magnetic 

Disordered Systems (see text) 

Systems AT,IT,A log Y References 

CuMn 1-10% 
CsNiFeF, 
Mn aluminosilicate 
CdCr, ,Ino ,S, 
E u O  4"O 6' 

Euo *Sr, 8s 
ZnCr, ,CiaO ,04 
Interacting fine particles (theory) 
Fe-AI,O, particles 
Noninteracting fine particles (theory) 

9!MGd0 006*'2 

0.005 
0.008 
0.013 
0.015 
0.021 
0.04 
0.05 
0.05-0.13 
0.06 

0.13 
0.10-0.13 

103, 104 
105 
104, 106 
107 
104, 108 
108 
109 

45 
- 

104 
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structure of the energy valleys in the phase space,”02”’ as revealed by the 
variation of the thermoremanent magnetization (TRM), which follows a 
stretched exponential and depends on the aging time”* (for review 
studies on spin glass, see Refs. 113-115). 

However, many bulk compounds with interaction disorders show 
properties similar to those of the spin glass phase: susceptibilty peak, 
whose maximum occurs at a temperature that depends on T,, but with a 
larger variation vs. 7, , irreversibilities shown by zero-field-cooled and 
field-cooled magnetization (MFC) experiments, similar variations of the 
TRM vs. time; but they do not show the specific properties cited above. 
All the properties have been interpreted as resulting from a magnetic 
disordered state called spin-glass-like but covering many different 
situations.’ 16-’ l8 In several cases, the term cluster glass has been used, the 
properties being analyzed from the superparamagnetic model. This last 
attempt is reasonable because the properties of fine particles are also very 
similar. In fact, these compounds show in the studied range of tempera- 
ture properties governed by thermally activated process and an absence 
of collective state. This phase could, however, be present at lower 
temperature. We roughly have two scenarios: a true thermodynamic 
transition toward a collective state, that is, the spin glass phase, and a 
progressive inhomogeneous freezing (or blocking) via a thermally acti- 
vated process, which could lead at lower temperature to a collective state. 
This is exactly what is shown in Fig. E.l for interacting particles. 

E.2.4. Comparison with Experimental Data 

Extensive studies have been performed on Fe particles embedded in 
alumina matrix’” by means of numerous techniques (MZFC and M,,, 
magnetization versus applied field and temperature, TRM, alternative 
susceptibility x,, (frequency Y in the range Z10-3-2104 Hz), Mossbauer 
spectroscopy, ferromagnetic resonance, neutron diffraction, and mag- 
netooptic measurements). To our knowledge this is the only fine-particle 
system for which almost all magnetic techniques have been used. We shall 
comment on the data in Section F devoted to the experiments. Three 
samples with different mean particle volume (V= 40, 60, and 200 nm’) 
have been studied in greater detail. The volume distribution is relatively 
narrow, as seen by electron r n i c r o ~ c o p y . ~ ~ ~ ” ~  The ratio V l d 3  is similar for 
the three samples (=0.17), where d is the mean distance between two 
neighboring particles, and the interparticle interactions are strong. We 
focus for our purpose on the following results. 

1. The T,  vs. T, variation has been obtained on a very large 7, range. 
It is very well described with a superparamagnetic interaction model4’ 
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(see Section E.3). In the Table 11, the ratio ATBIT, A log Y deduced from 
xac results is compared to similar data reported for some bulk magnetic 
disordered materials. This ratio, model independent, allows an evaluation 
of the variation of Tf(TB)  vs. 7,. The first four systems show a spin glass 
phase with thermodynamic transition. The ratio varies between 0.005 and 
0.015. For the EuS-SrS system, the properties are not really clear and the 
existence of a transition is still debated for Eu,,,Sr,,,S. For 
ZnCr,,,Ga,,,O,, clear evidence of a progressive freezing of clusters was 
found"' and no critical behavior of xn, was observed."' La,,,94Gd,,,,A12 
contains small noninteracting clusters, and the properties are relevant to 
superparamagnetism. Also included in the table are the ratio values 
evaluated for noninteracting particles from usual parameter values and 
for interacting particles from the model described below. It clearly 
appears that the Fe interacting particles cannot be classified among the 
spin glass compounds that show a thermodynamic transition. The ratio 
value is larger but not much different from the values corresponding to 
materials whose properties are explained in term of spin clusters. From 
the point of view of the TB vs. T,,, variation, an inhomogeneous blocking 
process therefore appears to be more likely than m collective freezing for 
these strongly interacting particles. Discussions concerning the com- 
parison of dynamical properties of spin glasses and fine particles as seen 
by x,, measurements and other techniques can be found in Refs. 122 and 
123. 

2. The thermal variation of the nonlinear terms of the magnetization 
M (  T )  has been studied from field-cooled magnetization measure- 
m e n t ~ . ' ~ ~ , ' ~ ~  The use of a simple expansion in terms of the field H :  

M ( T ) = x o ( T ) H -  A 3 ( T ) H 3  + A 5 ( T ) H 5  

gives a logarithmic divergence of the coefficient of the nonlinear term A ,  
with a tendency to a saturation value close to TB.  This apparent 
divergence disappears if allowance is made for the thermal variation of xo 
using the following expression in terms of xoH:  

The need for introducing in the series expansion the actual thermal 
variation of xo instead of a development in terms of p H I k ( T -  0)l2, 
comes from the fact that xo does not obey a simple Curie-Weiss law near 
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T,  and that the value of 8 is comparable to T,. The new nonlinear terms 
b, and b, do not change significantly with the temperature. This is 
contrary to what is observed for the spin glass phase, where xo is finite, 
but all the nonlinear terms appear to diverge at the transition. 

3. Thermoremanent magnetization  experiment^'^' (see Section F.4) 
have shown that the waiting time has no detectable influence on the TRM 
decay in the studied temperature range and that this decay is described in 
a first approximation by a logarithmic law vs. time. The slope of the 
logarithmic decay is almost proportional to the temperature. This is 
exactly what is expected for the m relaxation of noninteracting particles 
with volume V distribution (we note that the proportionality to the 
temperature is in fact a kind of artefact when the V distribution is large, 
see Section F.4). A small anomaly in the slope is detected at low 
temperature, well below T, related to 7, = s. This could be due to 
quantum effect (see Section G ) ,  but also to a change in the regime of 
TRM decay due to the appearance of a collective state. However, 
detailed experiments on interacting as well as noninteracting particles are 
needful for conclusion. 

4. Inelastic neutron s ~ a t t e r i n g ~ ~ ' - ' ~ ~  (see Section F.8) performed on 
two samples has evidenced two types of relaxation, the longitudinal and 
the transverse. The former corresponds to the usual relaxation between 
potential wells whereas the latter is related to vibrations inside the 
potential well. It is shown that several regimes occur for the transverse 
relaxation. Below a certain temperature T,, about two times smaller than 
TB (7, = lo-* s), a new regime appears where the interparticle interac- 
tions would destroy the local modes. However Tre depends on the volume 
and therefore cannot be a transition temperature toward a collective 
state. This regime could be the approach to such a state. 

From these four experiments performed on particles strongly interact- 
ing via dipolar interactions, we can rule out the appearance of m freezing 
analogous to spin freezing in spin glass with thermodynamic transition, 
except perhaps at low temperature well below T,.  All the results can be 
explained from an inhomogeneous blocking process that obeys super- 
paramagnetic laws with EB modified by the interactions. 

E.2.5. Temperature of Transition Toward a Collective State 

What is the order of magnitude we can actually expect for a transition 
temperature toward a collective state? Calculation for three-dimensional 
cubic arrays of magnetic dipoles with identical magnetic moments p that 
interact via dipolar interactions have shown that antiferromagnetic and 
ferromagnetic order occurs for bcc and fcc lattices, respectively. The 
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transition temperature T ,  is equal to92993 

where a, is a numerical constant of the order of unity and d the distance 
between neighboring dipoles. This gives T ,  of order of some mK. For 
fine ferromagnetic particles, p 2 / d 3  has to be multiplied by NCvIf i ,90  
where N is the number of particle spins and C, the volumic con- 
centration. But the particle assembly has a disordered arrangement, a 
volume distribution, and anisotropy axes in random orientation, and the 
prediction of the transition temperature value is difficult. For dipoles in a 
disordered arrangement, and with a p distribution, Eq. (E.2) remains 
perhaps valid with (p ’ )  replacing p’ and with an a, factor strongly 
lowered by supposing that the effect of disorders is similar to the effect of 
interaction disorders in bulk materials, which causes a strong decrease of 
the transition temperature. In addition, for fine particles, the effect of the 
anisotropies cannot be neglected. The order of magnitude of the aniso- 
tropy energy is generally not negligible with respect to the interaction 
energy (that depends on the samples: for example, for Fe particles 
embedded in A1,0, and y-Fe,O, particles in a polymer:9 the inter- 
action energy to anisotropy energy ratio is at low temperature about 4.6 
and 2.6, respectively). 

However, a recently published model” predicts a high transition 
temperature T, toward a spin glass phase or a spin-glass-like state. This 
model neglects the anisotropy effect and seems based on a formula giving 
the transition temperature for spin glasses. But this formula is contro- 
versial, and it is not valid for concentrated spin glasses. Let us remember 
the difference between concentrated and “classical” spin glasses. For the 
latter, the interaction disorder is essentially due to the random dilution of 
the magnetic atoms, while for the former it is mainly due to competing 
interactions coming from neighbors. It is evident that the analogy with 
particle assemblies is possible only with concentrated spin glasses. 

At present, we do not know any result for strongly interacting particles 
that gives a definite evidence of a transition from a superparamagnetic 
state toward a collective state. On the contrary, for y-Fe,03 particles in a 

the properties of which will be discussed with polymer, 
some details below and in the Section F,  TRM experiments’367138 have 
shown that the relaxation rate is almost the same for samples showing 
negligible, weak, and strong interactions. For these samples, the particle 
set is identical, only the aggregation state and the distance between 
neighboring particles differ. This result definitely shows that in the 

45 

59,89,96,97,134- 138 
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investigated temperature range (the lowest temperature is well below T, 
corresponding to ,yac experiments; and for temperatures corresponding to 
T,  relative to Mossbauer spectroscopy, TRM is equal to zero) the regime 
is the same for all the samples and that no collective state appears. 

E.3. Variation of the Blocking Temperature with Magnetic 
Interparticle Interactions 

As we have underlined in the introduction of this section (E.l), the 
problem of interparticle interactions is complex because they can be of 
several kinds (dipolar, exchange, superexchange, and other more compli- 
cated and the arrangement of particles in the assembly is 
disordered with a volume distribution and easy directions in random 
orientation. In addition, the thermal fluctuations of the particle magnetic 
moment m do not simplify the question. In this section, we analyze the 
interaction effects for a disordered particle assembly when the tempera- 
ture is sufficiently high for preventing the appearance of a collective state. 
We consider the case of dipolar interactions, but we think that the other 
kinds of interactions can be treated in the same way. 

E.3.1.  General Considerations for Dipolar Interactions 

Let two particles with magnetic moments m, and m, be oriented along the 
unit vectors u, and u, respectively, with lm,l = M,V, and (m,( = M , y ,  
where M is the magnetization for the considered temperature ( M  can 
depend on V )  and V ,  and V ,  the particle volumes. The line joining the 
centers of the particles is oriented along the unit vector r,, and the 
distance between the two centers is equal to d,, (Fig. E.2). 

The particle i sees a field H,, due to the dipolar interaction with the 

Figure E.2. Axis system for dipolar energy calculation. 
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particle j .  The energy corresponding to the field is 

E.. = -H. * u~M;~/ ,  
' I  ' I  

with 

Equations (E.3) and (E.4) have been established by assuming m 
located in the particle center. Since the exchange interaction inside the 
particle is much stronger than the dipolar interactions due to the other 
particles, the directions of the spins remain parallel (or antiparallel), 
except at the surface and near the surface due to the broken symmetry at 
the surface and the defects, Then the interaction energy is given by Eq. 
(E.3), where H, is a mean interaction field. This mean field can be 
calculated numerically and compared to Eq. (E.4). For spherical particles 
the mean interaction field is equal to H, (E.4) multiplied by a coefficient 
significantly different from unity only in the case of very small particles in 
contact. For spheroidal particles, Eq. (E.4) is a good approximation. In 
the case of ellipsoidal particles relatively close to each other, this is not 
the case. The influence of disorders on the particle surface has also been 
evaluated, and it is negligible, except for very small particlesP5 

Therefore, the use of Eqs. (E.3) and (E.4) is restricted to some types 
of particles. For very small particles or elongated particles, like acicular 
particles, in close contact, modification of the interaction energy with 
respect to Eqs. (E.3) and (E.4) must be taken into account. This can be 
performed by using, for example, the method described in Ref. 139. On 
the other hand, it has been supposed that the exchange interactions inside 
the particles are much stronger than the dipolar interactions. However, if 
the intrinsic exchange interactions are balanced due to competing interac- 
tions inside the particles, the interactions may modify this balance and 
change the properties of the intrinsic magnetic state of the particle. This 
seems checked in Fe,,Cr,,B,, amorphous particles embedded in an 
alumina matrix.',' For bulk Fe,,Cr 16B20, disordered magnetic state with 
reentrant properties at low temperature is observed.'41 We remark that it 
is still another case that has not been discussed in the above section. If in 
bulk state, the material shows disordered magnetic properties leading to a 
freezing temperature, what happens for fine particles? Is it possible to 
define TB and what is the role of the interparticle interactions? In our 
opinion, that depends on the particle size with regard to the scale of 
freezing process, but this question remains for decoding. 
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E.3.2. Shtrikman and Wohi'farth Model 

In a first attempt to model the interparticle interactions, Shtrikman and 
Wohlfarth14* have proposed simple models for weak and strong interac- 
tions. For weak interactions, the authors consider a three-level system 
that leads to an additional energy barrier being added to the energy 
barrier of noninteracting particles, expressed as H,MV, where H, is an 
interacting field. Thermal averaging for a particle assembly is done by 
replacing H, by H,tanh(H,MVlkT) H:MV^/kT, which leads to a Fulcher 
law for the relaxation time. For strong interactions, the authors introduce 
the concept of an effective volume that leads to a similar law. Later on, 
this model has been improved143 by introducing the effects of the 
interactions due to distant neighbors. In our opinion, these phenomeno- 
logical models are satisfying in a first approximation. However, they do 
not include a precise formulation for the parameters and therefore do not 
permit a quantitative comparison with the experiments. 

E.3.3. Statistical Model 

A microscopic calculation has been performed by Dormann et al.45 for a 
disordered assembly of particles with volume distribution. In this case, 
the particle magnetic moments m relax with different relaxation times 7 
related to V. The probabilities to find u, at (0, cp) and (0, cp + T )  are 
assumed to be equal. In this case HI, can be restricted to 

H,, = ( M , y / d t ) v c ,  cos 0, (E.5) 

where v,, is a vector depending on r,, only. As m, relaxes, cos0, 
fluctuates, and the Boltzmann statistics can be used for calculating ( E,,) . 
Then 

where 2 denotes the Langevin function. 
The total interaction energy per particle i is then 

The same symmetry condition for u, as for u, may be used, that is, the 
same probabilities to find u, at (0, c p )  and (0, cp + T) .  In this case 

E, = -M,V,~COS ell C M , a , , ~ [ ( M , M , ~ ~ , , / k T ) ( c o s  e,ll ( ~ . 8 )  
I 
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with aii = (V,./d;)(3 cos2,$, - l) ,  where eii is an angle parameter of rii.  
The authors write: 

03.9) 
2 Ei = -EEi  cos 0, 

with 

EEi = M,V, c M j a , 2 [ ( M , M j ~ a i j ~ k T ) ]  
i 

(E.lO) 

A step not detailed in the initial study (there are also some typing 
errors corrected later) needs discussion. The energy given by Eq. (E.8) 
has the uniaxial symmetry and therefore satisfies the symmetry condition 
relative to dipolar interaction energy (see Section E.l). The barrier 
energy is given by (E.lO). However, Eq. (E.9) is exact only if the 
argument inside 2 is small. That means that for a large argument value, 
the calculation of the relaxation time 7 performed for uniaxial symmetry 
with E = E,cos20 is not exactly applicable. Nevertheless, we think that 
this introduces only small errors. In fact, the model is simple and, of 
course, cannot cover exactly very complicated phenomena. This is the 
reason why the authors have replaced aij outside the Langevin function 
by b, with b, near aii. 

For the evaluation of the mean T,, the mean energy barrier (EB)int 
due to the interactions has been expressed by considering a regular 
arrangement of particles of mean volume V and mean magnetization M 

(EB)int = M 2 V  2 b j 2 ( M 2 V a j / k T )  
i 

(E.l l)  

where now a, = V(3 cos2[, - l)/d; and b, near a,. d , ,  a,, and 5, corre- 
spond to a regular arrangement of particles. 

E.3.4. Discussion of the Model 

E.3.4.1. Average Problem. If the V distribution is narrow, the proposed 
method, that is, the replacing of the disordered arrangement by an 
averaged ordered compact arrangement, is correct. If the V distribution is 
large, the method remains a good approximation as long as mean 
properties are concerned such as, for example, for the mean T ,  de- 
termination. However, the method could be questioned if the properties 
for a certain range of volume, more and less narrow, are needed to be 
known like, for example, for TRM experiments (see Section F.4). 
Nevertheless, for a disordered arrangement, the particles with a given V 
see all the possible arrangements, which justifies the use of a, values 
relative to the corresponding regular arrangement. However, (EB),nt is 
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mainly stated by the contribution of the first neighbors and it is unclear if 
a,  relative to these neighbors has the same value if the origin particle is 
small or big. It seems more likely that for a small origin particle, d ,  is 
smaller than the mean value, leading to higher a,  value. This means that 
the interactions narrow the EB distribution, and therefore the relaxation 
time T distribution. This trend seems checked for y-Fe,O, particles in a 
polymer96 (see Section F.2). Two points are to be noted. First, the EB 
distribution would be broadened with respect to the case without 
interaction if the interaction effects led to an E, decrease. Second, the 
narrowing of the EB distribution, which in the model increases when T 
decreases, is in agreement with an expected transition toward a collective 
state at low temperature governed, in a simple picture, by a main 
relaxation time. 

Another question is related to the magnetization; M is temperature 
dependent and the effects on (EB)i,t and T will be discussed later. But M 
also depends on the volume due to the magnetic imperfections on the 
surface. If mean properties are concerned, an averaged ( ~ ) ,  value has to 
be considered. On the contrary, where the properties for a given V are 
needed, A?M(V) is the good parameter where A? is the volume averaged 
magnetization. Because M decreases with V,  (EB)int also decreases with 
V. This variation is opposite to that due to the a,  variation. However, in 
our opinion, the effect is probably smaller than that due to the a,  
variation. 

Now, let us try another approach in order to show that a model that is 
too simple could lead to an uncorrect conclusion. Let us consider a small 
particle P ,  with volume V, interacting with a large particle P2 with volume 
V,. With regard to the magnetic moment m(P,) of PI, m(P,) appears 
static. It results in an interacting field acting on P , ,  which appears also 
static at the scale of the P, relaxation. In this case, .(PI) decreases and a 
static magnetic moment appears. This moment creates a reaction field at 
the level of P2 that modifies the direction of m(P,), therefore modifies 
also the interacting field on PI. If now the direction of m(P,) is reversed, 
all the fields cited above are reversed. What is the final effect? It can be 
modelled, but if a third particle is introduced with volume intermediate 
between V, and V,, it is easy to see that the model constructed for two 
particles is no longer valid. One can also understand that the use of a 
nonfluctuating unidirectional interacting field acting on the particle is not 
correct. 

E.3.4.2.  Effects of an Applied Field. If a field Happ is applied, two 
unequal minima appear for the anisotropy energy, leading to two 
relaxation times 7- and T +  (see Section D). It results that a part of m is 
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blocked on average in the deeper minimum and then it appears static, the 
other part relaxing with a T value smaller than without field. We can 
separate the two parts. 

For the “static” part, dipolar interactions occur. The effective field He,, 
acting on a particle differs from Happ, depending on the volumic 
concentration C,, the sample shape, the field direction and the magnitude 
of the static part; Heff can be calculated through the Onsager model (for 
the method see Section F.2). However, this calculation has not been 
performed until now. Indeed, it is not simple because He,, depends on the 
static part, which itself depends on He,, through the T- and T +  values for 
which no well-established formulas exist at present (Section D). 

For the “relaxing” part, dipolar interactions also act and the presented 
model can be used. However, it is not (ml that now acts, but only a part 
of Iml. This means that (EB)int, which corresponds to the dynamic part of 
the interactions, decreases with respect to the case without Happ. 
Complete calculation of these effects remains to be done. 

More complex effects are expected for TRM experiments. First, the 
calculation of M,, before the cutting-off of the field has to be performed 
following the method described above. Second, after cutting-off of the 
field, the system is out of equilibrium. Then, the remaining magnetization 
creates an He,, (which can add or substract to an eventual remaining 
Happ, depending on the experiment conditions) that decreases in modulus 
with the decay of the magnetization, modifying this decay. Here also, 
complete calculation is lacking. 

E.3.4.3. Approximations of (EB)int and Outcomes of the Model. Ap- 
proximations of (EB)int are useful in order to simplify the T calculation. 
They can be done through the approximation of the Langevin function: 

x s l  2 ( x ) - x / 3  (E.12) 

x 2 2  9 ( x ) - l - l l x  (E.13) 

If M2Va, lkTs  1 for any j ,  which occurs at high temperature or for low 
C, values (except at very low temperature), then 

For a close -packed arrangement, on supposing that b,lai = b ,  l a , ,  b ,  la ,  
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being a constant value and with a ,  = C , / f i  

(EB)int = 6.8(b, / U , ) C ~ ( M ~ V ) ~ I ~ ~ T  

M 'Va , l k T  = M'VC, l k T f i  5 1 
(E.14) 

This formula covers those resulting from the Shtrikman and Wohlfarth 
model (Section E.3.2), but here, the parameters are given. Results 
obtained for Fe particles in an A120, matrix by means of neutron 
d i f f r a ~ t i o n ' ~ ~ , ' ~ ~  are in agreement with Eq. (E.14) (see Section F.8). 

A second approximation can be derived when Eq.  (E.12) is fulfilled 
for the first neighbors while (E.13) is valid for the further neighbors. In 
this case 

valid for 

where n, is the number of first neighbors and the sum is done over all the 
neighbors except the first. 

For a close-packed arrangement, this relation reduces to 

which is valid for 

M2Vu M2VC, 252------- - 
k T  k T f i  5 4  

Using the relaxation time T formula valid for 
E B l k T  2 3 

where T,, depends on 
considering that the 

r = roexp($) 

(E.17) 

uniaxial symmetry and 

(E.18) 

E,, T ,  and other parameters (see Section D), and 
other anisotrom contributions have the uniaxial 

. <  

symmetry with a total constant K, and by neglecting the effect of farther 
neighbors, one finds 
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If the thermal variation of M is approximately given by 

M ( T )  M(0)[1- u,T] (E.20) 

and by keeping for M ( T )  only the first-order term in T,  then 

7 = T0exp{ - (%)[I + 2a,M2(0)Va, l k ]  1 
This law has the same form as (E.18) with an increased E, and a 

decreased T,, value. In the limits given by (E.17) and by neglecting the 
weak change of T~ with T ,  this relation shows that the variation of log7 
vs. 1 lT  is linear and that the intercept with the log 7 axis depends mainly 
on  log^, and on the number n, of first neighbors. For a disordered 
arrangement of particles, n,  = 12. This means that the intercept value is 
about log,,7 = -17 to -18 as log,,7, lies about -10 to -11, almost 
independent of the sample parameters. We recall that b,la, is near to 
unity. The approximation given by Eq. (E.21) is well verified for Fe 
particles in an alumina (Fig. E.3) and for y-Fe,O, particles in a 
polymers9 (Fig. E.4). 

For precise adjustment, it is necessary to take into account the actual 
thermal variation of M ,  the weak variation of  log^, with T,  and the 
effects of farther neighbors. For T outside the limits defined by (E.17), 
the full formula (E . l l )  has to be used. 

We note that very recently this model has been checked for samples 
including particle chains, where n = 2-3. 

For M2Va, lkT z 4, no simple approximation can be derived, the 
model becomes unprecise at low temperature, when T becomes very slow. 
However, when T+ 0, (EE)int remains finite when d(E,),,,/dT+ m, 

which is in favor of a phase transition at zero temperature. On the other 
hand, it has been shown that a generalized Arrhenius law with an 
exponent about 2 simulates quite well the T variation. This fact is also in 
favor of a transition at zero tempera t~re ."~  Nevertheless, these features 
must be considered as a trend because of the uncertainty in the model at 
very low temperature. From this we can assert that if a collective state 
exists at zero temperature, the transition temperature is certainly very 
low. 

E.3.5. Other Interparticle Interaction Models 

Other attempts have been proposed to model the interparticle interac- 
tions. They correspond to an improvement of a model describing the 

59 



MAGNETIC RELAXATION IN FINE-PARTICLE SYSTEMS 339 

0 

k- 

m -5  
0 - 

-10 

I I I 

/ ’  

0 0.01 0.02 0.03 0.04 
l / ( T B )  (K-’) 

Figure E.3. Variation of the blocking temperature TB in the classical plot of log,,T vs. 
l/T, for various samples of Fe particles embedded in an alumina matrix. (Reproduced with 
permission from Ref. 45.) 
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Figure E.4. Variation of the blocking temperature T, in the classical plot of log,,T vs. 
1/T, for two samples of y-Fe,O, particles in a polymer. IN, interacting particles; IF, 
particles with very weak interactions. 
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properties resulting from a certain type of measurement, as, for example, 
for M,,, (see Section F.2), or are more general, as, for example, the 
calculation of the time decay for a system of two identical interacting 
particles from the Fokker-Planck equation,’45 or the calculation of the 
energy for particle chains consisting of identical pa r t i~1es . l~~  However, in 
all cases, the taken hypothesis are either too approximate for describing 
the real properties or  too restrictive for generalization to actual samples. 
Recently, a new model has been proposed in the case of weak 
 interaction^'^^ that leads to a decrease of T, for growing interactions. 
This model is in contradiction with the other models, and in our opinion 
it is not justified from theoretical as well as from experimental points of 
view. The interparticle interactions act through a field that fluctuates. 
However, this fluctuation is treated independently of the m relaxation. 
This is not correct with regard to the problem symmetry (see Section 
E.l), which shows that these two fluctuations are not independent. The 
calculation also raises some objections. For example, the 70 variation with 
the interactions has been neglected. However, the calculated effect is of 
the same order of magnitude as this variation, because T~ is proportional 
to E,3’2 (see Section D). The model has been used for explaining the 
results obtained by Mossbauer spectroscopy on y-Fe,O, particles in a 
polymer. From these experiments, the T,  relative to noninteracting 
particle samples are higher than TB relative to interacting particle 
samples. However, an increase of T,  with the interactions for the two 
samples showing strong interparticle interactions is found. Experiments of 
xa, on a large frequency range show an increase of T,  with the 
interactions. In fact, all the results can be explained from the model 
presented in Section E.3.3, the discrepancy for Mossbauer T,  being 
mainly due to an effect induced by the interactions (variation of the 
damping constant and modification of the anisotropy energy form), and 
not to the interactions t h e m ~ e l v e s . ~ ~ ” ~ ’  

E.4. Some Conclusions 

In our opinion, the model presented in Section E.3.3 allows a first 
explanation of all the results obtained with various techniques. However, 
the model is simple and cannot cover exactly the complex properties 
determined by the interparticle interactions. For other kinds of interac- 
tions, like RKKY interactions present in metallic samples or superex- 
change interactions which could occur in insulating samples, we think that 
the model is applicable after some adjustments, on condition that the 
temperature is sufficiently high for preventing the appearance of a 
collective state. In fact, the model is basically independent of the kind of 
interactions. For a disordered assembly of particles with volume dis- 

144 
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tribution, the magnetic moments of particles always relax with different T ,  

and statistics are applicable for calculating the interaction energy. 
Progress in material sciences will allow the obtaining of more and more 
accurate results. Progress in modeling is also necessary. 

F. EXPERIMENTAL PROPERTIES AND MODELING 

F . l .  General Considerations 

Before discussing the experimental properties, it is useful to discuss the 
general framework in which the features will be analyzed. The dynamical 
aspect of the phenomenon implies that there exist several situations to be 
recognized for stating the method of analysis. This leads to a few basic 
questions. First, is there a change in the relaxation during the measure- 
ment? Second, the properties are measured during a certain time At. But, 
is the measurement repeated many times and then averaged or does the 
measurement follows the variation of the properties for successive At? 
The measuring time 7, is defined as equal to At ,  but in the latter case the 
time elapsed between two successive At can be different to zero and a 
second characteristic time has to be defined. Third, what parameter is 
measured by the experiment, in what geometry? Is the measurement 
relative to one direction, any direction? Is it obtained by integrating over 
all directions? And finally, the classical question, does the measurement 
perturb the relaxation? 

To answer these questions, it is necessary to know if the properties are 
measured at the thermodynamic equilibrium. Let us consider two unequal 
minima for the anisotropy energy. This leads to two relaxation times, T +  
relative to the passage from the lowest minimum M +  to the upper 
minimum M -  and T -  relative to the reverse passage (see Section D). We 
can say that the thermodynamic equilibrium is reached if the populations 
of M +  and M - ,  which depend on the initial conditions, are proportional 
to T +  and T-, respectively. If the two minima are equivalent, T +  = T- and 
the populations have to be equal. Of course, the equilibrium is always 
reached when there remains only one minimum due to the effect of an 
applied field. 

Let us first consider the system at the equilibrium. If A t > > T + ,  the 
increase of At does not change the results. For simulating the properties, 
statistics have to be applied to the measured parameter. This situation is 
typically achieved for magnetization under medium and high applied 
field, when only one minimum remains, and for the field-cooled and 
zero-field-cooled magnetizations when At is much larger than the T +  

related to the appreciably biggest particle volume. 
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If now At<<T- ,  the results depend on the way the experiment 
measures the parameter and its possible variation. This variation is either 
at the T -  scale (related, e.g., to the space orientation of the magnetic 
moment m) or at a time scale t , ,  much smaller than At (due, e.g., to 
vibrations of m in the potential well). In the two cases, averaged values 
have to be considered, in the former case because the measurement is 
repeated numerous times and in the latter case as t , ,<<At,  but the 
averaging process is generally different. This situation corresponds to low 
temperature measurements, typically to a.c. susceptibility experiments 
where the magnetization is measured along a fixed direction, to 
Mossbauer spectroscopy where the hyperfine field is measured in all 
directions and to small-angle neutron-scattering experiments where the 
magnetization values are integrated over all directions. 

For At = T +  (or T - ) ,  complex phenomena appear. It is necessary in this 
case to do a particular analysis depending on the technique. 

Now we consider the case where the equilibrium is not reached, that 
is, the relaxation regime varies with time. This is generally obtained by 
starting from an equilibrium state under field where the two minima are 
unequally populated and by changing the initial conditions, for example, 
by cutting off the field. A change in the magnetization value is detected 
only if the new set of relaxation times are not too slow with regard to the 
total measurement time. 

The magnetization variation will depend on the initial state, its 
variation (with, e.g. , the temperature) before the change, its variation 
during the time needed for changing the experimental conditions, and, 
finally, on the new conditions. An accurate analysis of all the process 
taking into account the kind of parameter measured by the experiment 
will be necessary for modeling the results. This situation is typically 
encountered in field-cooled and zero-field-cooled magnetization experi- 
ments and mainly for thermoremanent magnetization measurements. 

In concluding this discussion, we want to emphasize that a precise 
analysis of the process is an indispensable preliminary to any interpreta- 
tion of the results. 

Regarding the interpretation of the data, an important point has to be 
emphasized. The formulation of the relaxation time T includes the 
gyromagnetic ratio -yo (see Section D), which is generally expressed in 
angular frequency per Gauss. We must keep this unity in mind when we 
compare T to the measuring time T~ (see, e.g., the case of the ac 
susceptibility measurement). 

Another difficulty concerns the choice of the models. On the one 
hand, the discrete orientation model, which leads to an exponential decay 
of the measured parameter with time [see Eq. (D.3)], does not exactly 
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take into account the probability of the presence of m outside the energy 
minima. We believe that the resulting error is of second order in 
magnitude, but verification would be needful. On the other hand, the 
calculation from the Boltzmann statistics forgets the relaxation process 
and its gyromagnetic character. Then, this calculation is also approxi- 
mate, with the order of magnitude of the errors depending on the cases. 

In fact, the use of the probability densities of the m orientations 
resulting from the Fokker-Planck equation [Eq. (D.13)] would allow a 
correct calculation, but this is in general inextricable when it is applied for 
modeling an experiment. Hence, in practice there only remain the two 
first approaches, and one should not forget that these are mere approxi- 
mations. 

In Section F.2 we will discuss the properties related to the field-cooled 
and zero-field-cooled magnetizations at low field, the static susceptibility, 
and the determination of the effective field acting on a particle as related 
to the field applied to the particle assembly. In Section F.3, we will 
comment on the properties deduced from magnetization under moderate 
and high fields, and consider the determination of the non-relaxing 
magnetization. In Section F.4, we will discuss the remanence mag- 
netizations, mainly the thermoremanence magnetization and make some 
comments on the coercive field. We will describe the features that result 
from ac susceptibility in Section F.5. In Section F.6, the results obtained 
by means of Mossbauer spectroscopy without and with applied field will 
be discussed. We note that this experiment has been widely used for the 
study of fine particles. In Section F.7, ferromagnetic resonance experi- 
ments will be discussed. We will discuss the results obtained by neutron 
diffraction in Section F.8. Finally, in Section F.9, we will briefly consider 
some other experiments. 

F.2. Field-cooled and Zero-Field-cooled Magnetizations and 
Susceptibility in the Superparamagnetic State at Low Field 

Field-cooled (FC) and zero-field-cooled (ZFC) magnetization experi- 
ments at low field are very useful for evidencing superparamagnetic 
properties. They are simple and point out the irreversible properties 
below a certain temperature, roughly the mean blocking temperature TB 
related to the characteristic time of the experiment. However, quantita- 
tive features can be obtained only with a precise analysis of the 
phenomenon, which depends strongly on the experimental process and on 
the sample parameters, that is, the anisotropies, the volume distribution, 
the particle arrangement, the interaction effects, and so on. Much 
information can be derived from such an analysis concerning mainly the 
barrier energy distribution and the related volume distribution, the 
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particle magnetic state, and the effect of the interparticle interactions 
from dynamical as well as static points of view. We will discuss the 
properties resulting from ZFC magnetization or ,ydc measurements in 
Section F.2.1, those corresponding to FC magnetization in Section F.2.2, 
and the effect of the interparticle interactions on the susceptibility in the 
superparamagnetic state and the meaning of the superparamagnetic 
temperature O,, in Section F.2.3. 

F.2.1. Zero-Field-cooled Magnetization (MzFc) Experiments 

Let us recall the usual process. The sample is cooled at once without 
applied field from a temperature where all the particles are in the 
superparamagnetic state until the lowest temperature T,,, . Afterward a 
field is applied and the measurement is performed increasing the tem- 
perature. In fact, if the magnetization in the superparamagnetic state has 
to be studied, the above condition on the initial temperature must be 
fulfilled. But if only TB is of interest, it is sufficient that the magnetic 
moments m of the particles are frozen in random orientation at Tmin. This 
can easily be checked from the zero field magnetization value, which must 
be equal to zero. 

An example of MZFc  variations is shown in Fig. F.2.1 and concerns 
y-Fe,O, particles in a polymer with different degrees of d i ~ p e r s i o n . ~ ~  The 
M,,, always follows the same variation. At very low temperature, when 
all the m are blocked, M,,, = M,?,,Heff13K, where M,, represents the 
nonrelaxing magnetization, K the anisotropy constant, and He,, the field 
seen by the particle. This expression corresponds to the magnetization of 
monodomains with uniaxial symmetry but does not take into account the 
existence of an eventual m order (see Section E.2). On increasing the 
temperature, M Z F c  increases and shows a maximum for a temperature 
T,,, related to T,. Afterward, MZFc decreases and from a certain 
temperature Tbra, M,,, shows thermodynamic equilibrium properties, 
called properties in the superparamagnetic state, when the m relaxation 
time for the appreciable largest particle is much smaller than the heating 
rate. 

This variation has been observed for numerous systems of fine 
particles, for example: NiO antiferromagnetic  particle^,'^' Ni particles 
embedded in a SiO, matrix,'49 Fe particles in a SiO, matrix,'50"51 Fe,O, 
colloids,'52 and Fe particles in a silica 

In the superparamagnetic state, M,,, is given by the well-known 
formula, by neglecting the interparticle interactions, the volume dis- 
tribution, and the anisotropies: 

(F.2.1) 
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Figure F.2.1. Thermal variation of zero-field-cooled magnetizations of y-Fe,O, par- 
ticles dispersed in a polymer. The averaged diameter corresponding to the mean volume is 
( D )  =7nm.  Interparticle spacing of 5 ( D )  (IF), and 1 . 4 ( 0 )  ( IN);  chains (CH); strong 
aggregates (Floc). 
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where 2 is the Langevin function which reduces for M,,VH,,,IkT < 1 to 

(F. 2.2) 

However, this formula is a very rough approximation because almost 

For low H values, Chantrell et al.153 have derived a precise expression 
all the actual parameters of the sample have been neglected. 

valid for MnrVH,,,lkT << 1: 

M'rVHeff [ C O S ~ +  +2 1 (1 - 3 cos2+)(1 -+)I + E(Hzff) 
M Z F C =  kT 

(F.2.3) 

with 

and 

with + being the angle between Heff and the easy direction. 
With random easy axis Eq. (F.2.3) reduces to (F.2.2). The volume 

distribution can be easily introduced in (F.2.3). For random easy axis, we 
obtain 

(F.2.4) 

Without interaction, that is, for a sample where the particles are very 
far from each other, He,, is equal to the applied field ITapp. In the usual 
case where the interparticle interactions are not negligible, Heff, has to be 
expressed from Happ, which will be discussed in Section F.2.3. 

We also note that the validity of Eq. (F.2.3) can be extended by 
calculating the terms in H:,,, Hzff and so on (the even terms vanish). We 
note also that there are some typing errors in Ref. 153. 

Recently, general expressions have been established for MZFc and the 
initial s~scept ibi l i ty . '~~ However, some typing errors and mainly the 
utilization of unusual reduced variables complicate the understanding of 
the work. We agree with the general steps, but we think that the 
calculation is not valid for a narrow-volume distribution because the 
model of critical volume is too rough in this case. In addition, the 
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treatment of the interactions is crude (see Section F.2.3). On the other 
hand, it seems that the authors have not weighted M,,, by V in the 
average calculation. We want to point out that all the experimental setup 
measure the magnetic moment (not the magnetization) and that the 
measured magnetization is 

(F.2.5) 

and not M,,,, = ( M ( V ) ) ,  which is often forgotten in studies. 
Variations of the peak temperature T,,, of the susceptibility have also 

been studied in relation to the particle c~ncen t r a t ion . ’~~  The interparticle 
interaction model presented in Section E.3.3 has been adapted in 
particular by including the volume distribution. However, the calculated 
change in T,,, with concentration is smaller than that observed in 
experiments on Fe,O, fine-particle system. This could be due to the 
difference between Happ and He,, (see below) but could also be an 
intrinsic property. The same trend has been observed for y-Fe,O, fine 
particless9 and is probably due to surface effects (see Section E . l ) .  

The TB variation with applied field have been calculated71 from a 
simple model based on the fact that for Ha = MHe,,/2K 20.05, only the 
field orientations equal or near to $ = r r /2  contribute to the relaxing part 
of m. One error takes place in the statement of the model and concerns 
the energy barriers: only the two barriers for 8 < rr are of importance. 
Fortunately, the correction does not change the continuation of the 
calculation. In addition, some assumptions seem now too simple. How- 
ever, a good agreement is obtained with experimental results (Fig. 
F.2.2). Other calculations have been performed later, taking into account 
the effects of the interparticle interactions.”’ 

Finally, we want to emphasize that except for samples where the 
particles are very far from each other, a strong difference can appear 
between Happ and Her,, depending on the geometry of the experiment. 
We show an example in Figure F.2.3 for Fe particles in an A1,0, 
matrix.89 The sample has a thick-film shape and Happ is parallel or 
perpendicular to the sample plane. Strong variations appear that lead to a 
noticeable difference for T,,, . 

F.2.2. Field-cooled Magnetization (MFC) Experiments 

The process is the same as for M,,, experiments except that the cooling 
is done under Hasp but here the condition related to the superparamag- 
netic state at the initial temperature is very important. If an appreciable 
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4 I 

th 0.5 

Figure F.2.2. Magnetic field versus reduced temperature t ,  = 1 - T,(h)/T,(O) for Fe 
particles in A1,0,. The dotted line (b) and the full line (a) show the best fit to the formula, 
without or with interacting field, respectively. (Reproduced with permission from Ref. 71 .) 

population of the largest particles is blocked at the initial temperature 
because their m relaxation times are still slow, the initial magnetic state of 
the sample is not well known, due to the fact that the magnetic state of 
the blocked particles depends on the thermal history of the sample. This 
alters the M,, values by an unknown part that can vary with temperature 
and yields uncertain quantitative estimations. 

Magnetization M,, always follows the same variation (Fig. F.2.1). On 
decreasing the temperature, M,,  is merged with M,,, until Tbra (see 
previous section). Then M,,  continues to increase and from a certain 
temperature T,,,, M remains constant. In the absence of an energy 
barrier (volume) distribution, the three temperatures Tbra, T,,,, and T,,,, sc 
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Figure F.2.3. Thermal variation of ZFC and FC magnetizations for Fe particles in 

A1203 for H,,, = 50 Oe perpendicular and parallel to the plane of the thin sample. 

are very near each other. Sometimes, M,, shows a light maximum, which 
will be discussed later. 

Chantrell and W ~ l h f a r t h ' ~ ~  have developed a model that takes into 
account the cooling rate rc.  This model predicts that until a certain 
temperature Ts(r,) corresponding to the blocking temperature related to 
r,, the system remains in thermal equilibrium and M,, follows the 
superparamagnetic law, like MZFc. On passing through T B ( i c ) ,  the 
equilibrium magnetization is frozen in and below, M,, remains constant- 
equal to (MFC)max. An expression of TB(r,)  is given. We note that TB(rc)  
is evaluated with respect to the TB value for static measurement, which is 
roughly calculated and by supposing that the applied field is parallel to 
the easy direction. However, it is not too complicated to derive a more 
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accurate expression from the model. Finally, the authors study the effect 
of a V distribution using a lognormal distribution. They show that the 
distribution leads to a smoothing of the abrupt variation predicted for 
single-volume particles. 

For quantitative adjustment, the model needs some improvements, 
such as more accurate expressions for TB and for the barrier under field 
with random easy axis. It is also necessary to take into account the 
interparticle interactions from dynamical as well as static points of view. 
We recall that He,, can differ strongly from Happ (Fig. F.2.3). However, 
the general trends deduced from the model remain true: 

1. Noticeable differences for M,,  are observed only if the r,  values are 
very different, by at least one order of magnitude. 

2. For single-volume particles, M,,  remains constant below TB(r,) .  
That means that for an actual sample with a V distribution, M,,  will 
remain constant below T,,, = TB(rc)  relative to the appreciable 
smallest volume. It is interesting to point out that (MFC)max does 
not depend on V in first approximation, but only on rc and on the 
field. 

3. In the same way, Tbra = Te(rc)  relative to the appreciable largest 
volume. 

We note that below TB(r,) ,  M, ,  is always out of thermodynamic 
equilibrium and that M,,  variation with time will be observed if the 
observation time is sufficiently long. 

Three last comments are worthwhile. First, the analysis of M,,  has 
been done on decreasing the temperature. In fact, the M,, measurements 
are usually performed with increasing temperature. There is no appreci- 
able difference if the cooling rate rc and the heating rate rh are not too 
different. But if r,, is much slower than rc ,  which is quite possible as the 
measurements take place during the heating, (MFC)max(r,) is smaller than 
the (MFC)max value obtained with a cooling rate equal to r,,. In this case a 
small maximum appears for M,, (Fig. F.2.4). 

Second, examination of Figure F.2.1 reveals that the M,, increase is 
much more pronounced for particles without interaction than for particles 
with interactions and that T,,, is much lower for particles without 
interaction. As the volume distribution is the same for all the samples, a 
contradiction seems to appear except if we suppose that the energy 
barrrier distribution, in this case not related directly to the V distribution, 
is strongly narrowed for particles with interactions. In fact, we have 
shown in Section E.3.4 that the interactions could narrow the E, 
distribution with regard to the V distribution. Other causes are possible 
but in our opinion, strong effects are not realistic. At  present, it is 
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difficult to conclude because M,, has not yet been modeled taking into 
account the difference between Happ and He,, due to the interparticle 
interactions, and the results shown in Figure F.2.1 have not been 
obtained with controlled parameters because the shape of the sample and 
the field direction were not well defined. 

Finally, differential FC experiments proposed by Nee1 in his historical 
study' have never been performed, to our knowledge. The zero-field- 
cooled process is at once used until a given temperature, afterward the 
FC process is operated. This permits an exploration of the M,,  values vs. 
V ,  which can be very useful when M,, varies with V.  
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F.2.3. Magnetization in the Superparamagnetic State 

As discussed in the Section F.2.1, the component of the particle 
magnetization along a weak applied field can be written as follows's3: 

(F.2.6) 
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with 

where M,,  is the nonrelaxing magnetization of the particle, He,, is the 
effective field acting on the particle, $’ is the angle between Heff and the 
easy direction (we consider uniaxial symmetry), and 

Z, = lor CoSne sin 6 exp[-a sin201 (F.2.8) 

with a = KVIRT. 
Two problems have to be resolved. First, the determination of Heif 

with regard to the field Happ applied on the sample, which contains the 
particle assembly; and second, the calculation of the mean magnetization 
( A ? )  of the particles along Happ by averaging on V and I)’, because a 
disordered arrangement of particles with a V distribution and easy 
directions at random is considered. 

F.2.3.1. Problem Statement. If the volumic concentration C, of particles 
in the sample is very low, Heff = HaPP, this relation is exact only when the 
sample contains one particle. For magnetic dipoles, two models have 
been proposed for the evaluation of H e f f ,  which account for the dipolar 
interactions between dipoles. 

They define a spherical cavity containing one magnetic dipole and 
consider the continuum limit. The field He,, acting on a dipole is the sum 
of the field Hex,  acting on the cavity and a reaction field. 

In the Lorentz m 0 d e 1 , ” ~ ” ~ ~  the medium is not polarizable. Then the 
reaction field is 

where p is the permeability of the medium referred to Hex, .  
However, this hypothesis is a very rough approximation. Later, 

~ n s a g e r ” ” . ’ ~ ~  has considered a polarizable medium. In this case, the 
reaction field is written as follows: 

(F. 2.10) P - 1  
Hans =- K x ,  

Finally Hex,  can be expressed from Happ by considering the de- 
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magnetizing field Hd relative to the external shape of the sample. Then 

H e x 1  = Happ + H, (F.2.11) 

Now, for application to fine-particle samples, it is possible to define in 
an analogous manner a spherical cavity containing one particle considered 
as a superdipole in such a manner that the volumic concentration of the 
particle in the cavity is equal to the C,  value valid for the  ample.'^.^' 

A first difficulty is related to the existence of anisotropies. Equations 
(F.2.9) and (F.2.10) have been established in the absence of anisotropy, 
which is correct for magnetic dipoles. But for fine particles, the time- 
averaged magnetization ( M )  is not parallel to Heff and Eqs. (F.2.6) and 
(F.2.7) give the component along Heff.  On the other hand an averaged 
value of (M) has to be considered. Due to the random orientation of the 
easy directions (M)  is parallel to H,,,, which leads to a constant value for 
H,,, by applying Eq. (F.2.11) with H , = N ( M )  where N is the de- 
magnetizing tensor. 

Because of the p definition, 

P = 1 + 4.nc,xext (F.2.12) 

where xeXt is the susceptibility of the particle related to He,, and C, the 
volumic concentration. If we admit that the two models consider only the 
component of the magnetization parallel to He,, for the calculation of the 
reaction field, Eqs. (F.2.6) and (F.2.7) can be applied with 4' = +!I, with +!I 
being the angle between Hex, and the easy direction. 

F.2.3.2. Application of the Lorentz Model. In this model 

H,,, = He,, + NiC" ( M )  (F.2.13) 

with Ni = 47i-/3. Then, 

( M )  = (H,,, + NiC, ( M ) ) C / T  (F.2.14) 

(F.2.15) 

Now, ( M )  has to be averaged on $. But, the Lorentz model leads to 
( M )  divergence when 1 - NiC,C/T= 0. Therefore, the ( M )  averaged 
value can be determined only under conditions, that is, 1 - NiC,(Mi,V/ 
2kT)( 1 - Z2/Zo) # 0 and if this value is positive, which is fulfilled when C, 
is not too high, then NiC,(M~,V/kT)I,/Z, < 1. 
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For this latter case, a complicated formula is obtained for (A?): 

X In (F.2.16) 

with p' = NiC,(ME,V/kT), and 

with 

(F.2.17) 

For small p' value, Eq. (F.2.16) reduces to 

From Eq. (F.2.17), 4 <Z2/Zo < 1 for any LY value, then the p' term varies 
between p ' /3  (a  = 0) and 3p'/5 (a  = w). 

In fact, we can see that NiC,(M) is the component of the magnetizing 
field due to the spherical cavity. Now we can consider all the components 
of this field. In the axis system where the easy axis is along 0, and Heff in 
the zOy plane (Fig. F.2.5) with an angle +' with 0,, ( M )  is given by 

ME,VH,ff -sin 1 4' (1 - 4) = u,H,,,sin +' (F.2.19) ( M ) ~ =  kT 2 
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Figure F.2.5. Coordinate axis system for the particle. 

As 

Hex, is also in the zOy plane at an angle @ with Oz (Fig. F.2.5). From 
Eq. (F.2.14), it is easy to calculate the ( M )  component along Heff, which 
verifies (F.2.6) and (F.2.7). 

Now, the (M) component (M)  along Hex, has to be calculated: 

( M ) , ,  = (M),sin J/ '+  (M),cos +' (F.2.21) 

From Eqs. (F.2.19) and (F.2.20) 

(F. 2.22) 
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By reporting in Eq. (F.2.21) we find'60: 

(F.2.23) 
u,sin2* 

( M )  1 1  = [ 1 - NiC,u, -k 1 - NiC,u, 

Because $ is random, an averaged value ( A ? ) , ,  has to be considered: 

(F. 2.24) 

We can check two points. If C, = 0, we find for ( M )  II the usual value 
(A?)rr  = MtrVHe, , /3kT.  If a = 0 ,  Z2/Z0 =+, and we have 

For this value of Z,/Z,,, from (F.2.7), C = MtrV/3kT.  Introducing this 
value in (F.2.15), we find, as expected, the same expression as (F.2.25). 

We note that an average problem arises by considering only the 
component of the magnetization parallel to H,,, for the calculation of the 
reaction field, while this is not the case when considering all the 
components of this field. Nevertheless Eqs. (F.2.16) and (F.2.17) can be 
approximated by 

with 1 5 b 5 2 depending mainly on a. 

F.2.3.3. Application of the Onsager Model. For this model, it is not 
clear at present how to take into account the fact that (M)  is not parallel 
to Heff.  We shall consider below only the ( M )  component parallel to Hex, 
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for the calculation of the reaction field, in this case along He,.,. Then 

It is possible to consider a cavity volume slightly smaller than that 
corresponding to C, for the evaluation of the effect of the polarizability, 
in order to try a correction of the defectiveness of the continuum limit 
hypothesis.” Then 

(F .2.27) 

With p near unity and xeXt given by Eqs. (F.2.6) and F.2.7), we find 

(2P 4R + 1) I”’ 
(F.2.28) A ,  

C - _  
Xext - T 

Y R 3.n + 1 -r ’ - 

with R = CC”Ni(2p + l ) / T  and C given by Eq. (F.2.7). 
The average on (I, of (F.2.28) leads to a very complicated formulation. 

Fortunately, Eq. (F.2.28) can be approximated in usual cases with an 
error smaller than 3% by 

The average on $ of Eq. (F.2.29) leads to 

1 

(I- { + R f ( 3 ~ - 1 ) [ 1 + ~ R ’ ( l - ~ ) ] } 1 ’ 2 )  

(F.2.29) 

(F.2.30) 
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R' =- M2,rV C,Ni(2p + 1) 
3kT 

This formula can be approximated with an accuracy smaller than 2% 
by (F.2.31), except for small C, values. 

R'l2p 
3kT (F.2.31) 

For low C, values, the error coming from Eq. (F.2.31) can be about 
10%. A better formula is 

iex, = !$$! { 1 + !$$! NiC, [ 1 + (3 2 - 1) 'I} (F.2.32) 

F.2.3.4. Hex, vs. Happ. Let us consider the evaluation of Hex, with 
regard to the applied field Happ. The usual difficulty concerning the 
sample shape also occurs, the demagnetizing field H, being constant 
through the sample only if the shape is ellipsoidal. However, the usual 
approximations can be used and if C, remains (approximately) constant 
till the sample limits: 

H e x ,  = H a p p  - Ne ( M )  cu 

Here, N, is the demagnetizing tensor relative to the external shape of 
the sample. 

The angles (a, b) of the Happ direction can be defined with respect to 
the ellipsoid axis (Fig. F.2.6). As ( M )  is parallel to Hex,, the suscep- 
tibility xapp along Happ is given by 

(F.2.33) 
sin'a sin2b sin2a cos2b cos'a + + 

i a p p  = i e x t  ( 1 + N e , c u i e x t  1 + N e y C u i e x t  1 + N e 2 C v i e x t  

For an ellipsoid of revolution and for a = 0 or 5-12, we find the usual 
formula (also valid for a sphere) 

1 1 

X a p p  Xext  
- - - + NeC, (F.2.34) 

where N, is the demagnetizing factor for the Happ direction. Equation 
(F.2.33) allows the xapp determination for any Happ direction. In par- 
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Figure F.2.6. Coordinate axis system for the sample. 

ticular, it can be useful for the evaluation of xapp where Happ is slightly 
disoriented with regard to a = 0 or 7712. 

F.2.3.5. 
the Onsager model. From the approximate formula (F.2.31), we find 

Final Formulas and Outcomes. We can now calculate X,,, in 

- M 2 , Y  1 -___ 
Xapp - 3kT M~ v 2p + 1 1 

l + e C u ( N e - -  2P 

2p + 1 

(F. 2.35) 

For small C, values, from (F.2.32) 

- M 2 , Y  1 
(F.2.36) -- 

X ~ P P  - 3k 
T + 3k Cv{ N, - Ni[ 1 + (3 2 - 1) 'I} 
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In the Lorentz model 

In all these calculations, we have not considered the presence of a 
volume distribution. However, for a precise adjustment, it has to be 
accounted for. In this case 

and the volume average calculation is to be performed on Eqs. (F.2.31) 
or (F.2.32), by taking into account a possible M,, dependence on V due 
to the surface magnetic disorders. At this step, it is important to recall 
that for the Vaverage calculation, x must be weighted by V. It is difficult 
to establish simple formulas for (X,,,), except for small C, values where 
Eqs. (F.2.36) and (F.2.37) remain valid in a first approximation with 
( M t , V 2 )  / ( V )  replacing M:,V. We can see that (fa,,) depends mainly 
on ( M ; , V ~ ) / ( V ) .  

We examine now the outcomes of Eqs. (F.2.35)-(F.2.37). Equation 
(F.2.37) can be rewritten as 

Or, because M,, is temperature dependent, 

A straight line is observed for the thermal variation of l/,fapp only if 
the variable T' = T[M,,(O)/M,,(T)]* is used. By using the usual writing 
of ,yap, = C,, /( T - Osp),  we deduce, 

(F. 2.40) 

In the Onsager model, a similar formula is obtained for small C, values 
[we note that Eq. (F.2.32) is not valid for low TI,  but in the general case, 
a straight line is not obtained even if the T' variable is used. In Figure 
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-200 -100 0 100 200 300 
Figure F.2.7. l l x  variafions in the Lorentz and Onsager models for demagnetizing 

factor N = 0 ( H , , )  and 47r (H,) (see text). (Reproduced with permission from Ref. 90.) 

F.2.7 the variation of l/,fapp is represented for the two models for N, = 0 
and 47r, M:,V/3k = 50, C, = 0.28, and p = 1 for the Onsager model. 

Two comments can be made. First, the Lorentz model leads to a true 
thermodynamical transition if N, < Ni = 4 ~ / 3  at T = Osp, which has never 
been observed. Indeed, when the models have been applied to paramag- 
netism, the question of the existence of such a transition was debated. No 
definitive conclusion was drawn because experimental evidences were 
lacking, mainly due to the difficulties in finding a material that was 
paramagnetic for T < OP and to very small ,y values. Recently, it has been 
shown that the Lorentz model does not allow a good adjustment of the 
variation of x vs. T for ferrocolloids.161 From the results obtained (see 
below) with mastered parameters, that is, when the Hap,, direction is well 
defined with regard to the sample and when the demagnetizing field 
relative to the external shape is taken into account, the Lorentz model 
can also be ruled out for fine particles. This concludes the debate. 
Indeed, this result is not surprising as the Lorentz model neglects the 
medium polarizability, which is too rough an approximation. 

Second, in the Onsager model, l/fapp shows a curvature (Fig. F.2.7). 
However, taking into account the temperature range where Xapp at the 
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thermodynamic equilibrium is measured, that is, T higher than T ,  
relative to the large volumes of the distribution with generally TB smaller 
than about 100°C, this curvature is weak. For C, not small, explicit 
formulation for C,, cannot be derived and (F.2.38) has to be used. 

F.2.3.6. Comparison with Experimental Results. The experimental re- 
sults for which the measurement parameters are controlled, which 
permits only the derivation of the various parameters included in the 
formulas and a checking of the models, were until now very limited. They 
concern Fe particles in A1,0, m a t r i ~ * ~ ” ~  and y-Fe,O, particles 
We show an example in Figure F.2.8 for y-Fe,O, particles. We can see 
from the figure that a weak curvature is observed for 1/x when Happ is 
parallel to the sample plane. It is also clear that the value of the intercept 
(the O,, value) of the quasi-linear part of 1/x with the temperature axis is 
strongly dependent of the thermal correction M:,(T) /M:,(O). That raises 
the problem of the determination of this variable. In fact, it is only 
directly measurable from neutron diffraction experiments (see Section 
F.8). It can be deduced from magnetization under high-field experiment 
(see Section F.3) on the condition that M,,  does not vary much with Hap,. 
If this is not fulfilled, only approximate values are obtained, which leads 
to difficulties for a precise determination of the intercept. We shall discuss 
the M:,(T)/M:,(O) determination in Section F.3. 

At low field, a good agreement is found for the difference O,,, - Ospll, 
where O,,, and O,,,, correspond to the O,, values for the field perpen- 
dicular and parallel, respectively, to the sample plane, which means that 

89.90,135 

-. 

0 

T’(K1 
Figure F.2.8. Thermal variation of 1/,y for y-Fe,O, interacting fine particles for an 

applied field H = 5 Oe perpendicular or parallel to the surface sample. 
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Eq. (F.2.34) is correct. A good agreement is also found for the two esp 
values for high C, values while for low C, values some discrepancies 
occur. However, it is difficult at the present to know if these shifts are 
due to the lack of precision on the thermal correction or to other effects 
ignored in the model. We note that the calculation of Ref. 144 leads for 
C, = 0 to a negative O,, value in particular cases. 

Now, we examine some results obtained on other fine particles, but 
only qualitative trends can be deduced as the experiment parameters are 
not given. For Fe,O, ferrofluids with a weak C, value,’62 a negative Osp 
value is obtained. The experiment has perhaps been performed with Hap, 
perpendicular, but 10spl seems too high with regard to the above model. 
This result follows the same trend as those obtained for y-Fe,O, particles 
with weak C, values (see above). For other Fe,O, ferrofluids”* with 
various C, values, the authors indicate that Osp is negative and that 10spl 
increases with C,,  which is in agreement with the model for H,,, 
perpendicular. For Ni in SiO, matrix’49 and Fe in SiO, matrix’63 with 
medium and high C, values, O,, is equal to +20 to +40K, in agreement 
with the model when Happ  is parallel. 

Finally, a last property has been evidenced very r e~en t1y . I~~  The 
magnetization in the superparamagnetic state has been studied vs. Hap, 
on y-Fe,03 particles in a polymer. The effect of Hap, is the same for 
samples with C, =0.008 and C, =0.20, independently of the Hap, 
direction, which means that it does not depend on the interparticle 
interactions and is only related to the properties of a single particle. A 
small increase in C,, vs. Hap, is observed while a strong shift of Osp toward 
negative value (Fig. F.2.9) approximately proportional to Hap, is ob- 
served. At the present no definite explanation is proposed. 

F.2.4.  Effect of the Interparticle Interactions and Conclusion 

We have pointed out several times that the interparticle interactions 
considerably modify the properties. In accounting for the interactions, the 
following method can be used. Under field, a certain part of m is blocked 
in average, the other part relaxing. The model described in Section E.3.3 
can be applied for the latter part, but it acts only on this part, thus 
reducing the interaction effects (see Section E.3.4). The former part has 
to be determined, taking into account the difference between He,, and 
Hap, as discussed above. The calculation is not simple because the two 
parts are interdependent and it remains to do. 

In conclusion we want to underline that the magnetization in the 
superparamagnetic state depends strongly on different parameters such as 
the shape of the sample, the direction of Hap,, the volumic concentration, 
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Figure F.2.9. Inverse susceptibility of y-Fe,O, fine particles for various applied fields 
parallel to the surface sample. (Reproduced with permission from Ref. 135.) 

and the Happ value. These parameters also have a more and less strong 
influence on M,,, and M,, values at low temperature. Any interpreta- 
tion must take into account that these parameters have to be controlled. 

F.3. Magnetization under Moderate and High Applied Field- 
Determination of the Nonrelaxing Magnetization 

In this section we discuss the magnetization results under moderate as 
well as high applied field when the strength of the field leads to only one 
minimum for the anisotropy energy. In this case the longitudinal relaxa- 
tion is suppressed, and only the transverse relaxation, due to vibrations of 
the magnetic moment m in the potential well, remains. The results are 
stated by the value of the nonrelaxing magnetization M,, of the particle 
equal to Iml/V, which depends on the temperature and the applied field. 
The magnetization M,,  is an important parameter, as on one hand, it is 
directly related to the magnetic state of the particle beside any relaxation 
phenomenon, and on the other hand all the results obtained from 
magnetic measurements will depend on its value. 
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F.3.1.  Nonrelaxing Magnetization Determination 

As we have discussed in Section B, the nonrelaxing magnetization M,,  
differs from the saturation magnetization M, of the bulk material because 
of the magnetic irregularities on the particle surface. The difference is not 
small and the M,, vs. T variation can be very different from the M, vs. T 
variation. All the experimental results depend on the M,, value directly 
or through the preexponential factor T~ (see Section D). It is therefore 
very important to determine M,, (T)  independently. However, this 
implies some difficulties. In fact, in principle any experiment whose 
results depend on M,, could be used on the condition that the other 
parameters are known and a correct model is applied. However, general- 
ly some parameters need to be determined, and the model needs to be 
checked. In our opinion, three types of experiments allow the M,, 
determination in particular conditions: small angle neutron scattering 
experiments (see Section F.8), magnetization measurements under mod- 
erate and high applied fields (the results will be discussed below), and 
field-cooled magnetization (M, , )  measurements under sufficiently high 
field. 

For M,, measurements, a sufficiently large field H a p p  has to be used in 
order to keep only one minimum for the anisotropy energy. For uniaxial 
symmetry H a p p  >2KllMnr(Happ, T )  (see Section D) where K ,  is the 
anisotropy constant including all the anisotropy contributions (see Section 
C). Under field the result is the same as for magnetization measurements, 
which will be described below. If the field is removed below a certain 
temperature TCri such that TCri is smaller than the blocking temperature 
TB of the smallest particles for which the population is appreciable, the 
relaxation of the remanent magnetization is very weak. In this case, 
M,,(T)  can be deduced for T < T,,, provided the anisotropy symmetry is 
known. This needs experiments at very low temperature if the V 
distribution includes an appreciable population of very small particles 
having low T,. In any case, the determination of M,,  will be possible only 
in a limited temperature range. Moreover, the results cannot be directly 
related to M,, if interparticle interactions lead to a collective magnetic 
state at low temperature (see Section E). 

F.3.2. Magnetization under Moderate and High Applied Fields 

For an applied field Happ higher than 2K11M,,(Happ, T ) ,  in the case of 
uniaxial symmetry, only one minimum remains for the anisotropy energy, 
near the H a p p  direction. The longitudinal relaxation is suppressed and 
only vibrations in the potential well are possible. 
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A rough approximation of the resulting magnetization can be obtained 
by supposing the anisotropy negligible. In this case, 

(F.3.1) 

where V is the particle volume and 2 is the Langevin function, which 
reduces for high-field Happ values to 

kT 1 

V Haw 
( M )  =M,, (F.3.2) 

In fact M,, depends on T ,  but also on Happ and V because spin 
disorders occur at the particle surface, which represent an important part 
of the particle due to its small size. ( M )  has to be averaged on Vand the 
measured magnetization is given by 

- 
- M,,V kT 1 (M)=-Z- : -  v v Happ 

(F.3.3) 

A better expression is obtained by taking into account the anisotropy and 
by applying the Boltzmann statistics. 

In the usual axis system for uniaxial symmetry where + is the angle 
between Happ and the easy axis, ( M )  is given by 

x (cos 8 cos + + sin 8 sin + cos cp)sin 8 d8 dq (F.3.4) 

with 

and 
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Figure F.3.1. Experimental and calculated magnetization values vs. applied field at 
various temperatures for Fe fine particles in AI,O, matrix (Fe/A1,0,). (Reproduced with 
permission from Ref. 35.) 

By series expansion and integration, the following is obtained'64: 

1 1 
~- ( M )  - 1 - - - [a(sin2+ - 2 cos2+) + 2a2sin2+ cos2+] 7 
M", P P 

- [-2a(sin2+ - 2 cos2+) + 2a2(sin4+ - 12 sin2+ cos2+ 

+ 2 ~ 0 ~ ~ 4 )  + 8a3(sin2+ - cos2+)sin2+ cos2+] 7 
1 (F.3.5) 

P 

High-order 1/H terms are indicated in Ref. 164. 
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For easy directions at random with regard to Happ direction, (F.3.5) 
reduces to 

Finally, by averaging on V, the following expression is obtained: 

(F. 3.7) 

The two first terms of (F.3.7) cover the (F.3.3) equation, and the third 
term corresponds to the well-known effect of disalignment of m with 
regard to Happ due to the anisotropy. The formula has a more extended 
validity than (F.3.2), being applicable to lower fields. It also allows the K, 
determination or at least a check of its value according to the accuracy. 

For determining with good accuracy the parameters included in 
(F.3.7), magnetization results are necessary over an extended range of 
Happ values. Since the formula is valid for Happ > 2K,/ M,, , corresponding 
to Happ ~ 0 . 2 - 0 . 5 T  €or the usual case, it is useful to perform measure- 
ments until about 5T. In such a case, it is necessary to take into account 
the variation of M,,  vs. Happ. If it is not negligible and M , ,  is kept 
constant, anomalies will be observed in the variation of the second term 
of (F.3.7). For weak M,, vs. Happ variations, the following phenomeno- 
logical relationship can be used: 

Mnr(T, ~ a p p )  =z Mn,(T, 0 )  + c l ( ~ ) ~ a p p  + ~ 2 ( ~ ) ~ : p p  

The result obtained on fine Fe particles embedded in an A1,0, 
matrix35 with V about 20nm3 are shown in Figure F.3.1 (on page 367). 
The data have been fitted with Eq. (F.3.7) excluding the 1/H:,, term. 
The variation of M,, vs. Happ has been estimated following Eq. (F.3.8). 
The variation of the second term of (F.3.7) is shown in Figure F.3.2 for 
the same set of particles labeled S12N and for two other sets labeled 
S16N and S14N with v = 100 and 200 nm3, respectively. One can see on 
Figure F.3.2 that some slight discrepancies occur at low temperature, 
probably due to the limits of the phenomenological (F.3.8) formula. The 
deduced M,,( T ,  0) values normalized to bulk iron value are represented 
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T(K) 
Figure F.3.2. Thermal variation of the k T /  ( V )  term deduced from fitting procedure 

for three Fe/AI,O, samples with different average particle volumes. (Reproduced with 
permission from Ref. 35.) 

in the Figure F.3.3. M,,(O, 0) is lower than the bulk value and decreases 
with v. The thermal variation of M,,(T,O) is much more pronounced 
than for bulk, especially with decreasing v. This is in agreement with 
what is expected for the influence of surface magnetic disorder (see 
Section B). 

Nevertheless, Eq. (F.3.8) cannot be used for strong variations of M,,  
vs. Happ, which seem effective for certain y-Fe,O,  particle^.^^^^^ A term 
in l/Happ would be reasonable in the expression of M,,(T, Hap,), but 
such a term mixes with the second term of (F.3.7). Therefore the v 
determination is not possible. The best way for determining M,,(T, 0) is 
to fix v, known from other measurements and to derive M,,(T, H )  and 
M,,(T, 0) by extrapolation. Of course, the accuracy on M,,(T, 0) will 
depend on the accuracy on v. 

Finally, we note that Pfeiffer has calculated the variation of the 
magnetization vs. Happ for randomly oriented fine particles in the 
framework of a two-level model.70 This calculation, valid in this model for 
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- S16N 

~ 

Figure F.3.3. Relative thermal variation of the magnetic moment ~ ( 0 ,  T) =M,,V for 
three Fe/A1,0, samples (the same as in Fig. F.3.2) normalized to bulk iron (full lines) and 
for S16N and S14N samples normalized to S12N sample (dotted lines). (Reproduced with 
permission from Ref. 35.) 

any Happ values, shows that noticeable deviations of the Langevin 
function occur as soon as a is not small. 

F.4. Remanence Magnetization and Coercive Field 

For particulate media used for magnetorecording, the most important 
parameters are the remanence magnetization (RM) and the switching 
field, that is, the field allowing the magnetization reversal, related to the 
coercive field H,. For such technological reasons a large interest is 
currently devoted to the measurement of both RM and H,. For particles, 
showing appreciable thermal relaxation of the magnetic moment m, the 
interest toward these measurements is mainly from a fundamental point 
of view. 

In this section we will point out some aspects that will allow us to gain 
better insight into the m relaxation. We will first describe the different 
types of remanence curves; then we will discuss the expected behavior 
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and the experimental results; and finally we will make some comments on 
coercive field measurements. 

F.4.  I. Remanence Magnetization Curves 

In the case of dc applied field, three different primary remanent 
magnetization curves can be measured. They are thermoremanent mag- 
netization (TRM), isothermal remanent magnetization (IRM), and dc 
demagnetization (DcD) curves. 165,166 

The remanence curves are measured as follows: 

1. TRM: the field is applied at high enough temperature, that is, 
higher than the highest blocking temperature T, corresponding to 
the biggest particles volume, whose population is appreciable. Then 
the sample is cooled down to the measuring temperature, at which 
the field is removed. 

2. IRM: the sample is cooled down in zero field from high enough 
temperature, as for TRM, to the measuring temperature, at which 
the field is applied and subsequently removed. In this measurement 
it is necessary that before applying the field a thermodynamic 
equilibrium state, corresponding to zero magnetization, is actually 
reached. 

3. DcD: the sample is cooled in zero field down to the measuring 
temperature, at which first the sample is saturated to a remanence 
IRM = IRM(H = m), then a field is applied in the opposite direc- 
tion, and finally it is removed. At a given temperature, in absence 
of interparticle interactions, DcD is given by 

DcD(H) = IRM(m) - 2IRM(H) (F.4.1) 

The effect of interparticle interactions can be evaluated from 
A M ( H )  ,166-168 defined by 

A M ( H )  = DcD(H) - [IRM(m) - 2IRM(H)] (F.4.2) 

A M ( H )  is a useful parameter for recording media because magnetic 
interactions have a close influence on the noise. 

In an assembly of nonidentical particles each type of remanence arises 
because the moments of some particles have been taken over energy 
barriers, which they cannot overcome again (reversing their orientation) 
without external assistance from either an applied field or an increase of 
temperature. Thus the remanence is related to the distribution of energy 
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barriers in the system under investigation: 

where AE, is a critical value of the energy barrier, related to the 
characteristic volume for superparamagnetric relaxation (Fig. F.4.1). At  
a given temperature and for a given previously applied magnetic field, 
only particles for which the energy barrier is higher than the critical one, 
that is, that are in the blocked regime, contribute to the measured 
remanence. 

All the above reported remanences decrease with time. Other rema- 
nence curves can be obtained using ac fields, such as the anhysteretic 
remanence ,165 but they are essentially measured for magnetic recording 
media. 

Recently some equations have been proposed,'69 that relate the ZFC 
magnetization and the field-cooled magnetization FC through the rema- 
nent magnetization values: 

where M,,, represents the part of the magnetization that is time 

AEcrit AE 
Figure F.4.1. Schematic representation of the energy barrier distribution showing the 

origin of the remanence. (Reproduced with permission from Ref. 166.) 
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independent and t is the time of the measurements. 

M,,(H, T ,  t )  = M Z F c ( H ,  T ,  t )  + TRM(H, T ,  t )  - IRM(H, T,  t )  (F.4.5) 

Equation (F.4.5) was well checked for a system of fine magnetic 
particles,’“ but the verification needs a coherent process for the different 
experiments. In particular it is probable that the usual measuring process 
for M,,, that is, by decreasing the temperature until the lowest one and 
then by measuring the magnetization increasing temperature, does not 
allow such a check. M,,  should be instead measured during the field 
cooling. It is also possible that the interparticle interactions cause small 
deviations from Eq. (F.4.5), like from Eq. (F.4.1). 

F.4.2. Isothermal Remanence Magnetization ( I R M )  Studies 

The studies on IRM have been mainly devoted to the measurement of the 
IRM values just after removing the field and to its dependence on the 
field. 

IRM values have been predicted by models developed for a system of 
noninteracting fine particles with aligned easy axes ,170 randomly oriented 
easy and partially aligned easy axes,”’ with some degree of 
texture and taking into account the volume distribution, but neglecting 
the interparticle interactions. Another attempt’73 is based on the simula- 
tion method developed in Ref. 174. The cell under consideration consists 
of 1000 particles on both cubic and tetragonal lattices. Each spherical 
particle occupies a volume according to a Gaussian distribution, which 
essentially determines its switching field, and it is randomly assigned to a 
lattice point. The initial state for IRM is IRM = 0 and for DcD saturation 
remanence. Positive or negative dc field is applied. Each time the dc field 
is applied, the probability p ,  that the magnetic moment reverses is 
calculated for a given particle. A random number x is generated, and, if 
p ,  > x ,  the reversal is allowed. The local field is evaluated from applied 
field and interparticle in te rac t i~ns , ’~~ In our opinion, the assumptions for 
interparticle interactions are too simplified (see Section F.2), though 
refined calculations are used. However, it is difficult to know if the use of 
a more realistic formulation actually leads to important changes. IRM 
and DcD curves are derived from the simulation method and analyzed via 
the Henkel plot. 

The time dependence of IRM has been modeled for particles with easy 
axes aligned parallel to a small field, applied to magnetize the system, and 
for a random distribution of easy axes. The treatment assumes nonin- 
teracting particles and takes into account the volume distribution P(V) .  
The field is applied during a certain time t‘ and the measurement is 
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Ln (t) 
Figure F.4.2. Time decay of IRM for a system of fine cobalt particles: 0 experiment; - 

theory. (Reproduced with permission from Ref. 175.) 

performed at a time t. An excellent agreement is obtained with results 
obtained for a system of fine cobalt particles (Fig. F.4.2).'75 

Let us briefly discuss an important step of the calculation. The decay of 
any magnetization (see Section D) was generally written following: 

M = M ,  + ( M ,  - M,)exp[-r/~(V)] (F. 4.6) 

where M ,  corresponds to the m population blocked on the average in the 
lowest minima at the thermodynamic equilibrium. M I  = 0 in absence of 
applied field. M a  corresponds to the magnetization along the field 
direction at t = 0 and T is the relaxation time depending on the volume V. 
We have considered the simplest case of uniaxial symmetry and the field 
along the easy axis. 

Due to the volume distribution P(V) :  

Note that it is necessary to weight the M expression with Vpo because 

For the second term of the integral, one can assume that exp[-ti 
magnetic moments proportional to V are measured. 
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T(V)]  = 1 and 0 for ~ / T ( V )  < 1 and >1, respectively. Then a critical 
volume V, is defined such that T(V,) = t ,  and this second term reduces to 

(F.4.8) 

This assumption considerably simplifies the calculation. 
have 

shown that Eq. (F.4.8) is a good approximation as long as the volume 
distribution is not too narrow. The conditions are given in Ref. 176. 

Other a ~ t h o r s ' ~ '  have modeled the variation of DcD by considering 
that the easy axes are parallel to the applied field direction. Magnetic 
interparticle interactions have been introduced through an effective 
volume Veff ,  which increases when T decreases. The process is the same 
as in Ref. 143. In our opinion, the V,,, approach is phenomenologically 
correct, although the exponential variation of V,,, vs. T is not really 
justified. Anyway, verifications are difficult, due to the existence of free 
parameters. Note that the authors indicate that the logarithmic slope S of 
the DcD decay reflects the shape of the distribution. This clearly comes 
from Eq. (F.4.7) where 

176,177 More refined approximations and numerical calculations 

Several examples of DcD and IRM measurements on various particles 
can be found in the literature (see, e.g., Fe and Co particles).179 

F.4.3. Thermoremanence Magnetization (TRM) Studies 

F.4.3.1. Field Dependence. First, we will discuss the works devoted to 
the dependence of TRM values on the previously applied field, just after 
the removal of the field or a short time after (actually the calculations are 
valid for any time). A maximum in the TRM vs. H dependence, rather 
than a continuous increase to saturation (like for IRM), has been 
reported in the l i t e r a t ~ r e ' ~ ~ ' ' * ~  in analogy with what is observed in spin 
glasses.'81~'s2 Two models have been presented, that take into account the 
TRM variation during the cutting-off of the field. In both cases a volume 
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distribution is assumed, but the existence of a random distribution of easy 
axes and of interparticle interactions, usually present in real systems, is 
neglected. 

the variation of the field value during the 
cutting-off is linear, but the model assumes that the system relaxes toward 
zero magnetization, rather than toward the appropriate value of equilib- 
rium magnetization. The calculation leads to a maximum for TRM vs. 
field. 

The second takes into account the correct values for the 
relaxed magnetization, and a maximum for TRM vs. field is found, 
becoming more pronounced with decreasing the width of energy barrier 
distribution, only if the variation of the field during the cutting off is 
nonlinear. On the other hand, some experimental results's5 showed a 
peak in TRM vs. H even when a constant time of field reduction was 
used. 

Recently, two models have been developed accounting for the particle 
volume distribution and for the existence of interparticle interactions 
through a mean-field approach and Monte Carlo calculations.'86 

In the first approach, interaction effects are expressed by a field term 
( H , )  proportional to the magnetization of the system and acting in the 
same direction of the applied field ( H ,  = Ha + N,H,) .  A negative inter- 
action field is assumed, leading to a decrease of magnetization. Inter- 
action effects lower the saturation value of TRM, without giving rise to a 
peak, as with this formalism the interacting field at remanence saturates 
when the remanence is saturated.ls6 

In the Monte Carlo approach, where the particles and their axes are 
generated randomly, the exact behavior of the interaction field is 
calculated. A peak in TRM is obtained, as a consequence of the 
interaction field (it is assumed to be negative and increasing with 
increasing field, but it does not saturate when remanence is saturated).la6 

In the first 

F.4.3.2. 
of the remanent magnetization was predicted by NCel'~'s7: 

Time Dependence. For a single particle an exponential decay 

TRM(t) = TRM(O)exp(-t/T) (F.4.10) 

where the relaxation time follows an Arrhenius law [T = ~&xp(E/kT)] ,  
the magnetization reversal process occurring by a thermally activated 
mechanism. For an assembly of particles with volume distribution, 
implying a distribution of energy barriers, the time dependence comes out 
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from the integration over the relaxation time distribution function: 

(F.4.11) 

with z = j  0 VP(V)dV 

The TRM relaxation data have been very often analyzed in terms of a 
188-1YO. logarithmic law . 

TRM(f) = C - S ln(t/t,) (F.4.12) 

However, there are no physical reasons for using the above relationship. 
Moreover, the logarithmic dependence is observed only when the 
relaxation measurements are performed in a narrow time interval. In the 
few measurements extending over some decades of times, clear deviations 
from a straight line are observed in the plot of the TRM vs. ln(t),’27.191 
depending on the type of energy barrier distribution, on the magnetic 
field value, and on the strength of interparticle interactions. 

Time decay laws were derived for some specific relaxation time 
distribution functions. As an example for a gamma distribution function 
describing the relaxation time probability P ( T ) * ” , ~ ~ :  

The time dependence of TRM should be 

(F.4.13) 

(F.4.14) 

where K, is the modified Bessel function of the third type. 
This law allowed to fit satisfactorily relaxation data on a spin glass 

~ys tem,”~ but has not been applied to fine particles so far. 
Khater et a ~ ’ ’ ~  calculated the time dependence of TRM for an 

assembly of noninteracting uniaxial particles with a Poisson volume 
distribution function [P(V) dV= (4V/V,)exp(-2V/V0) dV]. Transforming 
the volume distribution in a distribution over relaxation times T ,  described 
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by an Arrhenius law T = .r,exp(m/kT), it follows that 

P(T/TO)d lIl(T/T,) p 2111(T/To)eXp[ - p  h(T/T,)]d h(T/T,) (F.4.15) 

where p = 2T/T, with T, = KV,/k. 
For a time regime 1 << T/T, << T,/T,, which can be experimentally 

probed, the thermoremanent magnetization can be expressed in a 
dimensionless form as follows: 

TRM(t) = {[l + /3 ln(t/To) + + [ p  l n ( t / ~ , ) ] ~  - (p/2)[1 + p ltl(t/T)]}(t/To)-P 

(F.4.16) 

The formula is the product of a polynomial in ln(t/T,) and a power law 
The detailed variation of TRM(t) depends on the values of T, 

and T~ characterizing the material, and it is expected to vary with 
temperature. 

The results of numerical calculations of Eq. (F.4.16) are reported in 
Figure F.4.3 for p = 0.08, corresponding to low temperatures and for 
0.20, corresponding to higher temperatures. At low temperatures TRM 
decays as lnt ,  while at higher temperatures the decay deviates from the 
logarithmic law toward a more rapid decay. Intermediate p values 
determine a gradual transition from one type of decay to the other. 

14 18 22 26 30 34 
In Wt,) 

Figure F.4.3. Time decay of TRM[q(t)] for two different values of the p coefficient in 
Eq. (F.4.16). (Reproduced with permission from Ref. 193.) 
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The calculated remanent magnetization compares favorably with some 
experimental results reported on spin glasses,’82 described in terms of a 
clusters-fine particles model. However, as far as we know, the Khater 
model has not been applied to fine particles materials. Assumed dis- 
tribution function is not realistic, as well as in most cases the absence of 
interparticle interactions. 

Labarta et a1.176 and Iglesias et al.i94 proposed a scaling procedure 
allowing to extend the actual interval of relaxation measurements to 
much longer times. The experimental relaxation data on fine particles 
samples (e.g., Fe,O, and FeC particles dispersed in a hydrocarbon oil) 
were found to scale with the variable T ln(t/.r,), as previously observed in 
spin g l a s s e ~ , ” ~ ” ~ ~  selecting an attempt frequency 1 / T ~  that brings all the 
curves onto one master curve. The same scaling behavior was found by 
Vincent et al.’96 on y-Fe,O, particles dispersed in a polymer. The 
T ln(t/T,) scaling gives evidence that the reversal of the particles magnetic 
moments through the anisotropy barriers is governed by thermally 
activated dynamics. The scaling comes indeed from the fact that most of 
the magnetization change at temperature T and time t is due to crossing 
of barriers of order of U, = kT ln(t/T,,). However, the scaling implies the 
absence of interparticle interactions and that the volume distribution is 
large. In this case, the scaling holds only for narrow temperature ranges. 
In Ref. 194 the experimental master curves were fitted to the theoretical 
one, taking the energy barrier distribution function to be a sum of two 
lognormal distribution functions (Fig. F.4.4). 

Sanchez et al.I9’ presented a computer simulation of the magnetic 
relaxation of an assembly of nonidentical, noninteracting, single-domain 
particles with uniaxial anisotropy. They analyzed the dependence of the 
magnetic viscosity (dMldInt)  on the shape of the energy barrier 
distribution function, assumed to be lognormal in type. 

Sampaio et a ~ ’ ~ *  developed a model for interpreting magnetic viscosity 
S ( H ,  T )  experiments at low temperature performed on small particles of 
Ba-ferrite. Their model, taking into account both particle size and 
switching field distribution, describes the experimental low-temperature 
dependence, S(H,  T )  T”2, and predicts the observed scaling behavior 
on field and on temperature. 

All the above-mentioned models do not account for the existence of 
interparticle interactions. Recently, Tronc et al. ,138 Fiorani et al. and 
Dormann and Fiorani” proposed a model for describing the time decay 
of TRM in a series of y-Fe20, particles dispersed in a polymer, with 
different interparticle distances and then with different interactions 
strengths. The model accounts for the particle volume distribution as well 
as for the existence of interparticle interactions. 
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Figure F.4.4. Time decay of the remanent magnetization for FeC particles dispersed in 
a hydrocarbon oil in the temperature range 1.8-18 K. Dashed and solid lines correspond to 
the fits with one or two lognormal distributions. (Reproduced with permission from Ref. 
194.) 

Following Eq. (F.4.11), the time decay of TRM is given by 

1 "  
TRM(t) = y 1 AM,,(V)exp(-t/T)VP(V) dV 

(F.4.17) 

with 2 = joz VP(V) dV 

where AMFc is the value of the magnetization immediately after switching 
off the field, at the end of the FC process. 

Weighting the expression with V, because the effect of each particle is 
proportional to V, and with the usual approximation of exp(-t/T) by a 
step function (see above), the TRM(t) expression becomes 

1 "  

vc 

TRM(t) = 2 I AMFC(V)VP(V) dV 

The relaxation rate is then given by 

(F.4.18) 

d In t S =  
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where V, = (kT/K)ln(t/TO) and K is the total anisotropy constant. 
From Eq. (F.4.18) it comes out that TRM is scaled with T ln(t/T,), 

provided that AMFc and K remain constant. However, the AM,, values 
depend on the cooling ratelS6 and K can be considered constant only in 
absence of interparticle interactions. 

The interparticle interactions lead to energy barrier modification 
following two processes (see Section E). The first is due to the part of the 
magnetic moment blocked on average in the lowest minimum and the 
second to the relaxing part. The blocked fraction creates a static 
interacting field that can be calculated from the Onsager model and that 
depends on the shape of the sample (see Section F.2). This field modifies 
the energy barrier and therefore K .  The relaxing fraction of the magnetic 
moment also interacts, leading to an additional modification of the energy 
barrier, which can be calculated from the model presented in Section E 
(taking into account only this part). This leads to an increase of K ,  but 
clearly smaller than the one obtained when the entire m relaxes. 

From Eq. (F.4.19), S is expected to be proportional to T,  but this 
would imply a uniform volume distribution, which is not realistic. 
Equation (F.4.19) shows that in a first approximation S follows the 
distribution V2P(V).  

The temperature dependence of the relaxation rate is reported in 
Figure F.4.5 for y-Fe20, particles with different interparticle distances 
(IF, isolated-far particles; IN, isolated-near particles; FLOC, aggregates 

0.3 
------t- IF 

0 ---D-- FLOC 
-+-IN 0.2 - I\ 

0 0.5 1 1.5 2 2.5 
TITM 

Figure F.4.5. Normalized magnetic viscosity S = (l/M,,) d M / d  In t vs. reduced tem- 
perature (TIT,, where T,  is the temperature of the maximum of the dc low-field 
susceptibility) for y-Fe,O, particles dispersed in a polymer (see text for the meaning of IF, 
FLOC, IN). (Reproduced with permission from Ref. 136.) 
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of particles). A reduced temperature T / T ,  is used, where TM is the 
temperature of the low-field dc susceptibility maximum.136 The results are 
in agreement with V 2 P ( V )  variation, as predicted by Eq. (F.4.18). 
However, the three curves do not superimpose, although the volume 
distribution VP(V) is the same for the three samples. In fact, by scaling 
the temperature with TIM, we have taken into account the dynamical 
interactions as if they fully act. If now a reduced temperature T/T,,, is 
used, with T,,, varying slightly according to the samples (it is not the case 
for T,), the three curves s ~ p e r i m p o s e . ’ ~ ~  This is in agreement with the 
model described above. In addition, this latter scaling proves that the 
dynamics is of the same type of behavior for all dispersion states and 
excludes a low-temperature ordering between particle moments for the 
most aggregated particles. 

The effect of aging on TRM was investigated on Fe-Al,O, 
p a r t i c ~ e s . ’ ~ ~ , ‘ ~ ~  The “age” of the system is defined as the total time (t,) 
elapsed since the sample was quenched in the blocked state. In Refs. 123 
and 127 the sample was cooled down in a field to the measuring 
temperature; then the field was maintained applied for different times 
(waiting times: t , )  before removing it, and finally the time decay of TRM 
was recorded after each cooling sequence. The results show that M , ,  
(before removing the field) and TRM are sensitive to the previous 
magnetothermal history, their absolute values changing with t ,  and with 
the cooling rate. The effect of the cooling rate on M,,  was theoretically 
predicted by Chantrell and W0h1farth.l~~ On the other hand the relaxa- 
tion rate was found to be independent of t,, unlike in spin glass systems 
where the dynamics slow down with increasing time spent in the low- 

In spin glasses the existence temperature frozen phase (t, = t + t,). 
of a hierarchical organization of many energy valleys in the phase space 
accounts for the observed results, which were interpreted as a slow 
evolution of the system from a local energy minimum, in which it was 
trapped after the cooling down, toward the equilibrium probability 
distribution among the different valleys. This is not the case for an 
assembly of interacting fine particles with a volume distribution, although 
it is also characterized by a distribution of relaxation times and then by a 
distribution of energy minima. However, for noninteracting particles, the 
minima are independent. For interacting particles, the minima are not 
strictly independent but do not show a hierarchical organization like in 
spin glasses, except perhaps at very low temperature (see Section E). 

Another relaxation experiment has been perfomed on a frozen 
ferrofluid with F,O, fine particles.200 In this case, the sample is cooled in 
zero field to the measurement temperature T,, equilibrated for a waiting 
time t ,  and then probed by applying a field of 3 Oe. The results show that 

112,199 
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the relaxation rate S = d M / d  In t depends on t ,  for T = 12.5 K while for 
T = 20 K, corresponding to the xdc maximum, no variation is detected. In 
fact, at T ,  before the application of the field, the particle system is not at 
the thermodynamic equililbrium due to the interparticle interactions. 
Decreasing the temperature, particles m progressively block according to 
their volume V. The blocked m create dipolar fields that modify the 
energy barriers of the neighboring particles and that change when the 
temperature is decreased, because new m are blocking. Of course, the 
average value of this field is equal to zero. Then, due to the finite value of 
the cooling rate, thermodynamic equilibrium is not exactly reached. The 
effect will be more especially pronounced as the blocked particle 
population is high. In addition, as in relaxation experiments, a narrow V 
range is experienced, the effect will also be more especially important as 
the particle population is large. These trends seem in agreement with the 
results cited above, but further experiments are necessary. We remark 
that the experiment described above remains to model. 

F.4.4. Coercive Field 

The coercive field H, is very important in particulate media used for 
magnetorecording, as it is a measure of the switching field, that is, the 
field necessary for reversing the magnetization. At low temperature, 
where all the particle moments m are blocked. H, is equal to the value 
expected for monodomains. In uniaxial symmetry H, = H,, = ( + ) I l k  with 
Hk = 2K/M,,,  where K is the anisotropy constant corresponding to all 
contributions (see Section C) and M,, is the nonrelaxing magnetization. 
At high temperature, when all m fluctuate with a relaxation time smaller 
than the measuring time, H, = 0. For intermediate temperature, H, can 
be evaluated from the formula2"': 

where TB is the blocking temperature of the particle corresponding to 7, 
and V, is the volume corresponding to TB equal to the considered 

the temperature. In the case of random distribution of easy axes 
following formula has been given: 

202,203 

Hc=HcO(l  - V , / V )  (F.4.21) 

Numerical calculations have been performed taking into account the V 
distribution according to a lognormal law and with easy axes in random 
positions.204 This calculation shows that there is a strong dependence on 
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standard deviation cr at large values of VlV,. Note that the results for 
cr = 0.4 cover the formula (F.4.20) with a good approximation. 

Finally, the calculation of the full hysteresis loop has been performed 
with aligned and randomly oriented easy axes.6' The results show that H, 
values for easy axes in random positions are similar to those obtained for 
the direction of the applied field at an angle of n-/4 with respect to the 
easy axis. This leads to 

(F. 4.22) 

A more complicated formula is obtained in the case of a volume 
distribution .69 

Several examples of H, measurements can be found in the literature 
(see, e.g., studies on Fe-Co particles). 205,206 

F.4.5. Conclusions 
The measurement of time decay of the remanent magnetization repre- 
sents one of the most straightforward tools to investigate the dynamical 
behavior of fine particles and to study the magnetization reversal 
mechanisms. However, the interpretation of the experimental results is 
very difficult because of the complexity of actual fine particles systems 
(presence of size, shape, and interparticle distance distribution, random 
distribution of easy axes, existence of interparticle interactions, surface 
effects, etc.). 

Remanence curves are very sensitive to the effects of interparticle 
interactions. Nevertheless, most of the theoretical models proposed so far 
do not take into account the existence of interparticle interactions, very 
often present in real samples, and their contribution to the total 
anisotropy energy. Therefore, great efforts are still necessary from the 
theoretical point of view, in order to interpret the remanence curves of 
actual assemblies of fine particles. As far as the study of the single- 
particle behavior is concerned, representing a necessary starting point for 
the comprehension of the behavior of complex systems, the recent 
development of micro SQUID s u s ~ e p t o m e t e r s ~ ~ ~  allowing to measure the 
magnetization of isolated particles, is expected to play an essential role 
for the knowledge of magnetization reversal mechanisms. 

F.5. AC Susceptibility 

Alternative susceptibility measurements at different frequencies Y (usual- 
ly in the range 10-104 Hz, extensible down to Hz and up to 10' Hz) 
represent a very useful tool for studying dynamical properties of magnetic 
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nanoparticles, as they have the advantage of covering a large time 
window with the same technique. Another advantage of rhe ac technique 
is that the application of a small ac field, H = Hn exp(iwt), where w is the 
angular frequency (= 2.irv), allows the initial susceptibility x, = ( d M /  
dH),,, to be measured. This is determined by the spins able to follow 
the field variations. Moreover, as the strength of the used ac field is small, 
the barrier energy is very slightly modified (the variation is proportional 
to H 2 ,  see Section D) and therefore the relaxation time T value in the 
absence of applied field can be used with a good approximation. 

In this section we will first discuss the models allowing the fit of the ac 
susceptibility (,yac) curves, then describe some results obtained on fine 
particles systems, and finally try to draw some conclusions. 

F.5.1. Models 

F.5.1.1. Gittleman Model. According to Gittleman'49 the susceptibility 
of an assembly of isolated single-domain particles, with a volume 
distribution, having their easy axes randomly oriented, is given by 

(F.5.1) 

with 

Z = i,= Vf(V) dV 

where f ( V )  represents the volume distribution function, xu the volume 
susceptibility and ,y,Vf(V) dV is the contribution to the total suscep- 
tibility, due to particles with volumes between V and V + dV. xu is 
calculated assuming that the ac field is a step function that turns on at 
time t = 0. We note that we have weighted f ( V )  by V because a magnetic 
moment is measured. 

The contribution of particles with volume V to the total magnetic 
moment is given by 

(F. 5.2) 

where x0 is the superparamagnetic susceptibility (for T > T B ) ,  corre- 
sponding to the thermodynamic equilibrium, given by 

xo = Mi,Vl3kT (F.5.3) 

and x1 is the initial response of particle moments to both external field 
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and anisotropy field in the so-called blocked state (T < T B ) ,  given by 

x1 = ( ~ 2 , , / 2 ~ ) ( s i n ~ e )  (F. 5.4) 

where 8 is the angle between the applied field and the easy magnetization 
direction, (sin28) = 5, the average being made over all the particles. 

The Fourier transform of Eq. (F.5.2) gives the complex susceptibility: 

The real part is given by 

x' = xo + W2T2X1 

1 + W 2 T 2  

(F.5.5) 

(F.5.6) 

From Eq. (F.5.6) the application of an ac field predicts: (1) x' = x,, 
when WT << 1 (at high temperature, where KV << kT,  for uniaxial 
anisotropy: superparamagnetic regime, i.e., the particle moments relax 
via thermal fluctuations and may be reversed, even many times, during 
the measuring time T,). (2) x' = x1 when WT >> 1 (at low temperature, 
where K V > > k T :  blocked regime, i.e., the energy due to the magnetic 
field is not enough to reverse the particle moment during T,). 

x' can be calculated from Eq. (F.5.6) using the T formula adapted to 
the anisotropy symmetry (see Section D). By considering a unique 
volume V ,  one can determine the temperature T,,, of the x,, maximum. 
For example, for uniaxial symmetry with a = KV/kT 2 3: 

K v  

-ln(wTh) + +ln($) 

with 

(F. 5.7) 

At this step, it is important to emphasize that if for the gyromagnetic 
ratio the usual value 'yo G 2  x sC1 G-' is used, given in angular 
frequency, w has to be replaced by v. 

One can compare T,,, to the blocking temperature T ,  defined as the 
temperature at which T = 7,. For x,, measurements T, = 1 lv, taking into 
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account the 'yo value given above. Then 

(F. 5.8)  

From this formula it comes out that T,,, is slightly higher than T ,  
(about 10% in most cases). 

For an assembly of particles with a size distribution, x' can be 
calculated from (F.5.1) with x: given by (F.5.6). However, the calcula- 
tion is a little bit complicated, and we can use approximate formulas. In 
the case of broad V distribution, one can suppose that, at given 
temperature and for a certain measuring time, some particles will be in 
the superparamagnetic state and some of them in the blocked one. Thus 
the susceptibility is given by the sum of the two contributions: 

where V,(T, v) = kT ln(v/q,) is the critical volume for superparamagnetic 
behavior and 2 is given by (F.5.1); x' is expected to show a maximum at 
a temperature T,,, close to ( T B ) .  

Actually Gittleman et al.i49 considered Eq. (F.5.6) in two separate 
parts. They fitted their data using Eq. (F.5.6) derived for the high- 
temperature limit and for the low-temperature limit separately. 

At a temperature T >> TB the susceptibility was calculated using 
x' = (Mir /3kT)Vf(V)  dV, whereas at temperature T << TB they ex- 
pressed the distribution function in terms of the power law, that is, 
f ( V )  xV" and the susceptibility was calculated using xl(l + A T " + ' ) ,  
where A is a constant. Their high-temperature analysis gives information 
about the particle size distribution, while the low-temperature analysis 
gives an estimate of the effective anisotropy constant value. 

Another simple approximation is to consider ( T,,,) ( VT,n,,(V)) / 
( V ) ,  as a magnetic moment is measured (see Section F.2). From Eq. 
(F.5.7): 

T,,, (KV/k)[- l /In(v~~)]  

Then 

( T,,,) ( (  V ' )  K /  ( V )  k ) [  - l/ln(v~A)] (F.5.10) 

Therefore, in the presence of a volume distribution, T,,, can be 
identified in first approximation with TB related to ( V ' )  / ( V ) .  
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The model has some limits, mainly as far as the calculation of x in the 
blocked state (xl = M2,,/3K for uniaxial symmetry) is concerned. The 
calculation does not account for vibrations of the magnetic moment m in 
the potential well, that is, for transverse relaxation. This leads to an 
abrupt variation of x' close to (T , )  (for a single particle the variation 
should be steplike). Such a very rapid variation is never observed 
experimentally, neither for samples with a narrow volume distribution. In 
our opinion it is important to take into account the effect of transverse 
relaxation, which should smooth the x' variation below TB.  Moreover, 
the volume distribution function assumed in the Gittleman calculation is 
not realistic. Finally, interactions between particles, almost always pres- 
ent in real systems, are neglected. 

F.5.1.2 Other Models. Khater et al.i93 calculated the ac susceptibility 
for independent magnetic clusters (they can be treated as small magnetic 
particles) with a Poisson volume distribution. They give approximate 
equations for T,,, and for TLax (max of x") for a frequency range 
v < lo5 Hz. 

112 1 

2x 2 

(F.5.11) 

(F.5.12) 

with To = KV/k and x = Iln ~ 7 ~ 1  - In t a n - ' ( 1 / ~ 7 ~ )  Iln ~ 7 ~ 1  for ~7~ << 1. 
For x r 2  

The results do not differ substantially from the Gittleman equations. In 
the Khater model too, the distribution function is not realistic. Moreover, 
the Poisson distribution has the inconvenience of having only one 
parameter, which does not allow one to fix separately the width of the 
distribution, and its maximum. 

Kumar and Dattagupta208 studied the linear response of an assembly 
of noninteracting particles to a small oscillating field. An appropriate 
Fokker-Planck equation for the orientational distribution function of the 
particles was written down and solved approximately under the condition 
that KV >> kT.  Particle size distribution was not taken into account, but 
random orientation of easy axes with respect to the magnetic field is 
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considered. This leads to modification of the ,yo term, which becomes 

(F.5.14) 

Although no comparison for T,,, has been made between the two 
models, some small differences are expected. 

Recently Slade et al.209 proposed a new model to determine the 
distribution of energy barriers E,. It was shown that this distribution is 
given by 

(F.5.15) 

where T = E , / k  ln(l/Tow). 
As a consequence all plots of n ( E )  vs. Tlln(.r,w)l for various 6.1 should 

be superimposed. This was checked very well for a very large range of 
frequencies for small Co precipitates dispersed in an Ag rnatr i~."~ 

However, the model needs some improvement in order to be generally 
applied to real systems. The interparticle interactions are neglected, as in 
other models. Moreover, the x, contribution is neglected. This could be 
not too important, unless the transverse relaxation modifies x '  below T,. 
Finally, the volume is taken as a constant, which is not realistic for fine 
particles, where the variation of E, mainly comes from the volume 
variation. 

F.5.1.3. T ,  vs. T,,,. From the previous discussion it comes out clearly 
that T,,, depends on the analytical forms of x1 and ,yo. In our opinion x1 
is questionable because the effects of transverse relaxation have not been 
taken into account. A more accurate formula for xo, accounting in first 
approximation for interparticle interactions is x, = Mt,V/3k(T - O,,), 
where Os, depends on the volumic concentration, on the shape of the 
sample, and on other factors (see Section F.2). Of course, O,, = 0 in the 
absence of interparticle interactions. 

It is clear that T,,,, and its relationship with ( T  ), depends on the 
form of the volume distribution. Gittleman et al.14' gave some simple 
relationships between T,,, and (T , )  for different types of volume 
distribution functions, for example, T,,, = A K ( V )  /klln(w.r,)l = AT,, 
where the constant A depends on the form of the size distribution and is 
equal to 2 and 1.8 for a rectangular and for a Poisson distribution, 
respectively. 

Starting from the Gittleman model and approximating [ l  + w27; 
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exp(2KVlkT)I by a step function, we find 

where V, = (kT/K)lln(w.r,)l. 

G, given by 
The maximum of x' (T,  w )  corresponds to the maximum of the function 

G =  1" V2P(V)  dV- IVc VP(V) dV (F.5.17) 
0 

Therefore, for large Iln(wTo)l the maximum of x'(T, o) is obtained for 
a volume such that 

IoVc V2P(V) dV v, (F.5.18) 

is maximum. 
This means that T,,, can be related to a volume V, that does not 

depend on w ,  except when I l n w ~ ~ 1  becomes small. In this case V, can be 
determined from (F.5.17). Moreover, if the V distribution is known, V, 
can be easily calculated from (F.5.18). Finally, we can define T,,, as the 
blocking temperature related to the volume V,. We remark that as long as 
Iln ~ 7 ~ 1  is sufficently high, V ,  does not vary with o, and the results of two 
experiments with different w are directly comparable. However, the 
Gittleman model is basically derived from the two-level model, like most 
of the models that we have presented and discussed. It is therefore, valid 
only if the probability P of finding the magnetization in an energy 
minimum is large. When v increases, T,,, increases and the x data are 
shifted toward higher temperature. That leads to a decrease of P. As a 
consequence, the variation of V, with v resulting from Eq. (F.5.17) has 
perhaps no real meaning, the model becoming more imprecise by 
increasing v. 

A last point to discuss is the value of the measuring time. The problem 
is whether 7, corresponds to l / w  = 1/27rv or to llv. In fact, from the 
basic equation of the m relaxation (see Section D), the probability per 
time unit for m to overcome the barrier is equal to &. In this case, we 
can roughly say that the time for m to go to from one minimum to 
another is equal to 27 and to go forward and back is 47. In ac 
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susceptibility measurements, the time for the field to go forward and back 
is llv. Therefore T is comparable to 1/4v, more exactly -& = l/w. 
However, the choice between & or l l v  depends on the unit of the 
gyromagnetic ratio 'yo, usually given in angular frequency, taken = 2 X 

lo7 s-l G-I. In this case, T,,, = l/v, the factor 277 being in our opinion 
included in the 'yo value. This is in agreement with most of the published 
results, where T, = l / v  has been considered. We note that for results 
obtained on Fe particles in an A1,0, matrix45 and y-Fe,O, particles in a 
p~lymer, '~' it is clear that the use of l/v leads to a good agreement, 
unlike the case 7, = &. 

F.5.2. Experimental Results 

The temperature dependence of the ac susceptibility has been measured 
at fixed as well as at variable frequency. by many workers 

A typical behavior is reported in Figure F.5.1. At high temperature x' 
45,162,180,209-2 15 

I I I I 1 I I I 

I I I I I I I  1 

30 60 90 
T(K) 

Figure F.5.1. AC susceptibility at different frequencies for a granular film consisting of 
iron grains dispersed in an alumina matrix (Fe-AI,O,). The out-of-phase component x" is 
reported for u = 17Hz. (Reproduced with permission from Ref. 181.) 
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is frequency independent, indicating a situation of thermodynamic 
equilibrium, as expected in the temperature range where all the particles 
are in the superparamagnetic state. Just above T,,, (it could also be well 
above, in the case of large distribution of energy barriers) and at 
T 9 T,,,, ,y' is frequency dependent, indicating a nonequilibrium situa- 
tion, as expected in the blocked state. With increasing frequency T,,, 
shifts to higher temperatures and X I  decreases. 

The analysis of the frequency dependence of T,,, allows one to check 
the models describing the temperature dependence of the relaxation time 
and to derive the related parameters, for example, the preexponential 
factor T~ and the energy barrier E,. 

Very few accurate determinations of T", requiring measurements in a 
large frequency range, for independent magnetic particles are reported in 
the literature, mainly because of the difficulty of obtaining high dispersion 
in a suitable matrix. 

Recently, Slade et a1.20y measured the ac susceptibility in a large 
frequency range (covering 8 decades) on alloy films of Co-Ag, having 5% 
at Co. By using their reported model, they derived the distribution of 
energy barriers and reported a value of ~~g lO-I3s. This value is too 
small for ferromagnetic particles, for which the theoretical predictions 
lead to a value between and 1 0 - l ' ~ .  The authors compare the T~ 
value to that obtained by Dickson et on ferritine particles 
( lO-"s), which are antiferromagnetic (they consist of a ferrihydrite 
core contained within a protein shell j .  For antiferromagnetic particles 
smaller values are expected (10-'2-10-13 s) (see Section H). 

(-lO-'Os) value for ferromagnetic particles was 
obtained by Lazaro et a1.2'43215 from measurements on iron particles 
embedded in a zeolite matrix, which, because of its microporous struc- 
ture, allows the isolation of the magnetic grains. From a computational 
analysis of the experimental data, the authors also obtained information 
about the particle size distribution. However, the explored frequency 
range was too narrow ( 

A detailed analysis of the frequency dependence of T,,, was reported 
for ferrimagnetic y-Fe,O, particles in a large frequency range (2 X 

< v < lo4 Hz) by Dormann et a f 9 .  The frequency dependence of 
T,,, was found to follow an Arrhenius law (for the first time clearly 
demonstrated for noninteracting particles in a large frequency range) with 

T ,  was found to increase with the mean particle vol- 
However, often the increase of the average size of ume . 

particles also corresponds to an increase of particle concentration, due to 
the difficulty in controlling separately size and concentration, maintaining 

A more physical 

10-103 HZ). 

To = 10-l0 s. 

4?,5Y,137,149,162 
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the same type of size distribution within a series of materials. This is why 
it is not easy to check the T,,, vs. V dependence. For a controlled 
dispersion of y-Fe,O, particles T,,, was found to be related, in first 
approximation, to (V’) / ( V )  (see above).5y3137 

T,,, was found to increase with particle con~entration,~~~~~~’”~.’~~.’~~ 
and its frequency dependence is expected to decrease. In most cases it is 
difficult to draw conclusions about the concentration dependence of T,,, , 
since, as it was pointed out before, often the average particle size changes 
with concentration. 

Dormann et al. analyzed the frequency dependence of T,,,, by 
measurements in a large frequency range (2 x < v < lo4 Hz) and by 
Mossbauer spectroscopy, for granular films consisting of iron particles 
dispersed in an alumina matrix (Fe-AI,O,), and they compared it with 
that found in spin-glass systems. A simple Arrhenius law cannot describe 
the results with a physically meaning T~ value. A phenomenological 
Fulcher law (T = T,exp[E,/K(T - T o ) ] ,  as well as the scaling laws describ- 
ing spin-glass dynamics45 were found to be inadequate, not allowing to fit 
the results with a unique set of parameters. The results were satisfactorily 
fitted by the model proposed by the authorsP5 which describes the effect 
of interparticle interaction on the relaxation time by means of a statistical 
calculation of the dipolar energy (see Section E). The model applies to an 
assembly of grains characterized by volume distribution, disordered 
arrangement, and direction of easy axes in random positions, as in most 
of real systems. From the fit (Fig. F.5.2) a value of ~ ~ s 1 O - ~ ~  s was 
deduced, and the energy barrier values were derived for a series of 
samples with different iron content. 

The Dormann model was further developed and applied to the analysis 
of ac measurements (2 X lo-’< v < lo4 Hz) on y-Fe203 particles in a 
polymer, with different degrees of d i s p e r ~ i o n . ~ ~ ~ ’ ~ ~  The parameter values 
governing the relaxation time, deduced by applying the model, are 
consistent with the variation of particle diameter, interparticle distance, 
and number of first neighbors per particle within the series of samples. 

Finally, a special mention of the experiments performed on ferro- 
performed measurements of is needed. Fannin et a1.216-220 

the complex susceptibility in the high-frequency range, up to 3 GHZ;’~ 
developing the split-toroid technique. For magnetic fluids two relaxation 
mechanisms can occur, one by rotational Browning diffusion, dominating 
for large particles, characterized by a relaxation time T~ = 3V;vikT (Vb is 
the hydrodynamic volume, 77 is the viscosity)2z1 and the other by 
superparamagnetic relaxation, dominating for smaller particles (2 < 4 < 
5 nm). As ferrofluids contain a distribution of particle sizes, both 
mechanisms will in general contribute, with an effective relaxation time222 

45.181 

flUids200,216-220 . 
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0 0.01 0.02 0.03 
B/<Tp ( K-' ) 

Figure F.5.2. Frequency variation of the blocking temperature (using scaling coefficent 
p )  for various Fe-AI,O, fine particle-samples. The full curve corresponds to the fit to the 
model of Dormann et al. (Reproduced with permission from Ref. 45.) 

T~~~ = TT~/(T + T ~ ) .  The dominant mechanism of a particle will be that 
with the shortest relaxation. 

According to the Debye theory221 of the complex susceptibility, X I  

decreases with frequency, while x" has a maximum at a frequency w,,, 
T~~~ = 1 (Fig. F.5.3). For particles relaxing by superparamagnetic mecha- 
nism the maximum of X I '  occurs for a frequency between 1Mz and 
100MHz. For particles relaxing by the Brownian mechanism the fre- 
quency at which the maximum occurs is much lower. On manganese 
ferrite particles of mean diameter 9.4 nm in an hydrocarbon carrier 
Fannin et a1.216 observed the presence of a ~ " ( w )  peak at 30 MHz, giving 
an indication of superparamagnetic relaxation, and a transition of ~ ' ( w )  
to a negative value at 65MHz, suggesting ferroresonance. In some 
ferrofluids two loss peaks were found, indicating the existence of two 
particle size distribution in the dispersion**' (Fig. F.5.4). 

F.5.3. Conclusions 

The measurement of the ac susceptibility at variable frequency represents 
one of the most powerful tools for studying the dynamical properties of 
fine magnetic particles. The possibility of exploring a very large time 
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Figure F.5.3. (a) Normalized plot of ,y'(w) vs. log f. (b) Debye profile for a ferrofluid 

consisting of a colloidal dispersion of magnetite (( 4)  = 3.05 nm) in a hydrocarbon. 
(Reproduced with permission from Ref. 219.) 

window, just by changing the frequency of the ac field, by using the same 
technique, makes this tool unique. This is very important, since the 
comparison between the results obtained by different techniques having 
different measuring time is not straightforward, especially when the 
volume distribution, and hence the relaxation time distribution, is not 
narrow. 

The analysis of the frequency dependence of the susceptibility and of 
T,,, allows one to check the models describing the temperature depen- 
dence of the relaxation time and to derive the related parameters, for 
example, the preexponential factor T,,, the energy barrier, and the type 
and the width of its distribution. Unfortunately, in a very few cases the ac 
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Figure F.5.4. ~ " ( w )  vs. logf for some ferrofluids, consisting of magnetite in Isopar 

with different packing fraction. (Reproduced with permission from Ref. 217.) 

measurements have been extended to a large enough frequency range. 
Further detailed analysis are needed to have a better insight on the 
fine-particles dynamics and in particular to make clear the relative role of 
different terms contributing to the total energy barrier for the mag- 
netization reversal. 

F.6. Mossbauer Spectroscopy 

F. 6.1. Introduction 

Mossbauer spectroscopy is a technique utilizing y-rays in the 10-100 keV 
range. It is based on the emission and resonant absorption of y-rays in a 
recoil-free way in solids, that is, without any energy loss to the lattice. 
The extremely well-defined energy of these y-rays makes it possible to 
study static as well as dynamic hyperfine interactions. Detailed chemical, 
structural, and magnetic information can be obtained about atoms on the 
surface or in the bulk of materials. In addition, in situ investigations, 
which are indispensable in case of particle structure or surface state 
changing with the surrounding conditions, can easily be achieved. 
Mossbauer spectroscopy is thus very well suited to studies of fine-particle 
systems as it has been shown in several reviews, for example, see Refs. 
18, 32, 33, 223, and 224. The application of this technique is restricted to 
solids or  frozen liquids containing a Mossbauer isotope. For practical 
reasons, Fe is almost the only isotope easily utilizable for studies of 
magnetic materials. Fortunately, iron is present in most of the important 
magnetic materials. Magnetic compounds not containing iron can often 
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be studied by doping the sample either with "Fe or the radioactive parent 
isotope, Co. 

Mossbauer spectroscopy sees the fluctuations of the magnetic moment 
of the particle, m, through the fluctuations of the magnetic hyperfine 
interaction. The phenomena are probed at the atomic level. This provides 
the technique with some distinctive advantages. First, the measurement is 
a local measurement. The result of the measurement, a spectrum and not 
a scalar quantity, arises from a superposition of local effects, not from the 
average. Second, the measurement can be achieved without applying a 
field. It is performed along any direction, not along one particular 
direction as in the case of magnetic measurements. And third, the 
characteristic time of the measurement, of the order of lO-'s for 57Fe, is 
intermediate between the measuring times accessible with usual ac 
susceptibility experiments (see Section F.5) and those relevant to neutron 
scattering experiments (see Section F.8). The timescale is thus rather 
short and yet long enough to allow observation of the blocked state to 
superparamagnetic state transition in a convenient temperature range in 
most cases. Moreover, the blocked state and the superparamagnetic state 
are easy to identify. This is illustrated in Figure F.6-1 for a ferritin 
sample:'0 with a six-line pattern for the blocked state and a doublet for 
the superparamagnetic state. 

The nature of measurement, the Mossbauer process, has two major 
consequences. First, there is not a definite measuring time but a range of 
measuring times, which makes the blocking temperature difficult to define 
precisely. The relaxation spectrum of a given particle depends on the 
actual excursion of m, and the phenomena cannot be analyzed without 
the appropriate lineshape model. Second, Mossbauer atoms with differ- 
ent surroundings give distinct signals. Surface atoms, in particular, 
produce specific contributions that will be significant if the particle size is 
sufficiently small. Surface and superparamagnetic relaxation effects are 
generally difficult to disentangle from each other, particularly because of 
the lack of resolution produced by the distributions of particle size and 
shape. Therefore, surface-related phenomena are usually characterized in 
the limit of negligible relaxation effects whereas the effects of the 
relaxation are analyzed assuming that surface effects are negligible. 

The contents of this section may be summarized as follows. An 
elementary introduction to Mossbauer spectroscopy and a brief descrip- 
tion of the Mossbauer spectrum are given in Section F.6.2. For clarity, a 
digest of the basic concepts is reported in the Appendix. 

Section F.6.3 is concerned with the investigation of static properties of 
fine particles with focus on the differences with respect to bulk material 
studies. Studies of surface magnetic properties are largely developed 
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Figure F.6.1. Mossbauer spectra of a ferritin sample at various temperatures. (Re- 

produced with permission from Ref. 210.) 

insofar as Mossbauer spectroscopy is, in this respect, quite a unique 
technique. 

Section F.6.4 is devoted to superparamagnetic relaxation in zero 
applied field. Because the phenomena cannot be interpreted in details 
without a lineshape model, most representative models are surveyed. 
Their applicability to realistic situations is discussed. The exploitation of 
the magnetic splitting at low temperature and the determination of the 
blocking temperature are discussed. The difficulties and ambiguities in 
interpreting the Mossbauer spectra of actual samples are emphasized. 

The influence of a large external magnetic field is considered in Section 
F.6.5 and that of a medium or weak field is discussed in Section F.6.6. 

Finally, Section F.6.7 is devoted to concluding remarks. 
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F.6.2. The Mossbauer Spectrum 

The Mossbauer effect is the recoil-free emission of a y-photon by a 
radioactive nucleus and the subsequent resonant recoil-free reabsorption 
by another nucleus of the same type. In the process, the source nucleus 
goes from the excited state (nuclear spin I,) down to the ground state 
(Z,), and the absorber nucleus in the ground state (Zg) is raised into its 
excited state ( Ie) .  

The energy distribution of the emitted radiation and that of the 
resonant absorption cross section have identical lineshapes. Both are 
Lorentzian lines centered at the nuclear transition energy E,, with 
fullwidth at half height given by the uncertainty principle energy width of 
the nuclear excited state. This width, the natural linewidth, is defined by 

f i  r =- 
7 N  

N (F.6.1) 

where rN is the mean lifetime (1.44 times the half life) of the excited 
state, and h is the Planck constant divided by 2 ~ .  

For the 57Fe isotope, the transition of interest is I ,  = + t ) Z g  = + with 
E, = 14.4 keV and rN = 1.4 x 

The very high definition of the y-ray emitted in a recoil-free event 
allows the detection of the small energy variations associated with the 
hyperfine interactions. These energy variations are in the range of the 
Doppler shifts produced by small movements. Therefore, the energy of 
the transition is conveniently modulated by moving the source relative to 
the absorber (or vice versa). If u is the Doppler velocity, the energy is 
given by 

s,  thus rN = 4.6 x eV. 

u 
E(u) = E, (1 + ;) (F.6.2) 

where c is the velocity of light. 
A typical Mossbauer experiment thus involves an oscillating radio- 

active source that contains a parent isotope (e.g., Co for 57Fe), a 
stationary absorber that is usually the sample, and a detector. The 
Mossbauer spectrum consists of a plot of y-ray counts (relative absorp- 
tion) as a function of the velocity of the source. In the source the 
radioactive isotope feeds the excited state of the Mossbauer isotope, 
which decays to the ground state. The energy of the recoil-free emitted 
radiation is Doppler modulated. Resonant absorption occurs when the 
energy of the y-ray just matches the nuclear transition energy for a 
Mossbauer atom in the absorber. This is detected by the decreased 
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transmission of the absorber. The shape of the line in a recorded 
absorption spectrum is given by the convolution of the emission and 
absorption lines. Therefore, the experimental line is a Lorentzian line of 
width r = 2rN (0.19 mm/s for 57Fe). The actual linewidth is often larger 
as a result of inhomogeneity or thickness effects in the real samples. 

The resonance absorption can also be detected in backscatter geometry 
by following the radiation emitted during decay of the excited absorbing 
nuclei. This geometry is especially useful for surface and catalysis studies. 

A Mossbauer spectrum is characterized by its total absorption area, 
the number, position, relative intensity, and shape of the various 
absorption lines. These features result from the various interactions 
between the Mossbauer nuclei and their surroundings, as well as any 
motion of the Mossbauer atoms (see the Appendix). 

The total absorption intensity depends on the concentration of the 
Mossbauer atoms in the absorber and their recoil-free fraction. The 
recoil-free fraction depends on the binding forces of the Mossbauer atom 
in the lattice (see Ap.1). The number and position of the absorption lines 
are determined by electric and magnetic electronic effects, the hyperfine 
interactions, which shift and split the nuclear levels. The allowed 
transitions between ground and excited substates are determined by the 
multipolarity of the nuclear transition. The Z, = $ cf Zg = + transition of 

Fe is a magnetic dipole transition, and the allowed transitions obey the 
selection rules AmI = 0, ?l,  where Am, is the variation of the spin 
quantum number between the excited substate and the ground substate. 
The electric and magnetic hyperfine interactions lead to the three basic 
parameters of a Mossbauer spectrum, namely the isomer shift (see Ap.2), 
the quadrupole splitting (see Ap.3), and the magnetic splitting (see 
Ap.4). The relative areas of the absorption lines are proportional to the 
probabilities of the corresponding transitions, and sensitive to polariza- 
tion effects (see Ap.5). The basic lineshape is Lorentzian. Deviations 
from the Lorentzian lineshape are generally due to dynamical phenomena 
such as fluctuating hyperfine interactions or diffusion. 

Time-dependent phenomena can influence the Mossbauer spectrum 
whenever they make the position of the Mossbauer nucleus or the 
properties of the nuclear environment and, hence, the hyperfine interac- 
tions change with time. Time-dependent effects can influence both the 
spectral lineshapes and the values of the Mossbauer hyperfine parame- 
ters. The nuclear transitions and the hyperfine interactions have charac- 
teristic times, and each type of relaxation phenomenon must be consid- 
ered in the context of the appropriate time scale. In case of super- 
paramagnetic relaxation, the magnetic hyperfine interaction fluctuates 
with time. The magnetic hyperfine field acting at  a given Mossbauer 
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nucleus is generally collinear with the magnetization vector, and the 
process can be considered in terms of a time dependence of the 
orientation of the hyperfine field. 

Any motion of the Mossbauer nucleus can influence the spectrum in 
two ways, by affecting the absorption intensity of the spectrum itself, and 
also the linewidth, eventually the lineshape, as a result of a kind of 
additional Doppler motion. 

F.6.3. Bulk and Surface Static Studies 

Similar to bulk materials, through the recoilless fraction and static 
hyperfine interactions, Mossbauer spectroscopy can be sensitive to a wide 
range of phenomena relevant to fine-particle systems. The main differ- 
ences with respect to bulk studies come from the specific properties of the 
atoms near the surface. 

All hyperfine parameters of the atoms near the surface can be different 
from the hyperfine parameters of the atoms in the interior. In general, 
however, surface and bulk contributions are not clearly differentiated 
from each other. Because of the great variety of surface sites, the 
hyperfine parameters of the surface atoms, especially the hyperfine field, 
can be broadly distributed. These distributions combine with the effects 
of the distributions of particle size and shape, often making surface and 
volume effects difficult to distinguish from one another. Investigations 
based on the isotope selectivity of Mossbauer spectroscopy may then be 
particularly useful. 

Using some representative examples, we shall focus on typical in- 
formation that can be obtained in relation with the magnetic properties. 

F.6.3.1. Recoil-Free Fraction. The viscosity of the fluctuations of the 
magnetization vector is influenced by spin-lattice interactions, in turn 
influenced by lattice vibrations. Studies of the recoil-free fraction, f, can 
in principle provide some information about the phenomena (see Ap.1). 

Variations in lattice vibrations in fine particles with respect to the bulk 
may arise from (i) the reduced volume leading to lattice softening with 
resultant decrease of the Debye temperature, (ii) surface effects since the 
surface atoms are probably more weakly bound than the atoms in the 
interior, or (iii) changes in the lower and upper cut-off frequencies of 

The first two phenomena should decrease f the phonon spectrum. 
while the latter could increase f .  In general, one observes a recoil-free 
fraction in fine particle systems that is much smaller than that of bulk 
materials. However, most often this is not due to effects of the lattice 
vibrations but to the motion of the particle as a whole, which indeed 
drastically lowers the f factor. 

225,226 
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A free nanoparticle is generally not massive enough to absorb all the 
recoil energy, therefore it recoils. The critical size for which the recoil 
energy gives rise to a line shift equal to the natural linewidth is 25 nm for 
iron oxide.227 The Mossbauer effect is clearly observable for much smaller 
sizes. The recoil energy is actually shared by a large number of particles 
in case of agglomeration, or absorbed by the surrounding medium in case 
of a dispersion. The f factor is therefore strongly dependent on the 
sample fabrication, the particle preparation route and the sampling 
process via a wide range of parameters such as particle packing, 
adsorption phenomena, coupling between the particles and the matrix, or 
elastic properties of the suspending medium. This is illustrated in a 
number of studies, for instance for y-Fe203, 226,228 Fe particles:263229-232 
or Fe alloys.2332234 

The reduction of the recoilless fraction is usually explained in terms of 
an oscillation of the particles. To characterize the phenomena within the 
particle, it is necessary to hinder the motion of the particles. For Fe 

concluded that the particles embedded in a resin, Hayashi et al. 
metallic core of the particles is not softened as compared with the bulk, 
while the lattice vibration of the oxide layer is very soft. Van der Kraa~~ ;~’  
investigating the surface properties of a-Fe203 by enriching the surface 
with 57Fe, found nearly the same f fraction for the atoms at the surface 
and in the interior of 50-nm-sized particles. For 7 and 4 nm particles, the 
thermal variation of the f fraction appeared much faster for the atoms at 
the surface than for the atoms in the interior. As this effect increased with 
decreasing size, van der Kraan235 suggested that the number of atomic 
layers behaving like the surface could depend on the size. 

The dependence of the recoil-free fraction on particle size is complex 
since it can involve volume and surface effects. However, careful analyses 
should yield valuable information. Analyses of the f fraction can also 
reveal varying elastic properties of the matrix and be used to investigate 
dynamic effects including rheological properties of fine-particle systems. 

231,232 

F.6.3.2. Magnetic Hyperjine Field. The magnetic splitting of a Moss- 
bauer spectrum yields the effective magnetic field at the Mossbauer atom 
(see Ap.4), and variations in the hyperfine field reflect variations in the 
magnetic and electronic properties. The thermal fluctuations of the 
magnetization vector near one easy direction lead to an apparent 
reduction of the magnetic splitting. This thermal effect (see Section 
F.6.4), must be negligible so that information about the hyperfine field 
can be deduced. Hence, the relevant experiments must be performed at 
low temperature or under a large applied field. 

The effective magnetic field at a Mossbauer atom in a particle can be 
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written as 

where the contributions are in order of applied field, demagnetizing field, 
Lorentz field, dipole field due to the neighboring particles, and hyper- 
fine field. 

The main difference with respect to bulk studies for deducing the 
magnitude of the hyperfine field comes, in principle, from the de- 
magnetizing field, and the main differences between the magnitude of the 
hyperfine field in fine particles and that in the corresponding bulk 
material generally arise from surface effects. 

A .  DEMAGNETIZING FIELD. In the absence of an applied field, the de- 
magnetizing field in a bulk material is negligible because of the multi- 
domain structure. It may be significant in the interior of a single-domain 
particle (see Section C.1.2). Therefore, the magnetic field acting at a 
Mossbauer nucleus can depend on the shape of the particle and the 
direction of magnetization, and the observed magnetic splitting can be 
larger or smaller than for the corresponding bulk material. In a-Fe, for 
instance, the hyperfine field (330 kOe at room temperature) is antiparallel 
to the magnetization. Hence, the demagnetizing field adds to the 
hyperfine field. The magnetic field acting at the nuclei in a spherical 
single-domain particle should therefore be larger than that of a multi- 
domain particle, by about 7 kOe as deduced from the value of the 
magneti~ation.~’~ This is well verified e ~ p e r i m e n t a l l y . ~ ~ ~  It is necessary to 
take into account the demagnetizing field for comparing the hyperfine 
field in fine particles with that in large particles where the domain 
structure appears. The effect of the demagnetizing field can be important 
especially in materials where the hyperfine field is rather small and the 
magnetization is large like in the case of a-Fe,  it is usually much smaller 
in oxides. 

B .  SURFACE HYPERFINE FIELD. The demagnetizing field and the Lorentz 
field are not defined for the atoms at the surface. Calculations237 of the 
magnetic dipole fields at atoms near the surface in fine particles and thin 
films of a-Fe show that only the first surface layer is perturbed, with 
variations of the order of 10kOe depending on the position at the 
surface. Studies of thin and ultrathin metal films by Mossbauer spec- 
troscopy (see, e.g., Refs. 31, 224, 238, and 239) show that one or two 
atomic layers are perturbed, as for the magnetization (see Section B.3). 
The surface hyperfine field may be larger or smaller than in the bulk at 
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low temperature depending on the substrate and the material coating the 
surface, but generally the decrease with increasing temperature is faster. 

For a-Fe particlesP3x393240-243 at low temperature the hyperfine field of 
the atoms in the interior is similar to that of bulk a-Fe,  and the surface 
hyperfine field is generally found larger, and often distributed. For 
instance an increase of 3% at 4 .2K was found for 2-nm particles in 
organic liquids.242 The magnetization too was found to be 3% larger than 
for bulk iron. For 3.7-nm particles on a carbon supporty3 at 5 K  the 
surface hyperfine fields appeared broadly distributed between 200 and 
450 kOe, with an average value significantly larger than that of bulk iron, 
and with increasing temperature, the surface hyperfine field decreased 
faster than the values for the bulk. For 3.4-nm a-Fe  particles in 

we deduced surface hyperfine fields with two main com- 
ponents at 4.2 K, of ca. 380 and 290 kOe, which were assigned to the first 
and second surface layer, respectively, assuming a layer thickness of 
0.23nm. A normal value of the magnetic moment in the core and 50% 
reduction in the two surface layers explained the nonrelaxing mag- 
netization that was 33% lower than that of bulk iron. In-field Mossbauer 
experiments produced spin canting effects (see Section F.6.3.3). By in 
situ studies of 2-nm particles on carbon  support^:^ it was found that 
chemisorption of oxygen results in the formation of a surface layer that is 
ferromagnetically coupled to the core of the particle, but with magnetic 
hyperfine fields similar to those found in thicker passivation layers, which 
have a disordered spin structure. 

Metal nanoparticles are pyrophoric. To  our knowledge, no ultra-high 
vacuum study has been reported to date, and reported studies are relative 
to particles passivated or embedded in some medium. Surface properties 
should then be dependent on the nature and structure of the interface. 

Many ferrimagnetic oxides are chemically stable in air, therefore 
surface studies should be straightforward. However, to enhance the 
surface contribution coatings with 57Fe or ”Co are often applied. The 
hyperfine field at the surface of y-Fe,O, acicular particles, a few tenths of 
a micron in length, has been much i n ~ e s t i g a t e d . ’ ~ ’ ~ ~ . ” ” . ~ ~ ~  Particles 
coated either with 57Fe2453246 or radioactive 57C0247,248 were studied in 
absorption and emission Mossbauer experiments, respectively. A radio- 
active Co nucleus decays by K capture to an excited state of s7Fe2+. 
Before the emission of the y-radiation, the ferrous ion has time to lose an 
electron, converting into the ferric state. All investigations showed that at 
low temperature the hyperfine field at the surface was similar to that of 
the bulk material but decreased more rapidly with increasing tempera- 
ture. At 300K for instance, the surface hyperfine field was found about 
10% smaller than the bulk hyperfine field. 

57 
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When a large particle made with natural iron is coated with 57Fe or 
Co, the Mossbauer spectrum contains a contribution arising from the 
Fe nuclei in the underlying particle. Natural iron only contains 2.2% of 

the Fe isotope, but because of the large volume-to-surface ratio the 
Mossbauer atoms in the interior are still in a significant proportion. A 
way round this problem is to use the 56Fe isotope to prepare the particles 
and to coat them with s7Fe. In this way the Mossbauer spectrum contains 
no contribution from the interior and the surface information can be 
clearly identified. The results so obtained by Shinjo et al.249 for spherical 
cu-Fe,O, particles ca. 100 nm in diameter are shown in Figure F.6.2. It is 
clear (Fig. F.6.2a) that the hyperfine field of the surface sites at 300K is 
smaller than in the bulk and distributed to a certain degree. The mean 
surface hyperfine field was found 4% smaller than the bulk value at 
300K, but very nearly the same at 4.2K. The fact that the thermal 
decrease of the surface hyperfine field is less rapid for a-Fe,O, than for 
y-Fe,O, was related to the difference in the Nee1 temperatures. As the 
data for the two materials can be scaled using reduced units (Fig. F.6.2b), 
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Figure F.6.2. (a) Mossbauer spectra of standard a-Fe,O, at 300 K (top), "Fe-coated 

c ~ - ~ ~ F ~ ~ O ~  at 300 K (middle), and 4.2 K (bottom); (b) temperature dependence of the 
hyperfine field in bulk a-Fe201,  the surface of a-Fe201 and the surface of y-Fe,O,. 
(Reproduced with permission from Ref. 249.) 
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it was suggested that the exchange interactions at the surface are reduced 
in a similar proportion (40%) with res ect to the interactions in the bulk 
oxides. The results on ”Fe-coated a- Fe203 also showed that the Morin 
transition takes place at the surface at the same temperature as in the 
bulk crystal. Similar investigations using the 56Fe and 57Fe isotopes were 
reported for a-Fe00H2” and p-Fe00H:51 but so far not for nanometer 
ferrimagnets. Such studies would be very worthwhile, especially regarding 
the influence of the particle size. 

For quasi-non-interacting y-Fe 0, nanoparticles dispersed in a poly- 
mer (polyvinylic alcohol, or PVA); with particle size decreasing from 10 
to 4.6 nm, we found a slight decrease (2%) in the average hyperfine field 
deduced from the zero field Mossbauer spectra at 4.2K and a large 
decrease (30%) for the nonrelaxing magnetization, M,,(0).97 The fact 
that only the magnetization is strongly affected shows that the magnetic 
defects in the smallest particles are essentially due to incomplete spin 
alignment, and not to a large reduction of the magnetic moments. In zero 
field, the Mossbauer spectrum is only sensitive to the magnitude of the 
hyperfine field, not to its orientation. Orientational magnetic disorder is 
not detected, in contrast with magnetic measurements. By comparing the 
values of the hyperfine field and the magnetization with the bulk values, 
one can obtain information about the type of magnetic defects. 

SJ? 

$52 

F. 6.3.3. Spin Canting Effects. Mossbauer spectroscopy is appropriate 
for detecting a noncollinear magnetic structure. If an external field is 
applied parallel to the y-ray beam, and if all the spins are collinear with 
this field, then the Arn,=O transitions are forbidden (see Ap.5). The 
second and fifth lines of a six-line pattern will be absent. Conversely, 
nonzero second and fifth lines show that a noncollinearity is present in the 
sample. 

A lack of spin alignment has been observed by Mossbauer spec- 
troscopy experiments in applied fields up to 100 kOe for several nanome- 

with ter ferrimagnetic oxides,’8332.33,224 for instance, y-Fe20, 
adsorbed 57Fe24s,246 
CoFe204:61, NiFe204262 coated with organic  molecule^^^^ BaFe120,,, 
Y,Fe5OI2, and Cr02.265 This is to be related to a reduction in the 
magnetization with respect to the bulk value due to the canting and a lack 
of saturation at low temperature in large applied fields which decrease the 
canting angle, as usually observed for ferrimagnetic oxide nanoparticles. 
A noncollinearity is less frequently observed in metallic particles. Com- 
plete or at least nearly complete alignment in fields of 40-50 kOe was 

and for FeNi and FeCo reported for instance for a-Fe particles‘ 
alloys:33 but noncollinearity effects were also 

Noncollinearity can result from incomplete alignment of all the spins as 

134,253-258 

259,260 

264 
Co-adsorbed y-Fe20,, or 5 7 ~ ~ ~ 2 4 7 , 2 4 8  

33 

19,243,266 
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a result of large magnetic anisotropy, or from lack of alignment of a 
fraction of the spins mainly located in the surface due to the discontinuity 
(see Section B.3). The first assumption was recently suggested260 for 
explaining Mossbauer spectroscopy results on Co-adsorbed y-Fe203 . It 
was clearly ruled by studies of the degree of spin alignment in 
frozen suspensions of y-Fe,03 nanoparticles as a function of the magnetic 
texture. The degree of spin alignment was found independent of the 
orientation of the easy directions in the samples when the applied field 
was larger than 7.5 kOe, and the observations were found all compatible 
with the concept of spin canting as suggested by C ~ e y . ~ ~ ~  

A .  ~-FE,O, :  A CHIEF EXAMPLE. y-Fe20, has been the most studied 
nanomaterial by in-field Mossbauer spectroscopy. The influence of the 
applied field is illustrated in Figure F.6.3 for 6.8-nm y-Fe,O,/PVA 
particles at 7K.267 In zero field the Mossbauer spectrum is a nearly 
symmetric six-line pattern. The slight asymmetry results from a slight 
difference in the hyperfine parameters of the A and B sites. For 0.1 T ,  
apart from a slight broadening of the lines, no notable changes are 
observed as compared to zero applied field. For 0.5 T the intensity of the 
second and fifth lines is clearly reduced showing that alignment has 
mostly occurred, and only a slight decrease is observed when the field is 
further increased. The persisting second and fifth lines are the signature 
of a noncollinearity. The splitting of the first and sixth lines under 6 T  
shows that the spins in the A and B sites are mainly close to the field 
direction, parallel and antiparallel, respectively. 

C ~ e y ? ~ ,  who studied 6.5-nm y-Fe20, particles, ascribed the non- 
collinear structure to random canting of surface spins. Studies of 57Fe or 

supported the surface 
effect. This was recently contested for acicular particles:45 and it was 
concluded that the canting probably resulted from structural defects. 
Vacancies on the A sites, for example, would lead to a local B-site spin 
canting as in ferrite with partial diamagnetic substitution.268 The magnetic 
disorders near the surface too are analogous to the magnetic disorders 
encountered in substituted bulk ferrites and, from this point of view, the 
level of substitution to be considered in both A and B sites is indeed 
much larger near the surface of the particle than in the core. This along 
with the large values of the surface-to-volume ratio in nanoparticles 
strongly support the idea that the effects of the magnetic disorders in the 
surface should be prevailing. In our opinion, the problem of the surface 
magnetic properties should not be stated in the same terms for a 
nanoparticle as for an acicular particle of incomparably greater volume 
and generally made up of stacked, oriented crystallites. 

Because of the complexity of the phenomena, it is evident that for 

247,248,254,255 Co surface-coated acicular particles 57 
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Figure F.6.3. Mossbauer spectra of 
6.8-nm y-Fe,O, particles at 7 K  in various 
applied magnetic fields parallel to the gam- 
ma-ray beam.'" 

I I I 1 I 

-10 0 10 
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characterizing individual properties of nanoparticles one must investigate 
systems where the individuals are well defined. The usual acicular y- 
Fe,O, particles are therefore not the best candidates in the present 
context. Nanoparticles obtained by coprecipitation routes, for instance, 
are more suitable. A particle is generally a single crystal. The particles 
can be dispersed in various media, and agglomerated particles are in a 
disordered arrangement except in very special conditions. For these 
particles, the degree of spin canting increases with decreasing particle 

This is illustrated in Figure F.6.4 for y-Fe,O,IPVA particles'34 size. 
with an average diameter varying between 10.1 and 2.7nm (slightly 
different values are reported in Ref. 134 because of a different diameter 
average). A preliminary investigation of the influence of the interparticle 

134,258 
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Figure F.6.4. Mossbauer spectra of y-  
Fe,O, particles at 7 K in a magnetic field of 
6 T  parallel to the gamma-ray beam. In- 
fluence of the average particle diameter 
( D ) .  (Reproduced with permission from 
Refs. 134 and 267.) 

interactions showed no major effect. All magnetic proper tie^^"'^ as a 
function of the particle size and interparticle interactions suggest an 
important role of surface effects. These are, however, difficult to 
characterize precisely. Again, studies of fine particles made with 56Fe and 
coated with 57Fe would be very worthwhile. 

The influence of the temperature on the recalcitrant spins was 
In each case the canting effect considered in a few investigations. 

was found to decrease with increasing temperature, in small fields and in 
large fields. However, to our knowledge, no detailed study has been 
reported to date. 

245,254.257 

B. SPECTRUM EXPLOITATION. A noncollinearity of the spins in fine par- 
ticles is generally easy to detect, but difficult to characterize precisely 
because of various distribution effects. 

If for an atom, C, the hyperfine field vector forms an angle p with the 
direction of the applied field parallel to the y-rays, the areas of the lines 
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in the C pattern are in the ratio 3 :  2p : 1 : 1 : 2p : 3 with p = 2 sin2pl( 1 + 
cos’p) [Eq. (Ap.12)], or equivalently, the relative area of one of the two 
and five lines is A2,5  = sin2p/4. In principle, both the canting angle and 
the fraction of canted moments can be deduced if at least another pair of 
lines of the C pattern is resolved. However, generally this is not the case 
due to the distributed parameters and other features that broaden the full 
spectrum, and neither the canting angle nor the canted fraction can be 
deduced from the line areas. 

The effective field at a canted site is in a first approximation given by 
H,,,(C) - Hhf(C) + Happcos p. A distribution in canting angles results in a 
distribution in effective fields. This distribution effect will combine with 
the hyperfine field distribution due to volume and surface effects. If the 
canting occurs on several types of site, A and B in cubic spinels, for 
instance, the He,, distributions may overlap. Usually, the experimental 
spectra exhibit broad lines (Figs. F.6.3 and F.6.4), and the analysis is 
ambiguous because of the mixed effects of the canting angle and 
hyperfine field distributions. De  Bakker et al.256 analyzed spectra of 
conglomerates of needlelike particles of y-Fe,O, by considering a 
simultaneous distribution in the canting angle and the hyperfine field, and 
found a linear correlation between p and Hhf. However, the spectra can 
probably be interpreted in several ways. 

Because of the difficulties in making unequivocal analyses, usually the 
canting effect is only characterized from the relative area of the two and 
five lines. This allows one to deduce an average canting angle, or the 
thickness of the canted layer in a core-shell model with complete 
alignment of the spins in the core and random orientation at the 
periphery2’,. If D is the diameter of the particle and t the thickness of the 
canted layer, the fraction of canted spins is q = 1 - (1 - w D ) ~ ,  with 
q - 6t/D for 2t << D. The relative area of the two or five line is then 
given by 

The canted fraction q is related to the polarization factor p by q = 3p/ 
(2 +p). For a distribution of particle diameter, by assuming that t is 
independent of D, and such that 2t << D,, one deduces A2,5  = C, n,vqzl  
6 C, n , v  - t lD  with D = 6 ( V )  / ( S ) ,  where ( V )  is the mean volume and 
( S )  the mean surface. This average diameter is suitable for pure surface 
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effects. Note that the condition 2t << D, may not hold for small particle 
sizes. 

Random canting angles between 0 and r r I2,  or between rr and rr12, 
lead to the same result as between 0 and rr. The three situations may, 
however, be distinguished since they lead to two and five lines centered at 
different positions. These are given by the average effective fields, equal 
to Hhf, Hhf ++Happ, and Hhf -+Elapp for (0, rr), (0, r r /2) ,  and ( r r ,  rr/2),  
respectively. 

Studies of metallic surfaces at low temperature generally indicate 
perturbed properties over one or two atomic planes, which yields a 
perturbed layer with a thickness of the order of 0.2 nm. For ferrimagnetic 
oxides, because of the presence of anionic planes in between the cationic 
planes, the perturbed layer should be somewhat thicker, possibly 1.5-2 
times thicker depending on the structure. Consistently, with such an 
estimation, our preliminary results for y-Fe20, particles (Fig. F.6.4) give 
t equal to ca. 0.35 nm for 2.7- to ca. 8-nm particles. For 10-nm particles, t 
appears unrealistically small. The t values deduced from reported 

253 particles prepared by coprecipitation with an average diameter of 6.5, 
7.5,  and 9 n m F 8  t is ca. 0.5, 0.6, and 0.3nm, respectively. The com- 
parison of the various data suggests some influence of the preparative 
conditions. Systematic investigations would be very worthwhile. 

31,224 

vary between 0.3 and 0.8nm. In particular, for y-Fe,O data253 ,256.258 

F. 6.3.4. Conclusion. Mossbauer experiments are appropriate for char- 
acterizing surface phenomena. The difficulties in obtaining clear in- 
formation mainly come from the interplay of many distributed parameters 
in the materials. Surface phenomena are strongly dependent on the 
preparation and sampling techniques. It may therefore be difficult to 
establish some correlations between the results from different laborator- 
ies, eventually from one laboratory. To characterize the properties of the 
surface, it is indispensable to perform systematic investigations with, for 
instance, variation of the particle size for a similar surface state or 
variation of the surface state for a similar size. Utilization of the 56Fe and 

Fe isotopes is very promising. One should not, however, forget that the 
quality of the surface depends on the coating technique and that chemical 
and thermal treatments can modify the surface state significantly. 

There is not much doubt that the magnetic properties of the atoms 
near the surface are different from the properties of the atoms in the 
interior. The thermal evolution of the hyperfine field, and probably that 
of the recoilless fraction are faster than for the bulk atoms. This may 
influence the way in which Mossbauer spectroscopy senses the super- 
paramagnetic relaxation. 

57 
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F. 6.4. Superparamagnetic Relaxation in Zero Applied Field 

F.6.4.1. Introduction. If the surface-related phenomena are negligible, 
the electronic spins in the particle will fluctuate in unison (see Section 
D.3.1), and the orientation of the hyperfine field will fluctuate like the 
orientation of the magnetic moment of the particle m. The Mossbauer 
nucleus senses the relaxation of m via the hyperfine interaction and thus 
the Mossbauer spectrum can, in principle, be influenced by all the 
trajectories of m. 

The important characteristic times of the problem are the inverse of 
characteristic angular frequencies, which are related to characteristic 
energies via expressions of the type E = hw. These characteristic times 
are (i) the mean life time of the Mossbauer excited state, T ~ ,  which 
determines the minimum width of the energy levels, r, = T ; * ,  expressed 
in angular frequency; (ii) the time T~ = w L  , where wL is the angular 
frequency of the Larmor precession of the magnetic moment of the 
nucleus in the excited state; and (iii) characteristic times determined by 
the relaxation process and related to the angular frequencies of the 
nuclear transitions. Note that the definition of the characteristic times and 
the relaxation times as the reciprocal of an angular frequency ensures 
consistency with the expression of the relaxation time as stated by 
Brown's equation4' by using the usual value of the gyromagnetic ratio 
expressed in angular frequency (-yo - 2 X lo7 G-' s-' for iron) (see Sec- 
tion F.5.1). 

The Zeeman splitting of the nuclear excited state (see Ap.4) is 
resolved if the spacing between the levels is larger than the width of the 
levels, that is, wL = [ge lp  H lh  > rN or T~ < 7N.  This condition is gener- 
ally fulfilled for the Fe isotope in magnetically ordered materials 
because of the large value of the hyperfine field. Typically, a hyperfine 
field Hhf = 500 kOe gives T~ = 4 x s. In 
other words, there is always sufficient time for several complete Larmor 
precessions to take place before the nucleus decays, and T~ is not the time 
scale determining the relaxation behavior. 

7L can be thought of as the measuring time appropriate to the 
observation of a hyperfine interaction. Roughly speaking, if the relaxa- 
tion time T is such that 7 > > ~ ~ ,  the orientation of H,, hardly changes 
during the time of one Larmor precession. The nucleus practically senses 
the full interaction and produces a quasi-static six-line spectrum. If 
T << T ~ ,  the orientation of H,, changes many times before the completion 
of one Larmor precession. The nucleus senses a zero time-averaged 
hyperfine field, and the spectrum resembles that of a paramagnet, with 
one or two lines depending on the quadrupole interaction. 

- 1  

5 7 N  hf 

s, whereas T~ = 1.4 x 
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The quadrupole interaction raises a first difficulty.269 For a rigorous 
analysis, it is necessary to know the principal directions of the electric 
field gradient (EFG) tensor and the easy directions (see Ap.4). For the 
bulk material, if 2s = eQVzz/2 << no,, the accessible parameter is the 
quadrupole shift E, = /E,l = ~ ( 3  cos2L - 1 + q sin2< cos 25)/2 as given by 
Eq. (Ap.9). For fine particles, since m orientation changes are not 
instantaneous, the measured parameter is an average, ( E,), which 
depends on the relevant range of m orientations. The quadrupole shift 
can therefore be different for the superparamagnetic state and the 
blocked state, and different from the bulk value. For instance, for an 
axial EFG tensor (q = 0) and uniaxial magnetic anisotropy with both 
symmetry axes coinciding, the quadrupole shift will be E, = E for the bulk 
material, and ( E,)  = ~ / 4  for the superparamagnetic state assuming that 
all m orientations between the two easy directions are equiprobable.” In 
the blocked state, m fluctuates near one easy direction. Hence, the angles 
[ and 5 are not fixed and, in general, it will be necessary to consider an 
average or a distribution of E,. In addition, if 2~ is not small compared to 
noL, the problem becomes very complex and each case must be treated 
separately. 

Because of the energy range of the nuclear transitions, perturbed 
spectra are produced over a significant range of relaxation times around 
T ~ ,  at least one order of magnitude above and below, but dependent on 
the static parameters of the bulk material and the relaxation process. The 
relaxation lineshape depends on the actual motion of the hyperfine field 
vector (m) and, in general, rather complicated lineshapes may be 
expected. 

Due to the distribution of particle volume and shape, the experimental 
spectra consist of the sum of subspectra with different relaxation times. If 
only a small fraction of the particles have a relaxation time in the critical 
region, the relaxation lineshape effects will be weak and the Mossbauer 
spectra as a function of the temperature will be described as consisting of 
a bulklike component and a paramagnetic component in varying 
amounts. This is illustrated in Figure F.6.1 for a ferritin Figure 
F.6.5 shows a set of spectra for quasi-non-interacting y-Fe,O, particles. 
In this case, too, a superparamagnetic doublet grows at the expense of 
the magnetically split component as the temperature increases, but the 
six-line pattern also shows an increasing degree of asymmetrical line 
broadening, indicating significant relaxation effects. Relaxation effects 
are generally more important for nanometer ferro- and ferrimagnets than 
antiferromagnets. This is essentially an effect of the T,,-factor in the 
expression of the relaxation time T =.r,exp(KV/kT) where K is the 
effective anisotropy energy constant and V the volume of the particle. 
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Figure F.6.5. Mossbauer spectra at various temperatures of quasi-non-aggregated 
4.6-nm y-Fe,O, particles at low concentration in a 

The value of T~ determines the temperature (volume) interval required to 
span the Mossbauer time window. For ferromagnetic particles, T~ is 
normally of the order of 10-lo-lO-ll s.58,593137 Because this is not very 
small compared to T ~ ,  the critical temperature (volume) interval is rather 
large and the population of particles with critical relaxation times can be 
significant even if the volume distribution is not narrow. In these 
conditions the problem of the relaxation lineshape can become crucial. 
This problem is generally much less critical for antiferromagnetic particles 
because T~ is smaller by approximately two orders of magnitude 
(see Section H).  

Numerical information about the m relaxation process cannot be 
deduced from the spectra without a model of the lineshape in the 
presence of superparamagnetic relaxation. The influence of related 
phenomena has been treated in many theoretical works; see, for example, 
Refs. 271-282. The rigorous analysis of the problem as stated by Brown's 
equation [Eq. (D.13)1 is a complicated mathematical task even €or the 
single uniaxial particle, and the lineshape has been determined in some 

58,210.270 
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special cases using simplifying assumptions. Because of the complexity of 
the phenomena and also lack of an amenable satisfactory lineshape 
model, one often simply determines an average blocking temperature or 
uses low-temperature data to deduce an effective anisotropy energy 
constant. 

In the following, after a survey of most representative lineshape 
models and some considerations about analyzing the experimental spec- 
tra, the determination of the blocking temperature and the exploitation of 
low-temperature spectra will be discussed. 

F.6.4.2. Lineshape Models. The Mossbauer lineshape can be influenced 
by all relaxation modes of the Fokker-Planck equation (see Section D.3). 
Because the relative importance of these modes depends on their 
population, it should be necessary to know both the eigenvalues of 
Brown’s equation and the amplitudes of the associated modes. In fact, to 
determine the lineshape, it is necessary to connect the dynamics of the 
stochastic vector m given by Brown’s equation with the quantum 
dynamics of the nuclear spin. This necessitates the use of superoperator 
Fokker-Planck equations281 and, to our knowledge, the problem has not 
yet been completely solved. 

A. THE STOCHASTIC RELAXATION MODEL. The most general theories of 
magnetic relaxation in Mossbauer spectroscopy involve stochastic models; 
see, for example, Ref. 283 for a review. A formalism using super- 
operators (Liouville operators) was introduced by B l ~ m e ? ’ ~  who pre- 
sented a general solution for the lineshape of radiation emitted (ab- 
sorbed) by a system whose Hamiltonian jumps at random as a function of 
time between a finite number of possible forms that do not necessarily 
commute with one another. The solution can be written down in a 
compact form using the superoperator formalism. 

By using Afanas’ev’s if the hyperfine field Hhf(t) = 

n(t)H,, takes a finite set of distinct orientations no (a = 1,2,  . . . , N ) ,  
between which random transitions occur, the lineshape in the absorption 
spectrum is given by an expression of the type 

(F.6.5) 

where r is the width of an excited nuclear level, 7 is the polarization 
vector of the incident y-rays, j is the operator of the nuclear current 
responsible for the transitions between the ground Im,) and excited [ m e )  
states of the nucleus, p is a row having the dimensionality N of the 
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electronic spin system, and u is a unit column of the same dimensionality. 
The elements pa are the relative probabilities of the electronic states la). 
G is a superoperator acting in the space of the N(2Ze + 1)(2Zg + 1) 
functions ~ m , ) ( m , ~ ~ u )  and its form is 

(F. 6.6) 

The superoperator L,, is the Liouville operator of the hyperfine inter- 
action. It is diagonal in the electronic variables and is given by 

= (Aele - (F. 6.7) 

with A ,  =Ag,pNHhflh and A, = ggpNH,,/h, assuming E = 0. The super- 
operator R describes the relaxation process. It is diagonal in the nuclear 
variables, and its elements are R,, =pab  and R,, = - C b z a  p a ,  where pa, 
is the transition probability per time unit from state la) to state Ib). 

These formulas completely determine the absorption spectrum. In the 
present case in its general form, the determination of the matrix elements 
of G is equivalent to solving the set of (21, + 1)(2Zg + 1) differential 
equations of the Brown type.284 The problem is complicated especially 
because the Hamiltonian does not commute with itself at  different times. 
Because of the mathematical difficulties, approximate models have been 
used. 

B.  BASIC DISCRETE ORIENTATION MODELS. The simplest model is the sym- 
metrical two-level model in which the vector H,, hops between two 
opposite  direction^.'^' The lineshape has a simple analytic expression, 
which may be expressed284 by 

with q = w + i ( 2 p + g )  

iT 
w 2 = w + -  2 

(F. 6.8) 

where w,,,~ = (-3A, + A,)/2,  o , , ~ , ~  = ( - A e  + A,)/2,  and whf,3 = (A ,  + 
A,)/2; cJ is the normalized intensity of the lines j and 7 - j ,  and p is the 
probability of hopping per time unit. In Brown’s model (see Section 
D.3.2),  the relaxation mode given by the smallest nonvanishing eigen- 
value, A,, of the Sturm-Liouville equation is the only significant mode.64 
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Hence, p - l  can be identified with 7, = 7- = 27, where T+ and r- are the 
relaxation times for the passage over the energy barrier in one direction 
and the reverse (see Section D.I), and T is the relaxation time for m 
reversal (see Section D.3.2). Spectra calculated for different values of 
p = 7, = 27 are shown in Figure F.6.6. According to Ref. 273, a given 
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Figure F.6.6. Theoretical Mossbauer spectra calculated for various relaxation times in 
the discrete two-level relaxation model for uniaxial symmetry [Eq. (F.6.8)]. The linewidth is 
0.2 mm/s and the hyperfine field is 55T. 
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pair of lines, j and 7 - j ,  collapse at a relaxation time 5 given by 

(F. 6.9) 

The case of cubic symmetry has been treated by Afanas'qv and 
Oni~hchenko.~~ '  In case of [loo] easy directions, the matrix of G is of 
rank 48, but the symmetry of the problem allows one to find an analytic 
expression given by 

with 

(F. 6.10) 

W1 = + i(4p, + 2p, + +r) 
w2 = w + i(6p, + ir) 

where pa is the probability of transition per time unit between electronic 
states with change of direction of Hh, by an angle 7-r/2, and p b  is the 
probability of a transition with H,, reversal. If pb  = 0 or pb  = p a  then 
'p,(w) = 0. These two situations, no direct reversal or change of orienta- 
tion by 77/2 four times more probable than reversal, are nearly equivalent 
regarding the shape of the Mossbauer spectrum. A set of spectra 
calculated in the case pa =pb is shown in Figure F.6.7. The comparison 
with the uniaxial case (Fig. F.6.6) shows that it may be essential to use 
the appropriate formulation for interpreting the effects of a size dis- 
tribution. Such effects were investigated by Belozerskii et al. for 

and cubic symmetry.277 In Brown's model, at least two ([loo] 
easy axis) or  three ( [ l l l ]  axis) modes are necessary to describe the 
relaxation of m (see Section D.3.4) The eigenvalues can be deduced from 
approximate formulas or by numerical c a l ~ u l a t i o n ~ ~ - ~ ~  but the amplitudes 
of the eigenvalues are unknown (a formula analogous to (D.23) must be 
used). Hence, there is no appropriate formulation to date for the 
probabilities of transition relevant to Mossbauer spectroscopy. 

The above models are discrete models. Then, m is constrained to lie 
along the easy directions and the jumps are supposed to be instantaneous. 
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Figure F.6.7. Theoretical Mossbauer spectra calculated for various relaxation times in 
the discrete relaxation model for cubic symmetry with relaxation between the [loo] 
directions [Eq. (F.6.10)]. The linewidth is 0.2 mm/s and the hyperfine field is 55T. 

The range of orientations between the easy directions is not taken into 
account and the fluctuations close to one easy direction are excluded. 

c. DIFFUSIONAL MODELS. Jones and S r i v a ~ t a v a ~ ~ '  proposed a many-state 
model for uniaxial anisotropy in which all orientations of m with respect 
to the quantification axis are included in the calculation of the lineshape. 
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However, the absolute relaxation rate is a free parameter. Belozerskii et 
a1.279,280 proposed a model of discrete orientations allowing for the 
influence of precession of the magnetic moment around the easy direc- 
tion. The lineshape has a relatively simple expression in the absence of 
relaxation, but the formulation becomes very complicated in case of 
precession and relaxation. Nevertheless, the lineshape can be computed 
for a given relaxation rate p = 1 / ~ .  Sedov282 proposed a diffusion model 
for uniaxial anisotropy based on Brown's equation. The diffusion is 
assumed to proceed in the presence of regular precession that is fast 
compared to the nuclear Larmor frequencies. The lineshape is given by 
Eq. (F.6.6) where the superoperator R is given by a Sturm-Liouville 
equation similar to Eq. (D.15). Three temperature sets of spectra are 
presented in Ref. 282, as a function of a parameter somewhat equivalent 
to air, where a = W / k T  and T, is the time constant of diffusion given 
by T~ = VMnr(0)(v,' + v,) /y , ,kT according to Eq. (D.17) neglecting the 
thermal variation of the magnetization. 

By varying the rate of diffusion (precession), these models can provide 
a continuous connection between the two-level relaxation and a static 
hyperfine field distribution. The calculated spectra generally resemble the 
experimental spectra more than the spectra calculated using the discrete 
orientation models. In particular in the limit of slow diffusion (preces- 
sion), they reproduce features that are frequently observed for strongly 
interacting particles (see Section F.6.4.3). However, such a situation is 
not in accordance with the rate of diffusion normally predicted by 
Brown's theory [Eq. (D.17)] with realistic values of the parameters and, 
to our knowledge, there is no other theory to date, except Nkel's theory 
(see Section D.2), for predicting the rate of diffusion. In addition, the 
applicability of the above models is limited by the presence of free 
parameters, or by the mathematical complexity. The lineshape may be 
computed for given values of the parameters for one relaxation time, 
even a distribution of relaxation times, but there is much doubt about the 
success of the converse operation, that is, the determination of the 
parameters in the T expression from the profile of the experimental 
spectra, because of various sources of ambiguity. It therefore seems 
difficult to apply these models, even to appreciate their validity. 

D. LOW-TEMPERATURE LIMIT. In the low-temperature limit, the lineshape 
is essentially influenced by the fluctuations near one easy direction. These 
fluctuations are contained in the Fokker-Planck equation. Therefore, 
their amplitude and rate and, hence, the position and the shape of the 
spectral lines depend on the same parameters as r,  namely a and T ~ .  The 
diffusional models278-28"3282 predict a strong asymmetrical broadening of 
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the lines in the limit of slow diffusion (see comments above). As the 
diffusion rate increases, the line asymmetry reduces and the lines shift. 
An expression of the spectral line as a function of a and rn has been 
reported for small angular deviations.2s2 

considered the limiting case of fast diffusion, that is, 
much faster than the nuclear Larmor precession. For a particle with 
magnetic energy E(8)  = E,sin28 and with m fluctuating about the easy 
direction at 8 = 0, the probability that m forms an angle between 8 and 
8 + d8 with the easy direction is given by 

M~~~~ 18,94,285 

exp{ -E(O)lkT}sin 8 d8 

[I2 exp{-E(B)/kT)sin 8 do 
p ( 8 )  dB = (F.6.11) 

The Mossbauer nucleus only senses the average projection of the 
hyperfine field (m) onto the easy direction, that is, 

~ 

HobS = H,cos 8 (F.6.12) 

__ 
where H,, is the hyperfine field in the absence of fluctuations and cos 8 is 
given by 

- 1 - exp(a) 
2v'GD(vG) 

- (F.6.13) 

where D ( .  ) is the Dawson integral, and (Y = E,/kT. 
For a k 5, case is well approximated byso 

The first-order approximation, satisfactory for 
not exceeding 5% for (Y 2 5. 

- - 4  (F.6.14) 

a >20, results in an error 

3 

For an arbitrary form of the magnetic energy, expressed by E = 
E(u,, uyr u z )  as a function of the direction cosines of the magnetization 
vector, the average value of the hyperfine field is given by94 
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with the low-temperature approximation 

Hobs - H O [  1 -jkl{ (2);' + ($):'}I (F.6.16) 

This model can only be applied if the relaxation between the easy 
directions has a negligible influence on the magnetic splitting. As values 
of a larger than 5-10 normally result in relaxation times longer than 
lops s, it is generally accepted that Eq. (F.6.12) can only be applied for 
values of a larger than 5-10P4 The maximum reduction in the magnetic 
splitting solely due to the fluctuations near one easy direction is thus of 
the order of 5-15%. According to Eq. (F.6.12) Hobs depends on the 
particle size. Hence, a distribution of particle sizes will result in an 
apparent distribution of hyperfine fields. Because this can explain the 
asymmetrical line broadening often observed at low temperature, 
Morup's model has been largely used to interpret low-temperature 
spectra (see Section F.6.4.5). 

F.6.4.3. Modeling of Experimental Spectra. At present, the model com- 
bining the two-state relaxation modelz7' [Eq. (F.6.8)] and Morup's model 
for the low-temperature limity4 [Eq. (F.6.12)] is the only amenable model 
for fitting experimental spectra, and also the only model for which the 
results can be compared with the results from other techniques. Such a 
model may be useful only if the observed spectra are little affected by 
relaxation phenomena, that is, when the temperature set of spectra can 
essentially be described in terms of two spectral components, a magnetic 
component and a superparamagnetic component, which coexist in varying 
amounts as a function of the temperature. This indeed implies that 
particles with a relaxation time in the Mossbauer window are in a 
relatively small amount at any temperature. 

If the distribution in particle volumes is not known, one can determine 
a value of T~ and the distribution in the energy barriers.286 If the volume 
distribution is known, one can determine the parameters in the expres- 
sion of the relaxation time. This has mainly been ~ ~ e d ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ - ~ ~ ~  with a 
simplified expression of the relaxation time, that is, with T~ either fixed, 
adjustable or given by Brown's approximation4* [Eq. (D.l9)], to de- 
termine the average anisotropy energy per volume unit, K. By using 
Coffey's approximation valid for all barrier heights65 [Eqs. (D.25) and 
(D. 17)] and fitting simultaneously variable temperature spectra, one can 
in principle determine the two parameters in the model, namely K and 
q = M,,,(0)(qL1 + qr ) ,  neglecting the thermal variation of the magneti- 
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zation. For y-Fe,O, particles with varying mean size and negligible 
interparticle  interaction^:^^ we found that such a procedure could yield 
valuable information, but only from a semiquantitative point of view. The 
quality of the fits was generally satisfying, but K appeared significantly 
underestimated and q overestimated as compared to ac susceptibility 
data. This is due to the problem of the lineshape because of significant 
relaxation effects. For interacting particles, we did not take into account 
the temperature dependence of the interaction energy because of too 
many parameters and the fits were not as good as for the noninteracting 
particles. The results, however, suggested that the interactions decreased 
q, a feature clearly established by ac susceptibility experiments: 

The statistical model of i n t e r a ~ t i o n ~ ~  (see Section E.3.3) is valid when 
most particles relax. At a given instant, the interaction energy may make 
the energy minima unequivalent, as in the case of a small static applied 
field, but the situation changes with time since the magnetic moments do 
not relax in unison because of the disordered arrangement of the particles 
and the volume distribution. In principle, a given particle can give two 
different Mossbauer spectra at two different times. Because of the 
duration of recording, the spectra corresponding to all possible configura- 
tions of the neighboring moments are contained in the experimental 
spectrum. Hence, in a first approximation the particle will be character- 
ized by the sum spectrum (with somewhat broadened lines) corresponding 
to the average interaction energy. 

The two-level relaxation model will be useless when relaxation phe- 
nomena are prevailing, as can be expected in the case of a sufficiently 
narrow distribution of relaxation times. Figure F.6.8 shows Mossbauer 
spectra of two samples of interacting Fe particles dispersed in 

In the case of a broad distribution of particle sizes (Fig. 
F.6.8a), relaxation features are significant at intermediate temperatures, 
but one can clearly notice the superparamagnetic component growing at 
the expense of the blocked component as the temperature increases. Such 
a feature is not observed for the particles with a narrow distribution of 
sizes (Fig. F.6.8b). At 4.2K the magnetic moment of the particle does 
not fluctuate, and the spectrum is characterized by a static distribution of 
hyperfine fields arising from surface effects (see Section F.6.3.2). As the 
temperature increases, it seems that there is a gradual evolution of the 
profile from the blocked component to the superparamagnetic com- 
ponent. 

Figure F.6.9 shows Mossbauer spectra of floculated y-Fe,O, particles. 
As the temperature increases, the lines of the magnetic component 
present an increasing degree of asymmetrical broadening, and perturbed 
spectra without a visible superparamagnetic doublet prevail up to some 

59,137 

alumina .4s 244,290 
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mmls 
(a) 

Figure F.6.8. Mossbauer spectra of a-Fe particles dispersed in an alumina matrix, with 
a rather broad (a) and a narrow (b) distribution of particle sizes. 

temperature, after which there is a relatively sudden collapse of the 
magnetically split component. This is clearly different from the evolution 
observed for the same, quasi-non-interacting particles (Fig. F.6.5). The 
increased broadening of the outer lines as compared to the inner lines in 
the magnetically split component (Fig. F.6.9) cannot be reproduced by 
the two-level relaxation model, which predicts a collapse of the inner 
lines first (Fig. F.6.6). The diffusional models (see Section F.6.4.2) may 
reproduce the observed features, but in the limit of low diffusion rates, 
which cannot be correlated to the formulation of the relaxation time. The 
magnetic properties of these p a r t i ~ l e s ~ ~ , ' ~ ~ , ' ~ ~  like . those of the Fe/A1,03 
particles (Fig. F.6.8) p531193244 are governed by superparamagnetic relaxa- 
tion. 

Ferro- and ferrimagnetic particles most often give temperature sets of 
spectra that cannot be described in terms of a blocked component and a 
superparamagnetic component coexisting in varying amounts. Because 
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Figure F.6.9. Mossbauer spectra of floculated 4.6-nm y-Fe,O, particles measured at 
different temperatures.*6' 

the particles are generally interacting, it is often inferred from the 
Mossbauer features that the properties are not relevant from super- 
paramagnetic relaxation. However, due to the complexity of the phenom- 
ena, the analysis of the spectra is generally not unique, and achievable 
with dynamic and static models.291 No sound analysis can be done without 
a previous, detailed characterization of the physical phenomena by other 
techniques. The effects of the distributions of particle volume and shape 
play a fundamental role in all measurements, It is our opinion that some 
of these Mossbauer spectra may be difficult to interpret because we do 
not know what is the actual distribution of relaxation times and because 
we lack a suitable model of the lineshape for superparamagnetic relaxa- 
tion. It is also possible that the time dependence of the interactions 
introduce further complications. 

F.6.4.4. Blocking Temperature. When the sextet and doublet (singlet) 
coexist, information concerning the distribution of relaxation times is 
contained in the temperature dependence of the relative areas of the two 
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spectral components. This has been used to determine the distribution of 
particle volumes.292 The procedure can be refined by considering an 
additional, perturbed component assigned to the particles with an 
intermediate relaxation time.293 

Generally, the temperature dependence of the blocked and unblocked 
fractions is simply used to measure the median blocking temperature, T,, 
that is, in general, the temperature at which magnetically split and unsplit 
components represent 50% each of the spectral area. The relevant 
average volume is the median volume, as a particle of volume V gives a 
spectrum whose area is proportional to V. The measuring time, T,, is 
difficult to determine precisely because it depends on the relaxation 
process and cannot be assessed without an assumption on the lineshape. 
Measuring time T, is generally set at 2.5 x 
which approximately corresponds to the T value for which a magnetic 
splitting is resolved in a two-level relaxation spectrum with a hyperfine 
field of 550 kOe (Fig. F.6.6). 

In general, the experimental spectra show broadened lines. The value 
of T,  depends on the procedure used for the determination, which also 
determines the value of T,, whence possible difficulties in comparing the 
values of T, for different samples. In addition, the uniaxial approxi- 
mation may not be accurate and variations in the blocking temperature 
may be caused not only by changes in the main energy barrier but also by 
variations in the lineshape due to small changes in the landscape of the 
actual, multivalleyed anisotropy energy. For evident reasons, pure 
uniaxial symmetry is usually assumed for interpreting the observed 
phenomena, including differences in blocking temperatures, which may 
be smaller than the uncertainty on the blocking temperatures themselves, 
as is deduced from the fits. In the case of a broad distribution of particle 
sizes the median volume and the average volumes relevant to other 
techniques may differ notably. The respective TB values will be difficult 
to scale if K varies with particle volume and temperature, as in the case 
of interacting particles. The blocking temperature as measured by 
Mossbauer spectroscopy is a parameter easy to visualize, but its exploita- 
tion may be problematic, especially in the context of a comparison.294 

In principle, when the distribution of particle volumes is known, the 
method used for determining the size d i s t r i b ~ t i o n ~ ~ ~ * ~ ~ ~  can be applied to 
the determination of the blocking temperature as a function of the 
~o lume . '~ '  With the same basic assumption that the decomposition of the 
Mossbauer spectrum into three components (magnetic, perturbed, and 
superparamagnetic) corresponds to a partition of the T ( V )  distribution, 
T 2 T ~ ,  T~ < T < T ~ ,  and T 5 T ~ ,  from the relative area of the magnetic 
component at temperature T and the known V distribution, we can 

9 18 s or  T, = 5 x 10- s, 
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deduce the volume V, for which T = T ~ ,  that is, T,  = T for T, = 7,. From 
the temperature dependence of the magnetic fraction we can therefore 
determine T,  as a function of Vover a significant range of volumes in the 
sample, provided that T ,  remains constant. ( T ~  can be similarly exploited, 
but this is generally of limited interest because it is only concerned with 
the smallest particles in the sample.) We can expect to maintain T ,  

approximately constant by keeping the parameters of the intermediate 
component the same for all temperatures and all samples. This indeed 
assumes that there is no basic change in the anisotropy nor in the 
hyperfine field distribution. With this mode of operation applied in the 
case of y-Fe,O,/PVA for each sample with negligible 
interparticle interactions we obtained a linear variation of the type 
T,  = aV, and for each sample of interacting particles the variation 
presented a curvature at large V. For the spectral decomposition used, T~ 

was rather equal to lO-'s. The data were used to scale, for the same 
average volume, the blocking temperatures as measured by Mossbauer 
spectroscopy and ac susceptibility experiments over a broad frequency 
range .59,137 

Blocking temperature T,  is generally written as kT,  = E,/ln(~,/q,). 
Because T, depends on T0(lm(0)I,7,), and E B ,  a variation of T, as 
measured by Mossbauer spectroscopy can a priori be due to a variation of 
To( Im(O)l, 7,) and/or E,, assuming T, constant. Generally, the variation 
of T~ is assumed negligible and a variation of T, is assigned to a variation 
of E,, which may be rather misleading. 

Interparticle interactions (see Section E. 3 )  increase the energy barrier, 
which increases the relaxation time. The additional barrier, EBlnt , 
decreases with increasing temperature. The interactions can also damp 

An increase in the the motion of the magnetic moment vector. 
dimensionless damping factor 7, (7,s 1) decreases the relaxation time 
(see Section D.3). Hence, the interactions can increase or decrease the 
relaxation time depending Qn which effect, of E,,,, or q,, is prevailing. 
This is illustrated in Figure F.6.10, which shows a series of Mossbauer 
spectra at room temperature for 8-nm y-Fe20, particles with varying 
interparticle spacing. When the spacing is sufficiently large, the interac- 
tions are negligible and the spectrum (a) can be described in terms of a 
magnetically split component and an unsplit component with similar areas 
(median T,  = 275 K). As the distance between the particles decreases, 
the unsplit component grows at the expense of the magnetically split one 
(b), which nearly disappears (c), then grows (d), and becomes the only 
visible component (e). The relaxation goes faster and then slower; 7, 
increases from (a) to (c) and is about the same for (d) as for (c)." 

Because of the temperature dependence of EBlnt, the relaxation time 

59,137 
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Figure F.6.10. Mossbauer spectra at room temperature of 8-nm y-Fe,O,. Dispersion in 
a polymer of quasi-non-aggregated particles with a mean center-to-center distance of about 
(a) 40 nm, (b) 20 nm, and (c) 12 nm, (d) hydrated floculated, and (e) floculate dried at room 
temperat~re.’~’ 

can be decreased by the interactions at high temperature, and increased 
at low temperature. Therefore, if 7, increases (77, i l), we can observe a 
decrease of the blocking temperature by Mossbauer spectroscopy, and an 
increase by M,,, measurements, for instance. Indeed, if r ] ,  does not vary, 
the blocking temperature will increase for Mossbauer spectroscopy too. 
These situations have been observed for y-Fe,O, particles depending on 
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the strength of the interparticle interactions.s9’96”7”34~137~29s-29y If the 
variation of T~ is assumed negligible, the decrease of T, as observed by 
Mossbauer spectroscopy will be attributed to a decrease of the energy 
barrier. A was proposed for explaining this feature, and spin 
glasslike ordering at low temperature was suggested for explaining the 
increase of TB observed by M,,, measurements. For explaining the 
increase of T, observed by Mossbauer spectroscopy with further increas- 

that the observed blocking was 227,298,299 ing interactions, it was suggested 
not due to superparamagnetic relaxation but to ordering of the interacting 
moments. For our y-Fe,O,IPVA samples, the existence of a collective 
behavior due to the interactions was clearly ruled out by thermorema- 
nence magnetization r n e a ~ u r e m e n t s , ’ ~ ~ ” ~ ~  except perhaps at very low 
temperature, and the effect of the 7, factor was revealed by ac suscep- 
tibility experiments at various frequencies. 

Because such phenomena, like structural defects, may influence the 
viscosity of the motion of the magnetic moment m (and Iml), we can 
expect a possible role of the damping factor in addition to the energy 
barrier in determining an increase or a decrease of the blocking tempera- 
ture in this case too. 

59,137 

223,300 The Mossbauer spectra are very sensitive to surface phenomena. 

F.6.4.5. Magnetic Splitting at T << T,. The Mossbauer spectra of fine 
particle systems at low temperature often show an asymmetrical broaden- 
ing of the lines (Figs. F.6.5 and F.6.9). Because this can be explained by 
the size-dependent reduction of the magnetic splitting according to 
Morup’s mode1’8~94~2RS (see Section F.6.4.3), this model has been largely 
used for analyzing the spectra at temperatures well below the blocking 
temperature. 

If Eq. (F.6.12) is valid for each particle in the sample, the average 
observed hyperfine field is given by 

(F.6.17) 

where n, is the population of the particles with volume r/, and H,, 
the hyperfine field in the absence of fluctuations assumed independent 
of the particle size. If the total anisotropy energy per volume unit, K ,  
is independent of the particle volume, the above - expression can be 
developed according to the power expansion of cos6 (Eq. F.6.14) as a 
function of various volume averages. In view of the general lack of 
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accuracy in these averages, and the various assumptions in the model, 
application is usually limited to the first-order approximation given by 

(F.6.18) 

where ( V )  is the mean volume. If K is independent of the temperature 
and if the thermal variation of H, is known, the average energy barrier 
K ( V )  can easily be deduced from the temperature dependence of 
(Hobs). Hence, the analysis of spectra taken at T << TB in terms of a 
static hyperfine field distribution can provide a simple, most frequently 
used, way to estimate K if the mean volume is known. In general, 
however, the thermal variation of H, is not known. It is either neglected 
or taken as that in the corresponding bulk material, although significant 
differences may result from size and surface effects (see Section F.6.3.2). 
The K values deduced according to Eq. (F.6.18) are usually found in 
reasonable agreement with the data deduced by other techniques, but in 
all cases the uncertainties due to the underlying approximations are 
generally difficult to estimate; see, for example, Refs. 252, 258, 296, 299, 
301, and 302. 

We note that if K = E,/V varies with V,  the first-order approximation 
of Eq. (F.6.17) yields 

The average anisotropy energy per volume unit one deduces from the 
thermal variation of (Ifobs) is actually the average ( V / E B ) - ' .  This is not 
readily exploitable. Such a situation typically occurs when the anisotropy 
is a combination of, for instance, surface and volume (magnetocrystalline, 
magnetostatic) anisotropies (see Section C.) 

Independent of the assumptions about H,, the application of Eq. 
(F.6.18) rests on three basic assumptions. First, the particles are nonin- 
teracting. Second, a particle of volume V gives a sextet with Lorentzian 
lines with width independent of V and T ,  and third, the position of the 
lines is determined solely by the value of a (and H,). 

Lineshape effects due to relaxation over the energy barrier may be 
significant down to low temperature because of the blocking of the 
smallest particles if the volume distribution is not narrow. Deviations 
from the ideal width, shape, and position of the lines will also occur if the 
assumption of fast diffusion is not accurate. The fluctuations around the 
easy direction have been found faster than about 10-'o-lO~" s for 
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interacting Fe particles dispersed in alumina (7, - l).130 However, the 
rate and amplitude of these fluctuations, longitudinal and transverse, 
depend on a and T ~ ,  and both the position and shape of the lines should 
be influenced by these two parameters (see Section F .6 .4 .2 .~ ) .~ ’~  In case 
of interacting particles, the data should not be exploited insofar as there 
is no established model to date describing the influence of the interactions 
when there remain only vibrations in the potential wells and the thermal 
relaxation is inoperative (very low temperature state). For the inter- 
mediate state, when most of the particles are blocked, our statistical 
model is questionable and certainly requires some adaptations (see 
Section E.3.3). 

For quasi-noninteracting y-Fe,O, / PVA  particle^*^*'^^^ investigated at 
T 5 OST,, (Hobs) varies linearly with temperature for all investigated 
particle sizes, from ca. 3-10nm, and M~rup’s  model seems verified. 
However, the (Hob*) value extrapolated to zero temperature, H,(O), 
slightly decreases with decreasing particle size, and the whole set of data 
(Hobs)(T)/Ho(0) scale as T / ( V ) 1 ’ 3 .  This is not yet well understood and 
may result from separate or combined features such as special kind of 
anisotropy , temperature and volume dependence of the hyperfine field, 
or lineshape effects related to the sample-dependent value of the ratio 
K/M,,(O) ((Y/T~). For interacting particles, the temperature dependence 
of ( H o b s )  is not linear. The interaction effect, which is negligible, as 
expected, at 4.2 K, and only weak above, presents a change of regime at 
some relatively low temperature, ca. 20K for 7-nm particles with a 
median blocking temperature of 150-200 K. In the high-temperature 
regime, the variation of the average hyperfine field due to the interactions 
resembles the variation of the blocking temperature (see above), sug- 
gesting that dynamic features influence the lineshape down to ca. 20 K for 
the interacting particles, and possibly below for the noninteractjng 
particles as a result of the smaller damping fa~tor . ’~ , ’~’  The profile of the 
experimental spectrum indeed changes gradually, and it is difficult to find 
out if the observed broadening is an effect of the sole position, or both 
the position and the shape of the lines of the subcomponents. We tend to 
believe that the application of Eq. (F.6.18), especially with the intention 
of comparing data, should be restricted to samples with the same 
magnetization and damping factor. 

F.6.5. Influence of a Large Applied Field 

In the presence of a large external magnetic field, Happ, there is only one 
energy well (see Section F.3.2). If KV << MnrVHapp, the direction of 
minimum energy coincides with the direction of the applied field. If the 
fluctuations of m in the energy well are fast compared to the nuclear 
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Larmor precession, the induced field at the nucleus, Hind, is the average 
hyperfine field’s,94,303 as deduced from Eq. (F.3.1), that is, 

(F.6.19) 

where Ho is the hyperfine field at the nucleus and 2?(. ) is the Langevin 
function. The induced field is parallel or antiparallel to the external field, 
and the total magnetic field observed by the nucleus is given by 

Hohs = Hind + Happ (F. 6.20) 

The relative intensities of the Mossbauer absorption lines will depend on 
the angle between the direction of the observed magnetic field and the 
direction of propagation of the y-rays (see Ap.5). 

For p = M,,VHapp/kT > 2, we may use the high-field approximation of 
the Langevin function in Eq. (F.6.19), and find 

Hind = lHohs - HappI - ) (F.6.21) 
kT 

which can also be deduced from Eq. (F.6.16). For a volume distribution 
with Ha and M,, independent of the volume, the average induced 
hyperfine field is given by 

where (V)  is the mean volume. 
Equation (F.6.21), which is valid for a << p and p > 2, shows that a 

magnetic hyperfine splitting can be restored by an external field at 
temperatures at which the magnetic splitting collapses in zero applied 
field (T > TB). This unambiguously distinguishes the superparamagnetic 
state from the paramagnetic state. 

According to Eq. (F.6.22), if the variation of Mn,(T,Happ) with 
applied field is negligible, a plot of lHobs - Happl as a function l/Happ 
gives a straight line with slope H,kTIM,,(V) and intercept H,. If the 
nonrelaxing magnetization at temperature T is known, the average 
volume (V)  can be determined. This method for particle size de- 
termination has been widely ~ ~ e d . ~ ~ ~ ~ ~ , ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ - ~ ~ ~  

As an example Figure F.6.11 shows Mossbauer spectra of a-Fe 
particles on a carbon support in various applied fields at 80 and 300 K.304 
At both temperatures the spectra show the single line of superparamag- 
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Figure F.6.11. Mossbauer spectra of a-Fe particles on a carbon support at 80 and 
300 K obtained in different magnetic fields applied perpendicularly to the y-ray direction. 
(Reproduced with permission from Ref. 304.) 

netic bcc-iron in zero applied field. In applied field the spectra show a 
magnetic hyperfine splitting which increases with the strength of the field. 
Figure F.6.12 shows the induced hyperfine field as a function of the 
reciprocal of the applied field. At both temperatures a linear dependence 
is obtained in accordance with Eq. (F.6.22). From the average magnetic 
moment determined from the slope, an average particle diameter of 
2.5 nm was deduced in each case. The hyperfine splittings extrapolated to 

= 0 are close to the bulk values at both 80 and 300 K, showing that 
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F.6.12. Induced magnetic hyperfine field of the spectra shown in Fig. F.6.1 
of the reciprocal applied magnetic field. (Reproduced with permission from 

1 ,  as 
Ref. 

the magnetic and electronic properties are similar to those of bulk 
material apart from the superparmagnetic relaxation. 

If the magnetic anisotropy is not very small compared to the Zeeman 
energy, the induced magnetic hyperfine splitting will depend on both the 
magnitude of the applied field and the angle between the easy direction 
and the applied field. A distribution in magnetic hyperfine fields will be 
present in spectra of samples of randomly oriented particles. In the case 
when the induced field is antiparallel to the external field, the difference 
in magnetic splitting for particles with the easy direction parallel and 
perpendicular to Happ is given by303 

(F.6.23) 

The width of the distribution will be of the same order of magnitude. The 
effects of the distribution in particle sizes will lead to additional broaden- 
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ing. It has been shown303 that for a sample of identical particles in 
random orientation, the average induced field is still given by an equation 
equivalent to Eq. (F.6.21), and that the linear approximation remains a 
good approximation for quite large values of a ,  for /3 >> 1. Therefore, 
the particle size estimated by use of Eq. (F.6.22) is not significantly 
affected by the magnetic anisotropy. 

If the limit of fast fluctuations is not accurate, we can expect dynamic 
features influencing the lineshape. The situation will be more complicated 
than for the zero field case discussed in Section F.6.4.2.d, because of the 
polarization effect on the relative intensities of the absorption lines. 

F.6.6. Influence of a Medium or Weak Applied Field 

When an external magnetic field is applied along the uniaxial direction, 
the magnetic energy is given by E(8)  = KV sin28 - MnrHaPpV cos 8 [Eq. 
(D.4)] where 8 is the angle between m and the easy direction. If 
h = M,,Happ/2K < 1, there are two unequal energy minima (see Sections 
B.2 and D.l). The energy barriers, EB+ for the passage from the lower 
minimum (8 = 0) to the upper minimum (8 = T ) ,  and E,- for the reverse 
direction, are given by E,, = KI/(  1 k h)’. 

In the experimental conditions of Mossbauer spectroscopy, the system 
is in a stationary state. Therefore, as discussed in Section D.3.3, the only 
appreciable longitudinal modes are the ones associated with A, with 
A, = A,+  + A,-  where A1 is the smallest nonvanishing eigenvalue of 
Brown’s equation. In contrast with the magnetic measurements, which 
only depend on the net (average) relaxation process along the direction of 
the applied field, the Mossbauer spectrum is the sum of two subspectra 
corresponding each to relaxation in one particular direction. The descrip- 
tion of the relaxation process in terms of a blocked fraction and a relaxing 
fraction, which is pertinent for interpreting magnetic measurements (see 
Section D. l ) ,  is not appropriate for Mossbauer spectroscopy. 

In the simple discrete model of relaxation between the electronic states 
I+) and I-) corresponding to 8 = 0 and 0 = T ,  respectively, the 
Mossbauer spectrum is determined by the two transition probabilities, 
p + ( (  +)-+ I-)) and p - ( (  -)-+ ( +)), and the electronic state populations, 
p+ and p - .  The transition probabilities are given by pz  = TI’ = hl*/rD 
[Eqs. (D.27) and (D-29)], and the populations are pt = T+/(T+ + T-) = 

With the p s  / ( p +  + p - ) .  Theoretical spectra can easily be calculated. 
same notations as in Section F.6.4.2, the Mossbauer spectrum may be 
expressed by 

271,273 
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w2 = w + +ir 

Most significant differences with respect to the symmetrical case are 
obtained when r+ and r- are in the Mossbauer window with r+ / r -  
significantly greater than l.307 The magnetic aspect of the spectrum 
becomes more marked as h increases since r+ and p+ increase whereas r- 
and p- decrease. Two sets of spectra calculated for two values of the 
parameter A = 2 ~ - ” ~ c r / 7 ,  and a = 3 are shown in Figure F.6.13. One 
can notice the dual appearance of the spectra for h = 0.10. 

In actual samples, the easy directions are in random positions with 
respect to the direction of the applied field. This means that p’, depend 
on the angle between Happ and the easy axis (see Section D.3.3). In 
addition, Eq. (F.6.24) must be adapted as the relaxation takes place 
between 8, and 8, different from 0 and T.  This results in a distribution of 
relaxation times, which combines with that due to the volume distri- 
bution. One may therefore expect3” a complex evolution of the spectra 
with temperature, from the six-line pattern to the doublet (singlet), 
involving mainly a distribution of reduced hyperfine fields dependent on 
the value of h.  To our knowledge, no experimental study by Mossbauer 
spectroscopy of the relaxation in medium or weak field for ferromagnetic 
particles has been reported to date. 

As noted by R a n ~ o u r t ~ ” ~ ~ ’ ~  the nonsymmetrical doubie potential well 
can arise, not only from an external magnetic field but also from many 
other cases, such as structural defects, chemical interaction between the 
particle and its supporting medium, surface effects, and so on. In all of 
these cases, the relaxation of m can be described using the same model. 
As discussed in Section F.6.4.3, this model can also describe the effect of 
the interactions between the particles, but only locally and at a given 
time. 

F.6.7. Concluding Remarks 

Mossbauer spectroscopy is quite a unique technique in the present 
context mainly for two reasons. First, it offers the possibility of investigat- 
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Figure F.6.13. Theoretical Mossbauer spectra in the discrete two-level relaxation 
model for uniaxial symmetry, with unequal probabilities of the presence of the mag- 
netization vector along the two directions. Calculations for three values of the asymmetry 
parameter, h ,  at (Y = 3 with (a) A = 10'" Hz and (b) 4 x 10'' Hz (see text). The horizontal 
scale is from -9.22 to +10.78 mmis, and the static Mossbauer parameters are those of the 
B site in magnetite at room temperature. (Reproduced with permission from Ref. 307.) 

ing the surface properties, and second, it presents some specific advan- 
tages for studying the superparamagnetic relaxation due to the relatively 
short time scale and the local, isotropic character of the measurement. 
Small variations in the properties of the particles can manifest themselves 
as rather large changes in the Mossbauer spectrum. Hence, Mossbauer 
spectroscopy is a very sensitive tool for studies of small particle systems. 
However, the data are often difficult to interpret in detail, especially in 
the case of ferromagnetic particles, because difficulties arising from the 
materials and difficulties inherent in the technique accumulate. The major 
specific problems are related to the existence of a range of measuring 
times, and to the requirement of an appropriate lineshape model for 
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deducing any numerical information. Mossbauer spectroscopy is, in 
principle, sensitive to all relaxation times and subsidiary energy minima 
may play a significant role. This may influence the distribution in energy 
barriers as deduced using the assumption of pure uniaxial symmetry. The 
phenomena as observed by Mossbauer spectroscopy scarcely have a 
unique interpretation, thus the need for being very cautious when 
proposing one in particular. 

F.7. Ferromagnetic Resonance 

It is well known that ferromagnetic resonance (FMR) is a sensitive tool to 
study the local fields. In fine-particle systems, as the different contribu- 
tions to the total anisotropy (magnetocrystalline, magnetostatic, surface, 
shape, interparticle interactions) induce local fields, FMR experiments 
allow one to obtain information on the anisotropy energy and on the 
distribution of easy axes. 

The theory of ferromagnetic resonance in an assembly of single- 
domain particles uses, as its basis, the independent grain model, once 
proposed for the description of FMR in p o l y c r y ~ t a l s . ~ ~ ~ - ~ ~ ~  Ferromagnetic 
resonance spectra are described evaluating the dynamic susceptibility 
,y = 6M/6H of a single magnetic grain, assuming a fixed direction and 
strength of the anisotropy field H a ,  and then by carrying out the average 
of x over the distribution of Ha characteristic of a given sample, thus 
getting the observable quantity. The model was developed to account for 
thermal fluctuations of the magnetic moments in superparamagnetic 
grains84,312,313 and for the orientational mobility of particles in magnetic 
fluids (ferrofluids) .84,85 

In an FMR experiment a constant, large, magnetizing field is applied, 
and a Larmor precession of the particle moments is induced by a small, 
high-frequency field, perpendicular to H .  In the customary FMR tech- 
nique the spectrometer frequency is fixed (e.g., at 9 and 34 GHz) and the 
dynamic susceptibility is recorded as a function of the strength and the 
direction of the external field. 

The resonant frequency condition for an isotropic superparamagnet is 

w = y H  (F.7.1) 

On the other hand, for anisotropic magnetic particles, assuming that 
the anisotropy energy E, is much smaller than the magnetic energy due to 
the external field (E ,  = M,,VH, << M,,VH, where M,, is the nonrelaxing 
magnetization M,, = Iml / V ) ,  the resonance condition isS5 

(F.7.2) 
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where I,!I is the angle between the anisotropy axis and the external field; 
5 = M,,VH/kT; 2( 5) is the Langevin function; Z2(() = 1 - 3 2 (  5) is the 
next member of the Langevin function family, defined by the general 
expression 3. = ( P j ) o ,  with P, being the Legendre polynomials. 

Equation (F.7.2) shows that thermal fluctuations lead to a decrease of 
the effective anisotropy field (in addition to any actual temperature 
dependence of the anisotropy constant), which can be writtens5 

(F. 7.3) 

It follows from the asymptotics for 5 < 1 that with increasing tempera- 
ture Hueff decreases, being Hueff a ,$ a 1/ T. Therefore, according to Eq. 
(F.7.2) the effect of increasing temperature on FMR spectra is that the 
resonance frequency approaches the value o = y H ,  inherent to the 
isotropic superparamagnet. 

For an actual fine-particle system, with volume and easy axis dis- 
tribution, the dependence of the resonance condition upon the direction 
of anisotropy axes provides an asymmetric lineshape at low temperature, 
accompanied by a shift of the resonant field. With increasing temperature, 
the width reduces and the line transforms to a Lorentzian shape with an 
isotropic resonance field H,,, = o / y ,  as thermal fluctuations (with 7 << T ~ ,  

the Larmor precession) produce an averaging to zero of the anisotropy 
fields. 

The above described temperature evolution of the lineshape is the 
result of three different mechanisms, having different temperature depen- 
dences. In addition to the spreadout of anisotropy axes relative to the 
external field, another mechanism of inhomogeneous broadening does 
exist, due to the fact that the instantaneous resonance condition depends 
on the relative orientation (described by the angle 0 )  of the magnetic 
moment of the particle and its anisotropy axis 87,314.  . 

This mechanism is of a dynamic origin. Finally, in the limit of 5 < 1, 
thermal fluctuations, increasing the rate of precession damping, are 
expected to yield an homogeneous broadening of the line. 

The existence of interparticle interactions leads to an additional term 
to the local field. For dipolar interactions Hd p1d3 = I#+,M,,, where d is 
the interparticle distance and & is the volume fraction of particles. This 
also yields a contribution to linewidth A d H = @ 4 ,  (in the absence of 
magnetic moments fluctuations). 
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FMR experiments performed on fine particles dispersed in a nonmag- 
netic matrix (e.g., Fe, Co, Ni in polymer matrices:” a-Fe,O, in 
A1,0, :16 silica supported Ni particles311) show a progressive broadening 
of the absorption line, accompanied by the shift of the resonance field to 
lower values, as the temperature decreases. 

For some samples (e.g., Fe particles in a polymer matrix:” mag- 
nesioferrite particles in MgOP l 2  and for iron-containing microclusters in 
borate and silicate glasses3”) a coexistence of the broad line with a 
narrow line near g = 2 is observed (Fig. F.7.1). With decreasing tempera- 
ture the broad line grows, the width increasing and the shape becoming 
more and more distorted, and the narrow line tends to vanish (Fig. 
F.7.2). 

In Ref. 312 the influence of a particles size distribution on the FMR 
lineshape and width and on their temperature dependence is satisfactorily 
explained by a model of independent superparamagnetic grains. The two 
components are attributed to the fractions (changing with temperature) of 
blocked particles (responsible for the broad line) and superparamagnetic 
particles (responsible for the narrow line) present in the sample at each 
temperature. The linewidth is found to increase with decreasing particle 
size. However, for particles below a given size (corresponding to the 
characteristic size for superparamagnetism) the linewidth decreases 

In magnetic suspensions, in addition to the thermal fluctuations of the 
particle moment, the particle itself moves with respect to the liquid 
carrier (translational and rotational Brownian diffusion). This leads to the 
change of the orientational distribution of the particle anisotropy axes 
under the influence of the applied field. 

The theory of ferromagnetic resonance in magnetic suspensions was 
developed by Raikher and Stepanov:’ who extended the model for 
superparamagnetic particles accounting both for thermal fluctuations of 
magnetic moments and for orientational mobility of particles. The 
authors calculated the dependence of the equilibrium distribution func- 
tion for the particle anisotropy axes on the external field. In the limiting 
cases of ,$+ 0 or (T (=KVIRT)-+ 0 (isotropic particles) the distribution 
becomes isotropic, whereas for both 5 and (T very large, the distribution 
function is condensed around the external field direction, along which it 
shows a sharp peak. They calculated the dynamic susceptibility jj 
integrating over the contributions x’(n) and over the anisotropy axes 
distribution function f ( n , H ) ,  where n is the number density of the 
particles”: 

(F.7.5) 



MAGNETIC RELAXATION IN FINE-PARTICLE SYSTEMS 441 

Figure F.7.1. Changes in the lineshape of normalized FMR spectra on  magnesioferrite 
particles in MgO (H parallel to [loo] direction of the MgO single crystal for different 
annealing times at T =  1073 K: (a) 5 min, (b) 10 min, (c) 15 min. Dotted lines represent 
simulations of each line with various particle size distributions; Go, Uh, and U represent the 
mean volumes obtained from anisotropy field measurements, magnetization measurements, 
and those used for simulations, respectively. (Reproduced with permission from Ref. 312.) 
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Figure F.7.2. Temperature changes in 
the lineshape of normalized FMR spectra on 
magnesioferrite particles in MgO ( H  parallel 
to [loo] direction of the MgO single crys- 
tal). (Reproduced with permission from 
Ref. 312.) 

The results of the evaluation of dx'IdH for different values of 5 in a 
dilute magnetic fluid are reported in Figure F.7.3. For small 5 values 
(Fig. F.7.3f) the effects of anisotropy are averaged to zero by thermal 
fluctuations, and it results in a Lorentzian line with H,,, = o / y ,  charac- 
teristic of an isotropic superparamagnet. For high 5 values (Fig. F.7.3a) 
the orientational distribution of easy axes yields an asymmetric line 
shifted from g = 2. The two components coexist for intermediate 5 
values. 

Ferromagnetic resonance experiments were recently performed on 
diluted y-Fe,O, ferrofluids as a function of temperature and particle size 
(4 nm < (b < 10 nm>pl4 The resonance behavior changes drastically with 
decreasing particle size (Fig. F.7.4): for the sample consisting of large 
particles (sample 2) a wide Gaussian-like line, shifted from g =  2 is 
obtained; for the sample consisting of sufficiently small particles a narrow 
line at g = 2 is observed. Samples with intermediate particle size exhibit 
FMR spectra with more complex structure. It can be described by a 



MAGNETIC RELAXATION IN FINE-PARTICLE SYSTEMS 443 

50:nl moKi 

-500 

-1000 

-1 500 -500 
yH/o 

0.6 0.8 1 1.2 1.4 0.6 0.8 1 1.2 1.4' 

500 

0 

-5OC 

-1000 
0.6 0.8 1 1.2 1.4 

-500 "'1 +HI/ 

0.6 0.8 1 1.2 1.4 

0.6 0.8 1 1.2 1 

0 

-50 

-100 
C j 0.8 1 1.2 1.4 

Figure F.7.3. Numerical calculation of dX"/dH as a function of the dimensionless field 
y H i o  for a randomly oriented assembly of particles; CY (damping parameter) = 0.001; 
yH,,/w = 0.1; to = 10, 5 ,  3, 2, 1, and 0.2, respectively, for curves a, b, c, d, e ,  and f .  
(Reproduced with permission from Ref. 314.) 

combination of the two contributions, the balance depending or, the size 
distribution function. The g value of the narrow line is 2, whatever the 
sample. For the broad line H,,, decreases slightly with increasing particle 
size. As the temperature decreases, the intensity of the narrow line is 
diminished relative to the broad line. For the intermediate temperature 
range, spectra display the same complex structure (presence of both 
signals) as for intermediate particle size. With decreasing T a reduction of 
the resonance field H,,, and an increase of the linewidth of the broad 
component is observed. The narrow line does not shift, but just broadens 
slightly. 

In Ref. 314 experiments were also performed after cooling the sample 
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Figure F.7.4. FMR ( f =  9.2GHz) at room 
temperature for a series y-Fe,O, ferrofluids sam- 
ples (2-6) with decreasing particle diameter (from 
10 to Snm). (Reproduced with permission from 
Ref. 314.) 
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- A v- sample 4 

Sample 5 3- 
1.3 3.3 

in a magnetic field (in a plane perpendicular to the radiofrequency field), 
allowing the anisotropy axes to freeze in a favored direction. Resonance 
spectra were recorded as a function of the angle between the external 
resonance field and the cooling field. The two components of the 
spectrum exhibit different behavior with angular variations. The narrow 
component is not sensitive to angular variations, neither to the cooling 
process. The large component, on the contrary, shifts to higher resonance 
fields when the external field is turned away from the direction of the 
cooling field. These results confirm that the broad line concerns particles 
that experience their own anisotropy field, whereas the narrow line 
concerns particles that do not feel any anisotropy field.?'4 The relative 
intensity of both components as a function of 6 and their distinct 
behaviors with angular variations fit qualitatively the experimental spec- 
tra. However, in the high-temperature limit, the homogeneous broaden- 
ing predicted by the theory is not observed. Moreover, the theoretical 
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asymmetric shape of the large signal is not found in the experimental 
spectra, whereas a wide almost symmetric line is observed. 

In conclusion, FMR experiments represent a useful tool for studying 
the dynamical behavior of fine magnetic particles and for obtaining 
information on the anisotropy energy and on the orientational dis- 
tribution of easy axes. The proposed theoretical models are able to fit 
qualitatively the experimental spectra. However some important aspects, 
strongly affecting the thermal fluctuations of particle moments, have not 
yet been accounted for, for example, the effect of dipolar interactions in 
dynamical conditions (the dipolar local fields fluctuate in time in a system 
of nonidentical particles) and the effect of surface layers. Moreover, some 
models are valid only if Ha << H and cannot be applied when H is small. 

F.8. Neutron Experiments 

As for X-rays, the neutron technique may give some information about 
the particle sizes and local ordering, but it also provides an insight about 
spin correlations and spin fluctuations. We can mainly distinguish two 
kinds of experiments. The first one, namely the neutron diffraction 
corresponds to an integration over all the energies of the outcoming 
neutrons. It thus measures the Fourier transform of the instantaneous 
spatial correlations. The neutron diffraction may be performed at large 
angles, for instance, a determination of the particle size may be obtained 
from the broadening of the Bragg peaks. At small angles, the SANS 
technique (small-angle neutron scattering) gives much more detailed 
information. We will discuss this experiment in Section F.8.1. The second 
one, called inelastic neutron scattering, involves an energy analysis of the 
neutron cross section, and therefore measures the Fourier transform of 
the time-dependent correlations. This will be discussed in Section F.8.2. 
In Section F.8.3, we will report other possible experiments and finally 
draw some conclusions in Section F.8.4. 

F.8.1. SANS Experiments 

The neutron cross section is the sum of a nuclear and of a magnetic 
contribution. If the particle density is high enough, and for quasimonodis- 
persed particles, the nuclear contribution involves a one-particle term and 
an interparticle term. This nuclear cross section is analogous to the X-rays 
cross section, and the main results concern the mean particle diameter 
and the mean distance between neighboring particles. The magnetic 
contribution involves spin correlations within the particle (the magnetic 
particle form factor is the Fourier transform of the magnetic density 
inside the particle), and eventually interparticle spin correlations. 

As an example, we show in Figure F.8.1 the Q dependence of the 
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Figure F.8.1. Q dependence of the intensity in neutron counts for fine Fe particles 
embedded in an A1,0, matrix for several temperatures. In the insert, a fit of the data at 
297 K. (Reproduced with permission from Ref. 128.) 

128,129 intensity for Fe particles embedded in an alumina A120, matrix. 
The interference peak at about 0.2 A-', corresponds to a liquid-like 
short-range order between particles of very similar sizes. This is the 
nuclear term analogous to the X-ray one. From this term, one can deduce 
a mean particle diameter of 20& and a mean distance between neigh- 
boring particles of 35 A. The magnetic contribution, clearly observed in 
the small Q range, strongly increases with decreasing temperature. From 
a change in its Q dependence, it is possible to separate the one-particle 
term, which is dominant down to 100K, from the interparticle term 
arising below 100 K. The temperature dependence of the one-particle 
term corresponds to an increase of the particle magnetization, which may 
be due to a progressive alignment of spins at the surface of the par t i~1e. l~~ 
The interparticle term corresponds to ferromagnetic correlations between 
the total spins of neighboring particles, induced by dipolar effects. SANS 
experiments on Fe particles embedded in an SiO, matrix performed in a 
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more restricted Q range give similar results, although the interpretation is 
slightly different.318 We note that SANS experiments allow the de- 
termination of the nonrelaxing magnetization M,,  = Iml /V, where m and 
V are the magnetic moment and the volume of the particle, respectively, 
without applied field and outside any relaxation effect, which is not the 
case for magnetization measurements (see Sections F.2 and F.3). How- 
ever, when m relaxation is effective, the measured M,,  value may be 
slightly smaller than those corresponding to our M,,  definition (m is then 
considered as static; see Section F.3.1), due to the rearrangement of 
surface spins during rotation (synchronous rotation does not strictly 
occur, see Section D.3.1). 

One may also use a specific property of the neutron scattering, which 
only measures the spin components perpendicular to the scattering vector 
Q. In applied magnetic field, when using a two-dimensional multidetec- 
tor, the anisotropy of the intensity in the scattering plane (Q, H),  gives 
some information about the reorientation of the particles induced by the 
field H .  The intensity in the direction Q(IH, measures the Fourier 
transform of the correlations between spin components transverse to the 
field. By contrast the intensity in the direction Q I H ,  involves longi- 
tudinal together with transverse spin components (see, e.g., Refs. 319 
and 320). The results obtained on Fe/A1,0,'33 are in good agreement 
with those expected from the variation of the magnetization under 
applied field in a superparamagnetic model. In addition, some infor- 
mation is obtained about the effect of the field on the ferromagnetic 
correlation beween the particles. 

Other samples containing particles have been studied by SANS, 
particularly ferrofluids (see Refs. 320 and 321-324, e.g.), but either 
particles are too large for showing m relaxation or this relaxation is not 
evidenced. 

F. 8.2. Inelastic Neutron Scattering 

By inelastic neutron scattering, one gets the full S ( Q ,  w )  function 
corresponding to the double Fourier transform of the space and time pair 
correlation function (S,(O)S,(t)) . The characteristic energy scale 0.01- 
100 meV, which corresponds to the time scale 10-'o-10-'2 s,  is typical of 
anisotropy energies for the lowest values, and of the exchange energies 
for the highest ones. A special interest in the neutron technique lies in the 
possibility of observing the dynamics of the particle in zero field so that it 
can probe the intrinsic susceptibility. 

At present, only one study has been p ~ b l i s h e d ' ~ ~ - ' ~ ~  and that concern 
Fe particles in an A1,0, matrix. Two samples have been studied, which 
present a different particle mean volume, the ratio being about 4.6 from 



448 J .  L. DORMANN, D. FIORANI, AND E. TRONC 

magnetization measurements. Therefore a temperature shift in the 
properties may be expected between the two samples. 

In the small Q range where the magnetic intensity is enhanced due to 
the particle form factor, the energy spectra consist in two parts: a central 
peak (delta function) centered at w = 0 with intensity C ,  and an inelastic 
or quasielastic spectrum with an energy integrated intensity C,,  both 
convoluted with the spectrometer resolution function. The central peak 
consists of the nuclear scattering (static) and of any magnetic scattering 
fluctuating with a time larger than 1/27rT0 (ro being the energy res- 
olution). The inelastic spectrum can be described by S ( Q ,  w )  = 

C,(Q)F(w)  where, in the absence of any specific theory, several phe- 
nomenological forms of F(w) have been used, depending on the ex- 
perimental cases: a Gaussian or a Lorentzian function centered at w = 0 
with a characteristic linewidth r or a “double” Lorentzian centered at + 
and -w,, (creation and annihilation processes) with a linewidth r. We 
recall that in a paramagnetic state, as long as Rw << k T ,  the intensity C,  
observed by neutrons is readily related to the susceptibility x by C, = 

For the first sample where the particles have the smallest size, one can 
distinguish two regimes in temperature. Above 250K, where the mag- 
netic intensity is all contained in the quasielastic peak (isotropic regime) 
and below 250 K where a magnetic intensity occurs in the central peak. 
This latter observation points out the slowing down of some magnetic 
component. Interestingly, this slowing down occurs whereas the typical 
energy linewidth r of the remaining quasielastic spectrum becomes larger 
and larger (see Fig. F.8.2). The existence of two magnetic components of 
clearly separated energy ranges emphasizes the relevance of two charac- 
teristic times for the fluctuation of the particle magnetization. Long time 
fluctuations can be attributed to the local “longitudinal” component 
fluctuating between energy minima and the fast ones to the transverse 
fluctuations around the temporary mean orientation in one of these 
minima. The temperature T = 250 K where a magnetic “resolution-lim- 
ited” intensity occurs, corresponds to the blocking temperature T,  of the 
longitudinal component for the neutron probe (with the characteristic 
time T = 10-’os). The occurrence of an isotropic regime at high tempera- 
ture with the susceptibility ,y(T) proportional to 1 /T  (see Fig. F.8.3) is 
expected from theory.86 However, the characteristic time T is predicted to 
vary inversely with temperature (a  = W / k T  is smaller than one, then 
A, = 2 and T is proportional to 1 / T ;  see Section D.3.2), which is not 
observed as r =& is almost constant (Fig. F.8.2). It is suggested that 
the fluctuation time has reached a limit value above about 200K, which 
can be related to the anisotropy energy. A good agreement is found for 

, kTX(T).  
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Figure F.S.2. Temperature dependence of the energy linewidth r of the C, component 

at different Q values for fine Fe particles embedded in an A1,0, matrix. (Reproduced with 
permission from Ref. 130.) 

r = ygHeff with Heff = 2Keff/M being the anisotropy field. For T < 250 K, 
the fast fluctuations progressively acquire a transverse character, whereas 
the energy linewidth starts to increase strongly below 100 K. The use of 
the same relation as above T = 250 K, allows one to interpret the strong 
increase of I' by including in Keff the interparticle interaction energy (see 
Section E). We note that the increase of r below 100K is concomitant 
with the rise of the magnetic intensity observed by SANS in the very low 
Q range, indicating the growing of ferromagnetic correlations between 
the  particle^.'^'^'^" 

the first regime 
described above is not really reached because there remains some 
magnetic intensity in the C, component for the highest studied tempera- 
ture (480K). Nevertheless, one can see (Fig. F.8.4) that at high 
temperature, r tends to  a constant value very close to the asymptotic one 
measured for the first sample. The second regime described above is ob- 
served at the intermediate Q value 0.0775 A-'  for 200 < T < 500 K and 
can be explained in the same way. 

It is clear that the observed shift in the temperature limits are due to 

For the second sample with a larger particle 



450 .I. L. DORMANN, D.  FIORANI, AND E. TRONC 

8 

7 

6 

2 

1 

0 
0 100 200 300 

T (K) 
Figure F.8.3. Temperature dependence of the susceptibility xa(T)  of the quasielastic 

component for fine Fe particles embedded in an A1,0, matrix. (Reproduced with 
permission from Ref. 130.) 

the increase of the mean volume (about four times). Two new regimes 
occur for T < 200-250 K marked by the change between the lineshape of 
the quasielastic energy spectra (Lorentzian centered at w = 0 above and 
at w # 0 below) and the concomitant change of the susceptibility (see Fig. 
F.8.4). The change of energy spectra toward a weakly inelastic lineshape 
corresponds to the evolution toward the precession mode. This change 
may be driven by temperature as well as by interparticle interactions, 
these latter producing an enhancement of Keff. Therefore down to 200 K, 
the transverse excitations can be described in terms of local modes, 
indicating that the interactions are still weak. Finally below 50 K, the 
energy spectrum turns back toward a quasielastic lineshape with a strong 
increase of x with decreasing T (Fig. F.8.4). It seems that the competing 
interactions have destroyed the local modes. The limits between the 
regimes described above varies strongly with Q, the shift to higher 
temperature values corresponding to the smallest Q values, which are 
weighted by the form factor of the larger particle sizes. This is the 
obvious consequence of the polydispersity of the particles. However, this 
strong Q dependence ensures that these transverse fluctuations are still 
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incoherent between one particle and its  neighbor^.'^' This means in our 
opinion that the collective state for m (see Section E.2) does not occur in 
the studied temperature range (down to 25K for the second sample, 
which presents the largest mean volume). 

F.8.3. Other Experiments 

A neutron depolarization experiment is able to give some information 
about magnetic inho~nogenei t ies .~~~ In such an experiment a polarized 
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neutron beam is transmitted. During transmission, the beam changes its 
polarization direction n and degree of polarization P. From a three- 
dimensional analysis of n and P, the mean magnetization vector, the 
magnetic correlation length, and the mean square direction cosines of the 
local magnetization of the magnetically correlated volume are deter- 
mined. Ferrofluids have been studied with this technique (see, e.g., Refs. 
324 and 325). 

Results obtained from polarized neutron reflection measurements have 
been reported on granular samples consisting of Fe particles in an A1,0, 
r n a t r i ~ . ~ , ~ , ~ , ~  However, this experiment deals with surface studies and is 
not well adapted to the analysis of fine particle properties. Nevertheless, 
some features can be deduced. 

F.8.4. Conclusion 

Neutron experiments lead to very reach features concerning particularly 
the dynamical properties of fine particles. However, at present, only one 
particle kind has been studied by inelastic neutron scattering; and the 
studies of other particle types, other morphologies, would be interesting 
for the establishment of general behaviors. On the other hand, theoretical 
development would also be useful for the analysis of the data as well as 
the understanding of outcomes. 

F.9. Some Other Measurements 

In this section, we briefly discuss three properties that are measured from 
particular techniques and have some peculiarities for fine-particle sam- 
ples, that is, the magnetoresistance, the magnetocaloric effect, and the 
magneto-optics. 

F.9.1. Magnetoresistance 

The recent discovery of giant magnetoresistance (GMR) in heteroge- 
neous metallic  alloy^^^^^^ consisting of ferromagnetic grains (e.g., Fe, Co) 
embedded in an immiscible non magnetic matrix (e.g., Cu, Ag) has 
determined an enormous increase of interest toward magnetotransport 
properties and related phenomena in fine magnetic particle systems. The 
substantial change in the magnetoresistance in such magnetically 
inhomogeneous media (Fig. F.9.1) has improved the fundamental under- 
standing of the giant magnetoresistance effect, previously observed in a 
number of antiferromagnetically coupled multilayers (e.g., Fe/Cr).328 
Moreover, GMR in such granular magnetic materials provides large 
opportunities for potential applications, for example, in magnetoresistive 
devices (field sensors, magnetoresistive heads for magnetorecording, 
etc.). 
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Figure F.9.1. Field dependence of the relative magnetoresistance for three Cu-Co 
samples. (Reproduced with permission from Ref. 25.) 

Giant magnetoresistance comes from the reorientation of the magnetic 
moments of particles embedded in the nonmagnetic matrix and can be 
interpreted on the basis of electron spin-dependent ~ c a t t e r i n g ~ ~ ' . ~ ~ '  
occurring at the interface of magnetic and nonmagnetic entities.331 The 
value of GMR strongly depends on the density and on the size of 
ferromagnetic particles; their surface-to-volume ratio playing a key role. 

Giant magnetoresistance was found in various granular systems: Co- 
cU,25,2h ~ ~ - ~ ~ , 3 3 2 , 3 3 3  Fe-CqZ6 Fe-Ni-Ag:34,335 prepared by a variety of 
nonequilibrium techniques, such as e~aporat ion?~'  me- 
chanical alloying?37 melt spinning, and subsequent thermal annealing of 
the metastable phase: 

The interpretation of GMR is basically independent of the super- 
paramagnetism phenomenon. According to the model in Ref. 331, it is 
expected that the conductivity is minimum for a random alignment of the 
granule magnetic moments, supposed static. However, the magnetization 
under applied field is given by the Langevin function, as for fine particles 
when the anisotropy is neglected (see Section F.3). We note that the 
Langevin function results from general properties of grains, which do not 
imply that without field, superparamagnetic properties occur for a 
measurable time. Magnetic properties are not well established at present. 
Zero-field-cooled and field-cooled magnetizations show irreversibilities at 

338,339 
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low field,25 , 2 6 3 3 , 3 3 4  which could be explained as resulting from super- 
paramagnetic properties, but they are also in agreement with spin 
glasslike properties (see Section E). However, a common increase of the 
coercive field when the temperature decreases gives rise to such 
irreversibilities."' For medium concentration of magnetic metal, the 

The magnetization does not saturate under medium applied field. 
lack of precise results at present leads to many unanswered questions 
such as the correctness of the Langevin function, the variation of the 
susceptibility at low field, and so forth. In our opinion, superparamagnet- 
ism does not seem present in the studied samples due to the large metal 
concentration and the strong RKKY interparticle interactions. For low 
concentrations leading to small volumes and weak interparticle interac- 
tions, superparamagnetism may be present. Susceptibility in a large 
frequency range209 seems in agreement with such properties (see Section 
F.5) but the entire demonstrations remain to be done. 

The influence of the superparamagnetic phenomenon has been clearly 
evidenced for Ni particles embedded in an SiO, matrix.340 Here, the 
conduction occurs via tunneling electrons. Without field, below T,, the 
magnetic moments rn of the particles are blocked at random due to 
the disordered arrangement of particles, and above T,, m relaxes. Then 
the correlations between spins are weak. Under field, the correlations 
increase and are maximum near TB (Fig. F.9.2). For these materials, the 
magnetoresistance at few thousand Oersted is of the order of 1% and 
shows a tendency to saturate. 

F. 9.2. Magnetocaloric Effect 

When a material is magnetized by application of a field H ,  the entropy S, 
associated with the magnetic degrees of freedom is changed as the field 
changes the magnetic order of the material. Under adiabatic condition, 
the S, variation must be compensated for by an equal but opposite 
change in the entropy associated with the lattice, resulting in a change in 
temperature AT of the material, that is, the magnetocaloric effect. 

This effect has been used for magnetic refrigeration. Materials pres- 
ently used fall into two categories: paramagnetic substance (e.g., 
Gd3Ga,01,) for use at temperatures up to = 20 K, and magnetic materi- 
als near the ordering temperature (e.g., Gd or DyAI,), which can operate 
at temperatures greater than 20 K. However, no material has been found 
for use at room temperature. 

332,334,335 

For a paramagnetic material 

AT V N p 2  H 
A H -  C, 3k T (F.9.1) 
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TCK) 
Figure F.9.2. Relative transverse magnetoresistance vs. temperature for four Ni/SiO, 

samples. The field is equal to 260 Oe. (Reproduced with permission from Ref. 340.) 

where V is the sample volume, C, the heat capacity, N the number of 
spins in the sample, and p the spin magnetic moment. 

For a ferromagnetic material above T, 

(F. 9.2) 

It is clear from these formulas that 

( A T ) f e r r o  >> ( W p a r a  

in the superparamagnetic state 24,341,342 For noninteracting particles 

AT V Np2 N H 
AH- C,  3k (,I?- (F.9.3) 

where n is the number of spins of the particle. Due to the order of 
magnitude, 

(AT)superpara >> ( A T ) r e r r o  
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Finally for interacting fine p a r t i ~ l e s ~ ~ ' , ~ ~ ~ :  

(F. 9.4) 

where O,, is the superparamagnetic Curie temperature (see Section 
F.2.3). For interacting particles, ATIAH will be greater than for isolated 
particles on the condition that O,, > 0. This condition is achieved only if 
the sample is thin with the field applied parallel to the surface sample and 
O,, values are rather small (see Section F.2.3). 

These formulas indicate that fine-particle materials can be used for 
magnetic refrigeration for temperatures well in excess of the present 
maximum of 20K.247341 This is demonstrated bv the results obtained on 
11%Fe + silica gel nanocomposites (Fig. F.9.3)343 and Gd,Ga,-, 

344 
Fex012. 

F. 9.3. Magneto-optic Properties 

Magneto-optical effects are studied in conjunction with their dependence 
on wavelength, temperature, and applied field. In particular, measure- 
ments at specific wavelengths, being associated with transitions of the 
different atoms of the material, constitute a local probe of the mag- 

50,000 Gauss  

0 20 40 60 80 100 120 140 160 

T ime ( s e c )  
Figure F.9.3. Temperature vs. time for a superparamagnetic 11% Fe + silica gel 

nanocomposite as a 5T magnetic field was first removed and then applied to the sample. 
(Reproduced with permission from Ref. 342.) 
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netization at that position in the crystal. In fine particles, it is possible to 
distinguish the local magnetic situation of different regions, such as the 
surface and the core of the particles, when the atomic composition is not 
uniform throughout them. Basically, the effects are proportional to the 
local magnetization, such as, for example, for the Faraday rotation, and 
features can be deduced on its variation with temperature and applied 
field.345 Mesurements have been performed on Fe particles embedded in 

and the main results concern the oxidized iron an A1,03 matrix, 
atoms lying on the particle surface and their magnetic coupling with the 
particle iron core. 

345-347 

G. QUANTUM TUNNELING OF THE MAGNETIZATION 

Macroscopic quantum tunneling, that is, the tunneling of a microscopic 
variable through the barrier between two minima of the effective 
potential of a macroscopic system, represents one of the most fascinating 
phenomena in condensed matter physics. It is well known that quantum 
phenomena can take place at the macroscopic scale348 in systems with 
negligible dissipation (i.e. , small interaction of the tunneling variable with 
the environment), for example, s u p e r c o n d ~ c t o r s ~ ~ ~  one-dimensional 
metals:50 and so forth. 

In a more recent time it has been predicted that macroscopic quantum 
tunneling can also be observed in magnetic for example, the 
tunneling of the magnetization vector of a single-domain particle through 
its anisotropy energy barrier and the tunneling of the domain wall 
crossing a larger particle through its pinning energy barrier. These 
phenomena have been studied both t h e ~ r e t i c a l l y ~ ~ ~ - ~ ~ *  and experi- 
mentally.3"-36s 

The attention will be focused on macroscopic quantum tunneling in 
single-domain particles, where the tunneling variable is the magneti- 
zation, and the dissipation is weak. Besides the interest in fundamental 
physics, macroscopic quantum tunneling of magnetization can have in 
principle practical implications also, for example, in the information 
storage industry, where it could play a crucial role for low-temperature 
devices. The use of magnetic memories at low temperature could increase 
greatly the storage density, but magnetization reversal by quantum 
tunneling mechanism should place a lower limit in the particle size and in 
the number of atoms per bit of information. 

The possibility of quantum tunneling in fine particles was suggested for 
the first time by Bean and Livingston,I6 as an explanation of the Weil 
experimental data:' showing that in single-domain nickel particles the 
transition between different orientations of the magnetic moment did not 
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disappear completely with decreasing temperature to absolute zero. 
Chudnowsky and Gunther;" calculated the probability of tunneling of 
the magnetization in a single-domain particle, through an energy barrier 
between easy directions, for several forms of magnetic anisotropy . Many 
data have been reported on different types of magnetic particles (ferro- 
magnetic and antiferromagnetic, in dispersed systems, in ferrofluids, in 

which seem to support the existence of quantum magnetic proteins), 
tunneling of the magnetization. 

It has been proposed that in the magnetization dynamics of single- 
domain particles there is a characteristic crossover temperature T* below 
which the escape of the magnetization from the metastable states is 
dominated by quantum barrier transitions, rather than by thermal 
over barrier activation. Above T* the escape rate is given by the rate 
of the thermal transitions, determined by the Boltzman factor, r T s  
u exp(-UIkT), where U is the barrier separating two metastable states. 
In a thermally activated regime it should vanish when the temperature 
approaches zero. 

T* the escape rate begins to depart from the above reported 
law, tending to a temperature-independent quantum transition rate (Fig. 
G . l ) ,  which has the same form, in the usual WKB (Wentzel-Kramers- 
Brillouin) approximation for quantum tunneling, as in the case of 
switching of magnetization via thermal activation: 

359-365 

At T 

where B is the Gamov exponent (B = U/kT*), replacing the exponent 
UIkT of thermal activation. In the classical approach, kT* no,, where 
wo is the frequency of oscillation in the potential well; w,, is inversely 
proportional to the square root of the mass (as for a harmonic oscillator). 
Then, in the entire temperature range the switching rate of the mag- 
netization vector can be described as r = u exp(-UIRT,,,), with T,,, = T 
at T > T* and T,,, 

Both U and B are proportional to the volume (or N,, the number of 
spin) involved in the tunneling process.3s9 Thus, for a given material, T* 
depends only on the magnetic field applied, not depending on extensive 
parameters, like V or N,. 

Let us consider a single-domain particle with uniaxial anisotropy in the 
presence of an applied field along the easy direction. In a spherical 
coordinate system the anisotropy energy by volume unit is given by 

T* at T < T*.  

E = (KII + K,sinz+)sin26 - MH cos 8 (G.2) 
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TC 

Figure G.1. Switching rate as a function of temperature for both thermal activation 
(TA) and macroscopic quantum tunneling (MQT). The crossover from the TA regime to 
the MQT regime takes place at temperature Tc (Reproduced with permission from Ref. 
358.) 

where KII and K ,  are the parallel and transverse anisotropy constant, 
respectively. Analysis reveal that there is an effective mass in the 
dynamics of a single-domain particle, which is inversely proportional to 
K. Quantum tunneling of the magnetization cannot take place in the 
absence of transverse anisotropy, since the exponent B would diverge. 

The Gamov exponent B is given by the Euclidean action, as first 
proposed by Gilbert366 

s, iv 
- h -  - - dt [ (5) 4 cos 6 - E(8,+ ) ] 

evaluated along the instanton trajectory leading M out of the metastable 
state. This action produces the classical equation €or M: 

In particular Chudnowsky and G ~ n t h e r ~ ~ '  calculated the Euclidean 
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action at absolute zero for fields very close to the critical field H, 
( = 2 K / M ) ,  above which relaxation is no longer possible, as the actual 
barrier, U = KV(1 - H/H,)2  = W e 2 ,  vanishes. 

The B exponent was given by”’ 

The crossover temperature between quantum tunneling and thermal 
activation regime was given, equating the B exponent to UlkT351:  

In an actual particle assembly the easy axis is in a random direction, 
and the probability to find it parallel to H is very low. At  the present, 
there are no analytical expressions of the critical field H,, but K I M  5 
H, f 2 K I M ,  the lower value corresponding to an angle of rr14 between H 
and the easy axis. This implies that for an actual particle assembly T* is 
distributed. 

From Eq. (G.6)  it comes out that in order to make easier the 
experimental observation of quantum tunneling of the magnetization in 
small single-domain particles, that is, to have small B (high quantum 
transition rate) and high T * ,  particles with low magnetization and small 
volume (a radius lower than 5nm) are needed. Conditions for the 
observation of quantum tunneling of the magnetization are more favor- 
able in antiferromagnetic with a small uncompensated mo- 
ment (this can be understood in terms of their effective mass being much 
smaller than that of ferromagnetic particles). Independent magnetic 
particles are the best candidate, since interactions lead to an increase of 
the effective mass of the tunneling object. Moreover, a small KII l K ,  ratio 
and large Kl,K, lead to reduce B and to increase T*,  respectively. 

T* is expected to be in the temperature range 0.1-5 K for typical 
values of the high anisotropy in small single-domain particles, for 
example, for CoFe,O, ( K  = 2 X lo7 erg/cm3) ferrofluid particles ( (  4 )  
5 nm), T* 3 K.368 

The measurement of the relaxation of the remanent magnetization 
represents a very good tool to achieve a crossover temperature between 
thermal activation and quantum tunneling regime. In fine magnetic 
particle materials, usually characterized by a volume distribution, imply- 
ing a distribution of energy barriers, the time decay of the remanent 
magnetization is usually found to follow a logarithmic law, when mea- 
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surements are performed at low temperature in a not too large time 
interval: 
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R M ( t ) = R M ( O )  1 - S l n  - I (f,>l 
where S is known as magnetic viscosity, proportional to kT,, , l(  U ) ;  S is 
usually found to decrease linearly (in a given temperature range) with 
decreasing T down to the temperature T* (thermal activation regime), 
below which it becomes temperature independent (quantum tunneling 
regime). The transition is expected to be quite sharp in the case of weak 
dissipation.369 The crossover temperature T* between the two regimes is 
found to depend on the applied magnetic field. The constancy of S at low 
temperature may be interpreted as evidence of quantum tunneling, 
revealing the temperature independence of the quantum transitions rate. 
The experimentally determined T * agrees well with theoretical predict- 
ions. 

Many data of this type, supporting quantum tunneling of the mag- 
netization, are reported in the literature, for example, in CrO, particles 
in a magnetic tape (Figs. G.2 and G.3)370; Fe,O,, FeC, CoFe,O, 
particles in f e r r o f l ~ i d s ~ ~ ~  ; and antiferromagnetic ferritin proteins.37' How- 
ever, as discussed in Section F.4, the proportionality of S with tempera- 

35 1 

c.4 ............. ............. - 3.0 
0.081 - 4.0 

............. - 7.0 

- 
3 

k 0.078 

2 
v 

lo.o * .  ......... 
........ . . . . ~ ~  15.0 

0.076 

0.073 
4.0 6.5 9.0 

Int (s) 

Figure G.2. Time dependence of the remanent magnetization at different temperatures 
for fine CrOz paticles. (Reproduced with permission from Ref. 370.) 
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(b)  
Figure G.3. Temperature dependence of the magnetic viscosity S for fine CrO, 

particles. (Reproduced with permission from Ref. 370.) 

ture may be an artefact when the particle volume distribution is largePo In 
this case the S variation mimics the volume distribution. Moreover, for a 
narrow volume distribution Eq. (G.7) is not valid. These facts imply first 
the need for carefully analyzing the data in terms of a thermally activated 
process, by means of a suitable model accounting for the complexity of 
actual systems, in order to be sure of the deviations from the thermal 
activation regime. 

On the other hand the analysis of magnetic relaxation experiments on 
noninteracting fine y-Fe,O, particles dispersed in a polymer revealed the 
persistence of a thermal activation mechanism down to very low 
 temperature^.'^^ In some cases, for example, for experiments on Fe- 
A1,0,, further measurements at lower temperatures are needed in 
order to have clear evidence of deviations from a thermally activated 
mechanism. 

Some relaxation experiments at different fields gave evidence that the 
energy barrier is proportional to l / H ,  as reported in Figure G.4 for FeC 
particles.365 The effective temperature T* was reported vs. the measured 
temperature T by plotting d(1 lH) ld  In r vs. T in Figure G.5, where a 
crossover from thermal activation to temperature independent relaxation 
is observed at T 

Experiments were reported on Co single-domain particles patterned by 

127 
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Figure 6.4. Plot of log,oT vs. 1/H for fine FeC particles. (Reproduced with permission 
from Ref. 365.) 
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Figure C.5. Variation of the effective T* vs. the measured temperature T in fine FeC 
particles. (Reproduced with permission from Ref. 365.) 
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electron beam lithography, where the angular dependence of the switch- 
ing field and the temperature dependence of the reversal process were 
investigated by means of an integrated DC SQUID.*" The mean value of 
the switching field was found to become temperature independent below 
the crossover temperature of about 1 K (Fig. G.6).  

Results in favor of the existence of macroscopic quantum tunneling of 
the magnetization were also reported by means of low-temperature 
measurements of the frequency-dependent magnetic noise S(o )  and 
magnetic susceptibility x(o).3623363 In horse-spleen ferritin particles a 
well-defined resonance below about 200 mK in both S(w) and ~"(o) were 
found (Fig. G.7). The behavior of this resonance as a function of 
temperature, applied magnetic field, and particle concentration is in 
qualitative agreement with the theoretical predictions of quantum tunnel- 
ing in small antiferromagnetic particles. 

In conclusion many experiments reported in the literature are in favor 
of the existence of quantum tunneling of the magnetization in single- 
domain particles, in agreement with theoretical predictions. 

However, both models describing the thermal activation and the 
quantum tunneling regime do not account for the complexity of actual 
fine-particle systems (e.g., volume distribution, easy axes in random 

1 2 3 4 5 6 7 8 
[Tln( 1 OsT/v)] 1 / *  

Figure G.6. Scaling, plot of the mean switching field (H,)  for Co particles. Dots are the 
measured H, at real temperatures T and crosses are the same values when T is replaced by 
the effective temperature T* shown in the inset. (Reproduced with permission from Ref. 
207. ) 
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Figure G.7. 

position, interparticle interactions, etc.) and do not consider realistic 
modes of magnetization reversal (i.e., the possibility of modes different 
from the uniform rotation one). Therefore, it is difficult at the present to 
derive from the experiments unambiguous evidence of deviations from 
the thermal activation regime and of the crossover to the quantum 
tunneling one. 

Moreover, for interacting particles an additional complication in the 
interpretation of the results can derive from the possibility of existence of 
a collective state of particle magnetic moments at very low temperature 
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(see Section E). A change of properties at the transition temperature can 
be expected, but it is not known how the magnetization dynamics would 
be affected. 

H. ANTIFERROMAGNETIC PARTICLES 

In this section, we discuss the magnetic properties of fine-particle 
materials for which the bulk presents antiferromagnetic order, mainly 
when the properties differ from those of ferromagnetic fine particles. In 
the first section, we describe the magnetic state arising in these particles 
and we evoke the case of natural oxidized iron samples, which show a 
disordered magnetic state. We also discuss the validity of the relaxation 
time calculation performed for ferromagnetic particles. In the second 
section, results of magnetic measurements are described, pointing out the 
difference with those obtained with ferromagnetic particles. Mossbauer 
spectroscopic results are discussed in the third section, and finally some 
conclusions are given. 

H.l .  Magnetic State and Relaxation Time 

Fine particles of antiferromagnetic materials possess a magnetic moment 
Iml not equal to zero. This comes from the fact that the two magnetic 
sublattices are not exactly compensated due to the small size. Nte1372,373 
has suggested that for very small particles, the belonging of a spin to one 
of the magnetic sublattices is at random. In this case the uncompensated 
magnetic moment (m( is equal to psV% where N is the number of spins in 
the particle and p, is the spin magnetic moment. For larger particles, one 
can think that the randomness is effective only in the surface, which leads 
to IrnI = p S N l i 3 .  Ntel also discussed the case of larger particles with 
well-defined crystallographic surface planes. Then, Iml can vary between 
pSN1I3 and psN2I3.  It can be equal to zero in a special c a ~ e . ~ ~ ~ , ~ ~ ~  
Summarizing, we can expect that Im( = pSNp with f s p  5 5. Experimen- 
tal results are in agreement with p -3 (see below). 

In fact, this discussion is valid for fine particles of materials that show 
antiferromagnetic order in bulk. However, numerous natural materials 
mainly corresponding to iron oxides or hydroxides such as goethite, 
ferrihydrites, or protein cores, show a more or less disordered magnetic 
state due to a high content of impurities and defects. Depending on the 
number of defects, the number of nonmagnetic impurities, and the values 
of exchange interactions, various magnetic states can be observed: (i) 
antiferromagnetic state with some disorders, for which not too important 
changes of the properties are observed (increase of the antiferromagnetic 
susceptibility xAF, decrease of T N ,  e.g.) with regard to perfect materials; 
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(ii) semidisordered state with spin glasslike properties; and (iii) 
speromagnetic phase very similar to the spin glass phase.374 As already 
discussed in Section E.3.1, we do not know what are the properties of 
fine particles of materials that show the two latter states for bulk. From 
the experimental point of view, the difficulties come from the fact that the 
properties of fine particles resemble those of the spin glasslike state (see 
Section E.2.4). However, for describing the system in terms of super- 
paramagnetic properties with a blocking temperature, T,, it is necessary 
that in a certain range of temperature T > T,, the magnetic state is not 
paramagnetic until the transition toward this latter state. In our opinion, 
the only proof at the present for demonstrating superparamagnetic 
properties is to show the existence of a second transition toward 
paramagnetism, at T > T,. 

Regarding anisotropy energies, the magnetostatic energy is strongly 
lowered with respect to ferromagnetic particles due to the weakness of 
Iml. The same trend occurs for magnetic interactions, which can generally 
be neglected. Therefore, there mainly remains the magnetocrystalline and 
surface anisotropies. The latter can be of importance especially when the 
uncompensated moment comes from the surface. 

Relaxation of the magnetic moment m due to the same order of 
magnitude for the anisotropy and thermal energies occurs like for 

In our opinion, the calculations of the ferromagnetic particles. 
relaxation time for ferromagnetic particles (see Section D.3) are valid for 
antiferromagnetic particles. Basically, the Gilbert equation concerns the 
spin magnetic moment, extended to the particle magnetic moment (see 
Section D.3.1), which is equal to psNP for antiferromagnetic particles. 
The only question concerns the synchronous rotation of the spins because 
one could think that change of a spin direction from one magnetic 
sublattice to the other could take place during the rotation. However, the 
exchange interaction energy is much stronger than the anisotropy energy, 
which partially hinders this kind of change. In addition, we are interested 
in average properties. This discussion is very similar to that in Section 
D.3.1 on ferromagnetic particles in connection with the effects of the 
surface, and the same conclusion can be drawn. Calculations based on 
synchronous rotation are valid with perhaps some minor change in the 
pre-exponential factor T ~ .  

With regard to ferromagnetic particles the T~ factor is strongly lowered 
because it depends on Iml. This is checked qualitatively by experimental 
results (see below). In addition, (m( = p s N P  is an averaged value. This 
means that for a given volume and a given anisotropy energy, a T,, 
distribution occurs. In fact, as already discussed, only large T~ variations 
are of importance because the relaxation time is mainly stated by the 
energy barrier through the exponential. 

372,373 
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H.2. Magnetic Measurements 

We focus our attention on two measurements, the magnetization under 
high applied field and the dc and ac susceptibility. 

For the first measurements, ~ ~ e 1 ~ ~ ~ 3 ~ ~ ~  has shown that the mag- 
netization is the sum of two components. The first one corresponds to the 
contribution of the antiferromagnetic network while the second results 
from the vibrations of the uncompensated moment Iml in the potential 
well as described in Section F.3.2 with M,,  replaced by M,,  = \m\/V. The 
applied field Happ must clearly be larger than 2K,lM,, and kT/VM,,, 
where K, is the total anisotropy constant, which leads to high values of 
Happ due to the weakness of Mnc. Equations (F.3.6) and (F.3.7) remain 
valid (with M,, replacing M,, )  for the part of the magnetization due to 
the vibrations of m. For antiferromagnetic particles, there is an additional 
~ondition:~' that is, x ~ ~ H : ~ ~ / ~ ~ T  small compared to the unity, where 
xAF = xI - xII is the difference between the perpendicular and parallel 
antiferromagnetic susceptibilities. We note that the condition cited above 
is fulfilled except for very high fields, because of the weakness of xAF. 

However, x values can be larger than for bulk because the anti- 
ferromagnetic network is not perfect (existence of the uncompensated 
moment, defects in the surface, etc.). Indeed NCel expected an enhance- 
ment of x in a very special case376 where the superparamagnetic 
phenomenon is not present, called superantiferromagnetism, but in our 
knowledge, no demonstration of this state has yet been done (we recall 
that lml = 0 and, therefore, the Neel-Brown model is not applicable). In 
our opinion, the xAF increase is an evident trend due to the imperfec- 
tions. 

These properties are qualitatively verified for NiO,, Cr,O,, and a-  
Fe,O, particles:77 a-Fe,O, particles embedded in an alumina matrixP7* 
and fer~-itin.'~' These results also verify that (ml is proportional to about 
N ' I 2  .270,378 We remark that the thermal variation of (mi can be strongly 
modified with regard to what is expected from the TN bulk values, 
especially if [mi comes mainly from the surface. 

Measurements of dc susceptibility show a broad peak (see, e.g., the 
results obtained for NiO'48), probably due mainly to the volume dis- 
tribution, and which can in principle be modeled as for ferromagnetic 
particles (see Section F.2), but at present we do not know if the particular 
magnetic structure, uncompensated moment adding to the antiferro- 
magnetic network, leads to a broadening of the peak. For this experi- 
ment, the measuring time is always difficult to define and, therefore, the 
value of the temperature of the susceptibility maximum, T,,, , assimilated 
to the blocking temperature, cannot be used for an accurate determi- 
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nation of the parameters included in the relaxation time law. We note that 
T,,, does not appreciably change in low and medium field, which is not 
the case for ferromagnetic particles. 

The magnetization in the superparamagnetic state is also the sum of 
two components. The first one corresponds to the contribution of the 
antiferromagnetic network while the second results from the part of the 
uncompensated moment, at the thermodynamic equilibrium, along the 
applied field Ifapp. This latter term can be determined as for ferromag- 
netic particles (see Section F.2.3), and Eqs. (F.2.6) and (F.2.7) are valid, 
always by replacing M,, by M,,. However, the use of these equations is 
simpler for antiferromagnetic particles because (i) the effective field is 
very near to Happ due to the weakness of M,, leading to a very weak 
value for the superparamagnetic Curie temperature 8,, , and (ii) the range 
of validity of Eq. (F.2.6) is extended until medium Happ because the 
condition is now VM,,HaPpIkT << 1. 

For easy directions in random orientation, the superparamagnetic 
susceptibility xsuperpara is therefore given by 

with 

This allows, in principle, the determination of M,,, providing that its 
thermal variation and the V distribution are known. However, for p = :, 
which seems the usual value, Csuperpara - Cpara. In addition, the order of 
magnitude of xAF is equal to C,,,,/T, where T ,  is the transition 
temperature toward the paramagnetic state. This means that a precise 
determination of M,,  will be possible only for T << T,  due to the 
uncertainties on xAF. To our knowledge, Eqs. (H.l) and (H.2) have 
never been used for the M,,  determination. 

For ac susceptibility, the measuring time is well defined, and this 
experiment is very useful for determining the parameters. Results 
obtained for ferri t i~~;~'  which also presents a broad peak, show that the 
model developed for isolated particles is verified with T~ clearly smaller 
than the expected value for ferromagnetic particles, in agreement with 
the above discussion (see Section H.l). We note that it is the model for 
isolated particles that has to be checked since the interparticle interac- 
tions are weak due to the small Iml value. 
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Some other measurements such as partial thermoremanent measure- 
ments for and NiOPB1 and thermal decay of the remanence for 
ferritin210’382 have been performed, but these experiments mainly provide 
features about the distribution of the energy barriers. 

H.3. Mossbauer Spectroscopic Studies 

The differences in the properties observed by Mossbauer spectroscopy 
with respect to ferromagnetic particles (see Section F.6) are due, in zero 
applied field, to the lowering of the T~ factor, and, for in-field experi- 
ments, to the small magnitude of the Zeeman energy of the particle 
compared to the anisotropy energy. 

H.3.1.  Experiments in Zero Applied Field 

that is, lower by T,, is normally of the order of 10-12-10p 
about 2 orders of magnitude than for ferromagnetic particles, and thus 
well below the Mossbauer time window. Due to this lowering of T ~ ,  the 
temperature (volume) interval required to span the critical window is 
notably narrowed, and the sextet-to-doublet transition is sharpened. 

If the distribution in particle volumes (energy barriers) is large, the 
fraction of the particles with a relaxation time in the critical range is small 
at any temperature, and the Mossbauer spectra as a function of the 
temperature are well described in terms of a sextet-to-doublet (singlet) 
transition with coexistence over some temperature range (see Section 
F.6.4.1). Because relaxation lineshape effects are weak, the determi- 
nation of the median blocking temperature (see Section F.6.4.4) from the 
equality of the relative areas of the blocked and unblocked components is 
precise. It is independent of the procedure used for the determination, 
and the precise estimation of the measuring time is in fact the only 
difficulty because the value of 7, depends on the relaxation process and 
its corresponding model. 

Temperature sets of spectra typical of a broad volume distribution 
are exemplified, for instance, for a -Fe203,  292,293,383 iron-storage pro- 

and ferric “ h y d r ~ x i d e . ” ~ ~ ~ , ~ ~ ~  As an illustration, 
Figure H . l  shows Mossbauer spectra of human ferritin and 
hemo~iderin.~’~ In both cases, one clearly sees a (super)paramagnetic 
doublet growing at the expense of the six-line pattern as the temperature 
increases. For hemosiderin, the coexistence range extends practically 
from 20 to 130K. Compared to the 4.2-K pattern, the magnetic com- 
ponent shows almost no line shift (apart from that due to the thermal 
variation of the hyperfine field) nor extra line broadening as the 
temperature increases, which clearly contrasts with the case of ferromag- 
netic particles (Fig. F.6.5). In contrast with hemosiderin, the transition 

13 58,210,270 
s, 

teins,21 0,286,382,384,385 
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Figure H. l .  Mossbauer spectra of human ferritin and hemosiderin at a range of 
temperatures. (Reproduced with permission from Ref. 384.) 
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for ferritin (Fig. H. 1) is rather sharp and proceeds mostly between 30 and 
40 K. The difference in the properties of the two proteins is mainly due to 
the different structures of the iron core, goethitelike for hemosiderin and 
ferrihydritelike for ferritin.3'5 The line broadening at low tempera- 
tUres384,387 is mostly due to a distribution of hyperfine fields, which 
dominates any effects of the collective magnetic excitations (see Section 
F.6.4.5). 

If the volume distribution is narrow, perturbed spectra will be obtained 
like for ferromagnetic particles, but over a narrower temperature range. 
Figure H.2 shows Mossbauer spectra of 2.4- and 3.5-nm a-Fe,O, 
particles dispersed in The width of the diameter distribution is 
about l n m .  For these samples, the coexistence of the blocked and 
unblocked components is not observed, and spectra whose shape typically 
corresponds to relaxation times in the measurement window are prevail- 
ing for 30 K < T < 45 K and 110 K < T < 200 K for the 2.4- and 3.5-nm 
particles, respectively. In view of the volume distributions, it can be 
deduced that these temperature intervals correspond to the crossing of 
the Mossbauer window by about half of the particles. Consequently, the 
spectra cannot be analyzed without a suitable lineshape model for 
superparamagnetic relaxation, which raises the same problems as for 
ferromagnetic particles (see Section F.6.4.2). In the present cases (Fig. 
H.2), a distribution of hyperfine fields due to the surface disorder and 
revealed by some line broadening in the 4.2-K patterns complicates the 
phenomena. 

Like for ferromagnetic particles, the Mossbauer spectra can be 
sensitive to the state of dispersion/agglomeration of the particles, as 
observed, for instance, for hematite."' It is again clear that the origin of 
the observed variations cannot reasonably be inferred from the sole 
Mossbauer features because of the complexity of the phenomena and the 
many interplaying parameters. This is illustrated by the debate con- 

H.3.2 .  In-Field Experiments 

Since Iml is smaller by about 2 orders of magnitude than for ferromag- 
netic particles, the ratio h = ImlHa,,/2K is also smaller by about 2 orders 
of magnitude, for similar values of the applied field, Ha,,., and the 
anisotropy energy constant, K .  Therefore, for antiferromagnetic particles 
the situation is always that of a weak or medium applied field (h < 1) as 
discussed in Section F.6.6, at least for the field magnitudes classically 
used, that is, up to about 10T.  

Figure H.3 shows Mossbauer spectra of human ferritin and hemo- 
siderin at 100 and 200K, respectively, in various applied fields up to 
10 T."91 The considered temperatures are well above the temperatures at 

cerning goethite.94,95,'02.389,390 
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Figure H.2. Mossbauer spectra of a-Fe,O, particles dispersed in alumina, with a mean 
diameter of 2.4 nrn (left) and 3.5 nm (right), (Reproduced with permission from Ref. 378.) 
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Figure H.3. Mossbauer spectra of human ferritin at 100 K and human hemosiderin at 
200K with magnetic fields up to 10T applied perpendicularly to the y-ray beam. 
(Reproduced with permission from Ref. 391.) 

which the sextet component disappears in zero field (Fig. H.l). An 
applied field (Fig. H.3) restores a magnetic splitting, indicating that the 
magnetic ordering temperature is above 100 K for ferritin and 200 K for 
hemosiderin, and confirming the superparamagnetic state in zero field. 
The in-field spectra were fitted39' using a model valid for kT>> KV and 
based on the calculation of the net magnetization, with a fraction that 
relaxes (faster than in zero field) and the remaining fraction, which is 
blocked in the deeper potential well (see Section D.l). This leads to an 
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Iml value that decreases with increasing applied field. This is not realistic 
since, on the contrary, Im( should slightly increase. 

As discussed in Section F.6.6, for Mossbauer spectroscopy it is 
necessary to consider the two relaxation times T+ and T-, and the 
associated populations. Qualitatively, as h (Happ) increases, T+ increases 
giving rise first to perturbed spectra and then to sextets with broadened 
lines, T -  decreases and always gives rise to a superparamagnetic spectrum 
but its population decreases. The expressions of T, and T- as given by Eq. 
(D.27) are valid in the case where the applied field is parallel to the easy 
direction. For actual samples, it is necessary to take into account the 
random orientation of the particles. To our knowledge, the complete 
problem has not yet been solved. 

H.4. Some Conclusions 

An accurate knowledge of the properties of fine antiferromagnetic 
particles is of great interest because they are present in many natural 
materials such as clays, laves, protein cores, and so on. From a 
fundamental point of view several very interesting problems are raised 
such as the effect of the reduced size on the magnetic state, the effects of 
defects and impurities in the case of a small size, the possibility of 
quantum tunneling of the uncompensated moment (see Section G). 
However, in our opinion, published results do not allow at present a good 
understanding of the features, due to the lack of systematic studies, of 
adequate models, but also to the complexity of the materials and the 
phenomena. For example, theoretical studies on the relaxation process 
and the calculation of the relaxation time, on the establishment of the 
magnetic state by simulation methods, on the Mossbauer lineshape under 
applied fields, as well as experimental studies on well-characterized 
materials would surely be needful. 

I. CONCLUSIONS 

In this chapter, we have tried to carry out the restatement of the magnetic 
properties of fine particles resulting from the relaxation of their magnetic 
moments from theoretical as well as experimental points of view. We 
discussed the models, several with some details, that allow one to 
calculate the relaxation time of the particle magnetic moment, to evaluate 
the effect of the interparticle interactions, and to interpret the experimen- 
tal results. We clearly stated our objections, without use of indirect 
sentences understandable only by specialists, because fine-particle studies 
can be of interest in various fields, for example, catalysis, biology, 
mineralogy. Of course, this is our opinion at the present time. 
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We have pointed out the complexities of the phenomena, which can 
now be experimentally detected because of the progress in measurement 
techniques and in materials. These complexities lead to difficulties for an 
accurate analysis of the experimental results. In particular, we have 
pointed out that the use of simple expressions, imprecisely stated, for the 
anisotropy energies and the interparticle magnetic interactions can lead to 
wrong conclusions, due to the close dependence of the relaxation time on 
the anisotropic part of the energies. Experimental process too is of 
fundamental importance for stating the measuring properties. In the same 
way, comparison without precaution of the results obtained by experi- 
ments that do not experience exactly the same properties or do not 
strictly use the same process can lead to erroneous inferences. 

Important progress has been made in the recent last years in the 
knowledge of the superparamagnetism phenomenon. Numerous impreci- 
sions have been corrected; new models have been developed for explain- 
ing new accurate results obtained on well-characterized samples. How- 
ever, several questions remain to be resolved. Some of them have been 
pointed out. 

Finally, we hope that this chapter will be useful for the establishing of 
mastered results and the understanding of the phenomena. 
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APPENDIX 

This appendix provides a summary of the basic formulas giving the 
parameters of a static Mossbauer spectrum. More detailed information 
about the theory and applications of Mossbauer spectroscopy can be 
found in a number of books; for example, see Refs. 392-395. 

Ap.1. The Recoil-Free Fraction 

When the nucleus of a free atom emits a y photon, the energy E, of the 
nuclear transition is shared between the y photon and the recoil energy of 
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the atom, E,. Conservation of energy and momentum requires that 

where M is the mass of the Mossbauer atom. The recoil energy is always 
much larger than the width of the nuclear level (for a free 57Fe atom, 
E, = 2 x eV). Therefore, the emitted y photon is 
far too low in energy to be resonantly absorbed by a nucleus of the same 
type. 

If the Mossbauer atom is bound in a solid, the recoil energy may be 
taken up by the matrix via excitation of lattice vibrations. The recoil 
energy is then reduced by a factor given by the atom and the solid mass 
ratio. If the phonon energy is low enough, there will be a finite 
probability, f, that the emission (absorption) will take place with no 
creation or annihilation of phonon in the lattice, that is, with no recoil 
energy loss, and this is the Mossbauer effect. The f factor (recoil-free 
fraction, Debye-Waller factor, Lamb-Mossbauer factor) is given by 

eV, r,,, = 4.6 X 

where k, = E,/iic is the magnitude of the wave vector of the y-ray, and 
( x ’ )  is the mean-square vibrational amplitude of the Mossbauer atom in 
the direction of the y-ray. The precise form of (x’) depends on the 
vibrational properties of the lattice. It can be calculated using, for 
instance, the Einstein model or the Debye model for the phonon 
spectrum. In the Debye model, f is given by 

where k is the Boltzmann constant, 0, is the Debye temperature, and T 
is the temperature. Even at zero temperature, the recoil-free fraction 
depends on E, and 0,. It can be strongly temperature dependent. The 
rapid decrease at high temperature limits the range over which the 
Mossbauer effect can be observed. 

Ap.2. The Isomer Shift 

The electronic charge density at the nucleus is -el$(O)I’ where -e is the 
electron charge and $(O) is the wave function at the origin. This charge 
density interacts with the charge density of the nucleus. Since the size of 
the nucleus is different for the excited state and the ground state, the 



478 J .  L. DORMANN, D. FIORANI, AND E. TRONC 

interaction energy is different for these two states. This leads to a shift of 
the energy of the nuclear transition. In addition, if the chemical environ- 
ment of the Mossbauer atom is different in the source and in the 
absorber, there will be a shift (the chemical isomer shift, 6 )  in the energy 
of the absorption line observed in Mossbauer spectroscopy given by 

where C is a constant for a given isotope, and ARIR is the relative change 
of the nuclear radius between the excited state and the ground state 
(ARlR<O for ”Fe); A and S stand for “absorber” and “source,” 
respectively. 

The isomer shift is proportional to the difference in the s-electron 
density at the nucleus in the absorber and in the source, and thus yields 
information on the electronic state and chemical bonding of the 
Mossbauer atom. The isomer shift is often given relative to a standard 
material. 

Ap.3. The Electric Quadrupole Interaction 

A nucleus of spin Z > 3 has a quadrupole moment, eQ. If the distribution 
of the charges surrounding the Mossbauer nucleus is asymmetric, there is 
an EFG at the nucleus. The interaction with the nuclear quadrupole 
moment partly lifts the 2Z+ 1 degeneracy of the nuclear level. 

The Hamiltonian describing the quadrupole interaction has a simple 
expression only in the principal axis system of the EFG tensor. Choosing 
the axes so that the principal components are in the order /Vzz/ 2 I%,,/ L 

lVxxl, it becomes 

eQvzz [3z: - I2 + q(Z: + Z2)/2] 41(2Z - 1) H p  = 

where I, I , ,  Z+ , and I -  are the conventional spin operators and 7 = (Kx - 
Vyy)/Vzz with 0 I 7 I 1. A completely general solution of this Hamilto- 
nian is not possible except if the EFG tensor has uniaxial symmetry 
(7 = 0) or if 7 > 0, for Z = 5 , since then Z, is a good quantum number. In 
both cases the energy levels remain twofold degenerated. For Z = 5 ,  the 
energy levels are given by 

E,  = k ~ ( 1  + q 2 / 3 ) ” *  with F = eQVzz/4 (AP.6) 

with the + and - sign corresponding to I ,  = 5 4  and 23, respectively. 
Since the ground state (I, = 3) of 57Fe is unaffected by the quadrupole 
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interaction, the resultant Mossbauer spectrum consists of two lines. Their 
separation, 2E, , is called the quadrupole splitting. 

The EFG embraces contributions from both the valence electrons of 
the atom and from the lattice charges. Generally, the valence term is the 
major contribution unless the ion is an S-state ion such as Fe3+(%). In 
the latter case the EFG will arise solely from charges external to the atom 
either by direct contribution or by indirect polarization of the electronic 
shells. 

Ap.4. The Magnetic Hyperfine Interaction 

A nucleus of spin Z > O  has a magnetic moment p. The Zeeman 
interaction with a magnetic field Heff at the nucleus completely lifts the 
degeneracy of the nuclear states. The interaction is expressed by 

where pN is the nuclear magneton, and g, the nuclear g factor. If the z 
axis is taken in the direction of the magnetic field, the resulting 
Hamiltonian matrix is diagonal. The nuclear state is split into 2Z+ 1 
equally spaced and nondegenerated substates 11, I,). The eigenvalues are 
given by 

EM = -~IPNlHefflZz (AP.8) 

The 57Fe excited state (g,,, = -0.10) is split into four states and the 
ground state (g,,, = 0.18) into two states. The AZ, = 0, tl selection rules 
yield six allowed transitions. The resulting Mossbauer spectrum is a 
symmetric six-line pattern. 

When both nuclear quadrupole and Zeeman interactions are present, 
the Hamiltonian describing the interaction is the sum of Eqs. (Ap.5) and 
(Ap.7). There is no general solution. When the quadrupole interaction is 
much weaker than the magnetic interaction, it can be treated as a small 
perturbation upon the latter. In this case, the IZ=$,Z,) Zeeman 
sublevels are shifted by the amount 

E = (-1)11,1+112 ~ ~ ( 3  1 cos2[ - 1 + q sin2< cos 25)  (Ap.9) 8 

where 4' is the angle between Heff and the direction of V,,, and 8 is the 
second angle defining the orientation of the magnetic field with respect to 
the EFG principal axis system. The resultant Mossbauer spectrum is an 
asymmetric six-line pattern. 

In the presence of an external magnetic field, Hap,,, the magnetic field 
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seen by the nucleus can be expressed by 

where H, is the demagnetizing field and H, is the Lorentz field, but both 
terms are small in bulk materials; He, is the magnetic field due to the 
surrounding electrons. It has various origins (Fermi contact, electron 
orbital motion, spin-dipolar interaction, conduction electrons in metal). 
The effective field at the nucleus in the absence of an applied field is 
called the hyperfine field. It is typically of the order of 500 kOe in 
magnetic Fe3+ compounds and 300 kOe in metallic materials. 

The hyperfine field of a magnetically ordered material is generally 
proportional to the magnetization. Its temperature dependence will 
reflect the latter and follows a Brillouin function, becoming zero at the 
Curie or NCel temperature. In the case where two or more distinct 
magnetic lattices are present, the Mossbauer spectrum will give the 
hyperfine field at each individual site, whereas the bulk magnetization is 
an average effect. 

Ap.5. Relative Intensity of the Absorption Lines 

The relative areas of the absorption lines are proportional to the 
probabilities of the corresponding transitions. These probabilities depend 
on the multipolarity of the nuclear transition, initial and final spin states, 
and orientation of the quantification axis with respect to the wave vector 
of the y-ray. 

For 57Fe, the normalized probability P(Z,,e, Zz,g) of transition between 
substates )I ,  = $, I,,,) and IZ, = i, Z,,g) is given by 

P ( t + ,  *+)=&(1+cos2P)  

P(*+,  "3) = +  sin2p (AP.11) 

P(*+, T i )  =&(1+ cos'p) 

where p is the angle between the wave vector of the y-ray and the z axis. 
The line areas in a Zeeman sextet are in the ratio 3 : 2p : 1 : 1 : 2p : 3 with 

2 sin2/? 
= 1 + coszp 

The second and fifth lines will be absent if p = O .  

transition probability will be given by 
If p is equally distributed over a certain angular range 0, the total 
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P sin P dP 
w*,e> I*,,> = (AP.13) i, sin P dP 

In a powder with no preferred orientation, P is equally distributed 
between 0 and 7~ (Pa" = 54.7"). The lines of a Zeeman sextet are in the 
intensity ratio 3 :2 :1 :1 :2 :3 ,  and those of a quadrupole doublet have 
equal areas. These patterns along with the singlet represent the three 
basic types of 57Fe Mossbauer spectrum. 
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1. INTRODUCTION 

Symmetry and stability criteria are useful for describing charge configura- 
tions in a great variety of situations ranging from J. J. Thomson’s original 
plum pudding model of the atom to current investigations of carbon and 
indium fullerene cages.’-5 In particular, the O(4) symmetry associated 
with the Coulomb interaction underlies both the standard Bohr-Pauli 
level structure of the elements as well as the nested charge rings of the 
old plum pudding This robust symmetry constraint enabled 
Thomson to establish the first quantitative connections between recur- 
rences in the patterns of charge distributions and the periodicities of 
Mendeleyev’s chemical table. The most striking recent success of symmet- 
ries in charge configurations is the discovery that C,, can exist in a stable 
form resembling a truncated ic~sahedron .~  However, since this is the last 
but one of the 13 Archimedean polyhedra, there are no further regular 
structures of this kind that can serve as templates for more complex 
chemical cages. One method of extending the inventory of geometric 
figures is to use computers to search for the static equilibrium states of N 
equal point charges on the surface of a sphere. In contrast to the plum 
pudding or “jellium” model, where Thornson* and Foppl” started with 
the presumption that the equilibrium states would be a series of symmet- 
ric nested rings, locally stable solutions of the surface Coulomb problem 
can be obtained without imposing any u priori constraints of symmetry or 
other types of structural regularities. For small values of N ,  the results 
confirm the intuitive expectation that the charge configurations are 
symmetric and unique. They are also extremely robust because for the 
special values NL = 2-6, 12 the equilibrium configurations remain in- 
variant if the Coulomb law r p 2  is replaced by the limiting form r - ” ,  
n + ~0.” This “ultrarepulsive” interaction is the basis of the biological 
Tummes problem of finding arrangements of N points on the surface of a 
sphere with the largest possible minimum distance between any pair.l2-I5 
Since exact solutions of the Tammes problem are known for the set 
N F  = 2-12, 24; this invariance also yields optimum configurations for the 
surface Coulomb problem for the particular values N F  = 2-6, 12. Of 
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course, these geometric solutions coincide with the computer-generated 
patterns. If the mutual charge repulsions are described by logarithmic 
interactions rather than a power law, the corresponding equilibrium 
solutions for N=2-6,  12 are again given by the Coulomb set NF.16 
Similar configurations-except for a few changes in length scales-appear 
in the jellium model." All of these equivalences suggest that in co- 
operative systems with few degrees of freedom symmetry principles alone 
may be sufficient to determine the character of the equilibrium states. 
However, when N > 6, the sets of equilibrium configurations for these 
four different force laws lose their resemblance. These divergences 
illustrate the symmetry breaking effects associated with the emergence of 
new levels of complexity in larger systems. 

In the range 5 0 s N s  112, the surface Coulomb problem has at least 
1945 locally stable solutions. These configurations may be classified with 
the help of several measures based on geometric and energy criteria. 
Specifically, for any particular value of N ,  there are a total of N(N - 1 ) / 2  
angles between the r l  vectors that specify the locations of the charges on 
the surface of the sphere. A simple measure of the geometric regularity of 
a charge distribution is then given by the angular diversity ratio (%) 

number of distinct angles 
D,(N) = 100 N ( N  - 1)/2 (1.1) 

Clearly, large values of D, (percentages exceeding 96% occur frequently 
when N > 50) indicate irregular configurations that cannot be identified 
with any of the 123 standard types of convex p ~ l y h e d r a . ' ~ ' ' ~  This 
irregularity also implies that the vertices, or charge positions, of these 
Coulomb states cannot be interchanged by means of any of the usual 
rotational symmetry operations. Nevertheless, lack of congruence in 
vertex separations or edge lengths does not exclude the persistence of 
other kinds of order. A quantitative measure of the difference between 
random and geometrically irregular distributions of N points on the 
surface of a sphere is given by the dipole moment or center of charge,".*' 
that is, 

N 

d(N) = 2 r r  
r = l  

(1.2a) 

In particular, for a unit sphere, where lril = 1, the average value of the 
dipole moment of a random configuration of N unit charges increases 
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(1.2b) 

On the other hand, the dipole moments of all the equilibrium Coulomb 
states, for N 5 112, are bounded by and typically fall in the range 

Obviously, this is an orders-of-magnitude reduction 
from the random values. The regularities of the Coulomb states are even 
more apparent in cases where the angular diversity ratios are small, say 
D, I 10%. The computer searches show that there are at least 23 
geometrically ordered configurations of this kind for a series of N values 
between 24 5 N 5 112. None of these patterns match the Archimedean 
polyhedra. For instance, there are four semiregular Archimedean poly- 
hedra with 24 vertices; and in fact one of them, the snub cube, resembles 
the ordered Coulomb state with 24 charges because both configurations 
have 38 faces, 60 edges, and occur in enantiomeric forms. However, all 
edges of the snub cube have equal length and subtend an angle of 43.68" 
at the center of the sphere, whereas the 60 edges of the Coulomb 
configuration are split into three sets with approximately equal lengths: 24 
subtending an angle of 42.07", 24 with an angle of 45.04", and 12 with an 
angle of 45.71". Additional comparisons for other sets of states show that 
this symmetry breaking is pervasive: There is a general trend away from 
strict geometric regularity in larger systems. 

The emergence of complexity is also reflected in several physical 
effects. For example the electrostatic interaction energy of N unit 
charges, E ( N ) ,  can be represented as the sum of the partial energies 
associated with the individual charges, E i ( N ) ;  that is, 

z (d(N)( z 

This energy sharing is completely symmetric for the equilibrium states of 
the surface Coulomb problem in small systems; that is, Ei(N)  = E ( N ) / N  
for N < 5 .  However, when N =  5, the equilibrium arrangement is a 
triangular bipyramid with three charges positioned at the vertices of an 
equilateral triangle around a great circle, specifically the equator, and the 
other two charges at the north and south poles. Since the distances 
between pairs of equatorial charges exceed the distance from the equator 
to either pole, Eq. (1.3) implies that each of the two polar charges has a 
slightly greater partial energy than the equatorial charges. This energy 
splitting tends to increase for larger values of N ;  until at N = 59 the state 



COMPLEX SYSTEMS 499 

with the greatest capture basin, or statistical weight, is so asymmetric that 
all of the charges have different partial energies. Beyond this point 
irregular states with angular diversities at the maximum value D, = 100%; 
[cf. Eq. (1.1)], and a complete splitting of all partial energies occur with 
increasing frequency. 

The transition from symmetry to asymmetry also appears in a shift of 
the center of charge [Eq. (1.2a)I. For all N <  11, the equilibrium 
configurations of the surface Coulomb problem are sufficiently regular so 
that the center of charge coincides with the center of the sphere. This 
situation is analogous to the absence of permanent electric dipole 
moments in symmetric atomic and molecular charge distributions.21 But 
parity arguments alone cannot exclude the existence of dipole moments in 
static situations. In the surface Coulomb problem this symmetry is broken 
at N = 11, where the equilibrium pattern consists of an irregular equatori- 
al pentagon and two tilted isosceles triangles in the northern and southern 
hemispheres.*’ This state has a moment given by Id(ll)(  0.0132; which 
implies the existence of an intrinsic pattern “direction,” as well as a 
nonvanishing electric field at the center of the sphere. Another kind of 
dipole symmetry breaking appears when the charge interactions are 
varied. For instance, if the Coulomb law is replaced by an (r, - r,l-’ 
force, the dipole moments of all of the corresponding equilibrium 
configurations vanish identically.16 

A common feature of all three spherical surface problems-associated 
with the (r, - r,Ipn, n = 1, 2 and w (Tammes) interactions-is the occur- 
rence of enantiomeric states beginning at N = 15. This division marks 
another threshold of structural complexity. For example, if computer 
searches for the equilibrium states of the surface Coulomb problem are 
started at lo4  random initial positions of 15 points, the trials will lead with 
about 50-50% probability to two geometrically distinct terminal configu- 
rations, Ck(15) and CE(15), having precisely the same energy. These 
pairs of states are labeled left (L) and right (R) because they can be 
transformed into each other by an improper isometry consisting of a 
rotation combined with a reflection in a plane perpendicular to the axis of 
r~ ta t ion . ’~  It is intuitively plausible that there should not be any statistical 
bias favoring either the L or R states if they are derived from a random 
mix of initial states by a symmetric process. But in computer simulations 
the L and R labels may be regarded as a deterministic binary code that 
can be incorporated into the pseudorandom number algorithms that 
specify the initial states; and this information can create a preference. 
Specifically, if CRan( 15) denotes a computer-generated initial state of 15 
charges, and M is an energy minimizing algorithm, then it can be shown 
that the mappings M [ C k E (  15)]+ Ck”( 15) induce a correspondence 
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between the L and R enantiomers of the equilibrium configuration and 
two disjoint sets of initial states, {Cka,,(15)} and {Ckan(15)}. These sets 
of initial states are also enantiomeric because they occur in L and R 
variants-ach pair related by an improper isometry, and degenerate in 
energy. In general, the points that make up the initial states are 
distributed uniformly over the surface of the sphere by sets of pseudo- 
random number generators. The chirality of the N = 15 states then 
implies that the initial angular coordinates of the charges-and the 
corresponding sets of pseudorandom numbers+an be labeled by a 
binary L and R alphabet. By choosing appropriate sequences of states it 
is therefore possible to construct any desired string or “message” 
composed of L’s and R’s. This information, in turn, may be encoded in 
the pseudorandom number generators by algorithms that retrodict any 
given ~equence.~’  The net effect is that either ground state, Cb(15) or 
CE( 15), can be generated by deterministic means although the initial 
charge configurations are a racemic mix of L and R enantiomers. This 
method of choice bypasses some of the controversial issues of biological 
s t e r e ~ c h e m i s t r y . ~ ~ ’ ~ ~  

The equilibrium states of the surface Coulomb problem exhibit many 
other types of structural transitions. It almost seems as if the addition of 
every new charge leads to another level of complexity. Basically, this 
diversity is due to the long range of the Coulomb force: the stable N-body 
configurations are the result of all N(N - 1)/2 charge interactions and not 
just nearest neighbor forces. Similarly, the domain structures and hyster-’ 
esis of magnetic Ewing arrays arise from the long reach of multipole 
forcesz6 Finding the stationary states of these cooperative systems by 
analytical means is generally very difficult. “Greedy” algorithms that 
search for global extremals by piecing together a series of local “best” 
choices can go astray even in simpler packing and covering problems.*’ 
For instance, the arrangement of N congruent spheres whose convex hull 
has the smallest volume is a straight line or sausage for all N I 56; but for 
larger aggregates of spheres the optimum packings have entirely different 
shapes.28 In a similar vein, the Tammes problem is equivalent to finding 
the maximum density-or fraction of covered area-when N congruent 
spherical caps are packed on the surface of a sphere. Since any cap can 
touch at most five other caps, this appears to be a nearest neighbor 
problem with simple contact forces.29 But the global constraint that all the 
caps must fit together on the surface of the sphere, in a not necessarily 
rigid packing, makes this a hard problem. The geometric methods used to 
construct exact solutions for the set N y  = 2-12, 24 cannot be extrapo- 
lated to algorithms valid for arbitrary N .  The best results available for 
N s 9 0  have been obtained by computer searches that simulate the 
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nonoverlapping caps with an ultrarepulsive - r,I-‘‘, n = 1,310,720 
p~tent ia l .~’  The surface Coulomb problem is still more complicated 
because both self-consistent boundary conditions and long-range forces 
determine the extremals. Exact results for this situation are sparse: 
Topological lower bounds for the number of equilibrium states are known 
only for N<4:’ and local stability has been verified for only a few 
symmetric ring patterns.32 Computer studies of this problem are compli- 
cated by the existence of many metastable states separated by very small 
energy differences. In the range N 5 112, this requires double precision 
computations, high statistics searches starting from many random initial 
configurations, and numerical stability checks. But even with these 
precautions some states may be missed; and for large N ,  roundoff errors 
affect the correspondence between analytical and numerical stability 
criteria. These ambiguities are also implicit in computer simulations of 
the formation of ionic “crystals” in electromagnetic and the 
relation of protein structures to amino acid  sequence^.^^-^' 

Prior work on the surface Coulomb problem, and computer results 
extending to N = 65, are discussed in Refs. 38 and 39. The values of the 
ground-state energies have meanwhile been confirmed by several in- 
dependent c a l c ~ l a t i o n s . ~ ~ ’ ~ ~ - ~ ~  The Coulomb configurations have a num- 
ber of practical applications: These include problems in structural 

the design of multibeam laser implosion drives, and the 
optimum placement of communication satellites. Comprehensive sum- 
maries of related packing and covering problems-with applications to 
error-free data transmission-are given in Ref. 45. Some quantum 
mechanical extensions are discussed in Refs. 46-48. 

A. Contents 

In Section 2.A we set up the surface Coulomb problem for N equal point 
charges and derive a simple relation between the partial energies 
associated with the individual charges and the dipole moments of the 
equilibrium states. The computer algorithms and conventions for orient- 
ing the charge configurations are described in Section 2.B. Tabulations of 
the results for the range 2 5 N 5 112 are given in Appendix B. Trends in 
the number of locally stable states M ,  found by the computer searches, 
are summarized in Section 3.A. The results indicate an exponential 
increase in the number of states, that is, M-exp(O.OSN}, for NZSO.  
Energy relations for the random initial states, ground states, metastable 
states, and the partial energy distributions within states are discussed in 
Section 3.B. The ground-state energies can be represented by a semi- 
empirical expression of the form E ( N )  = 0.SN2 - 0.55N3” over the entire 
range 6 < N 5 112. Geometric properties of the equilibrium configura- 
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tions are considered in Section 4: These include the distributions of dipole 
moments and chiral states in Sections 4.A and 4.D. Measures of order, 
such as the angular diversity ratios, and comparisons with Tammes 
configurations and regular polyhedra are summarized in Sections 4.B , 
4.C, and 4.E. 1. Some general conjectures concerning locally stable states 
of complex systems are discussed in Section 5. The corresponding 
analytical and numerical stability criteria are reviewed in Appendix A. 

2. THE SURFACE COULOMB PROBLEM 

A. Analytic Formulation 

The set of N unit vectors {Ti, 1 5 i 5 N }  describes the position of N point 
charges constrained to lie on the surface of a unit sphere. If all charges 
are equal, the corresponding dimensionless Coulomb energy is 

The static equilibrium configurations of this system are specified by the 
requirement that the total force Fi acting on the ith charge is parallel to 
ri.  This condition implies 

where Ei(N)  is the partial energy associated with the ith charge; cf. (1.3). 
The equilibrium states of the surface Coulomb problem are special cases 
of the central configurations of the (nonrelativistic) gravitational N-body 
p r ~ b l e r n . ~ ~ - ~ I  Clearly, the total force on the sphere vanishes because the 
double sum is odd under an interchange of indices: 

1 = 1  . 1 = 1 1 = 1  (rr -r,I" i = l  
I # l  

If all the partial energies are equal, that is, E r ( N )  = E ( N ) / N ,  Eq. (2.3) 
implies that the corresponding dipole moments also vanish; cf. (1.2a): 

N 

d ( N )  = rj = 0 (2.4a) 
i = l  

But this is only a sufficient condition. There are many equilibrium con- 
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figurations for which 

N N 

E,(N)r, = c rr = 0 
t = l  i = l  

(2.4b) 

even though E,(N)# E,(N) for at least one pair of indices. If the 
interaction energies of the charges are logarithmic, Eq. (2.2) is replaced 
by 

ri - r, 

, = I  Ir, - r,I 
F,=C = + ( N  - l)r, 

j # i  

This expression shows that all the equilibrium forces have the same 
magnitude and-in analogy with (2.4b)-the corresponding dipole mo- 
ments vanish identically.I6 These constraints indicate that the equilibrium 
configurations of the surface logarithm problem generally tend to be more 
regular than the equilibrium states of the surface Coulomb problem. In 
both cases the equilibrium coordinates rr satisfy sets of linear relations, 
such as (2.3) and (2.4b), which are vectorial generalizations of crypto- 
graphic knapsack problems: These are known to be computationally 
difficult, or NP-hard.52 

The locally stable equilibrium configurations of the surface Coulomb 
problem satisfy the additional constraint that the associated energies 
are local minima. Specifically, if the charge positions are described 
by spherical coordinates-the co-latitudes 0 5 & 5 n-, and longitudes 
-n- 5 8 , s  n--then the Coulomb energy (2.1) is E(&, O,), 1 5  i 5 N ;  and 
the equilibrium condition (2.2) is equivalent to 

- 0  l 5 i a N  
dE dE 
d+i - d8, 
__-_- (2.6a) 

If fJK, 1 5 K 5 2N- . . . , &, el, . . . , ON, then a sufficient condition 
for the local stability of the solutions of (2.6) is that the associated 
Hessian matrix 

(2.6b) 

is positive definite. See Appendix A. Physically, this simply means that 
tangential restoring forces, that is, F:'" * rL = 0, counter small displace- 
ments from equilibrium. In potential theory these locally stable configura- 
tions are known as Fekete points, and some asymptotic estimates of the 
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rate of approach to the limit of continuous charge distributions are 
a~ai lable . ’~’’~ In Section 3.B these methods are used to construct an 
expression for the ground-state energy E ( N )  . 

Both in the Coulomb and dipole problems analytic solutions of the 
equilibrium equations (2.6a) and evaluation of the associated Hessians 
(2.6b) becomes tedious for as few as four interacting  object^.^^,'^ At 
present, the only practical way of surveying the locally stable states of the 
Coulomb systems for larger values of N is to use computers to find energy 
minima. However, since the number of minima appears to grow exponen- 
tially with N, the energy surface 15(+~, 8,; . . . ; +,, 8,) becomes pro- 
gressively more convoluted, and for N > 0(102) has many small hills and 
valleys. This leads to fundamental difficulties in mapping out the topog- 
raphy of the energy surfaces: It is necessary to distinguish genuine 
physical features such as minute ridges or clefts arising from the 
competition among the N(N - 1)/2 charge interactions from numerical 
artifacts such as corrugations due to roundoff or truncation errors. 
Furthermore, even high statistics computer searches can miss some 
minima with small capture basins or special symmetries. The net result is 
that computer trials can both over- and underestimate the actual number 
of locally stable states. Analytic and numerical stability criteria for 
multidimensional energy surfaces are discussed in more detail in Appen- 
dix A.  

B. Computer Algorithms 

Most of the numerical work was carried out with the ACPMAPS 
supercomputer at Fermilab. This is a parallel processing machine utilizing 
600 double precision nodes. The computer searches for the locally stable 
states of the surface Coulomb problem were started from sets of points 
randomly distributed over the surface of the sphere-specifically, lo4 
random starts for every value of N in the range 2 5 N 5 64; 2000 starts for 
each successive N in the interval 65 5 N 5 108, 111; and 1000 starts for 
N = 109, 110, and 112. The initial charge configurations were described 
by sets of spherical coordinates r,(+L, O L ) ,  where each angle is represented 
by a 24-bit, or 7-decimal, pseudorandom number normalized to yield a 
uniform spherical distribution.” The equilibrium states were found by 
allowing the points to move in the direction of the forces acting on them 
subject to the constraint of remaining on the surface of the sphere. The 
steepest descent method of iterating the map rl+ rt’ = (r, + y F I ) / l r L  + 
yF,I, with y chosen to maximize convergence, was used for this problem 
by Claxton and B e n ~ o n . ~ ~  In the limit y-+m, the update formula reduces 
to rr + r6’ = Fl/lF,l, which is an overrelaxed update step with good 
convergence. If this step is so large that the {r:} configuration has a 
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higher energy than the {r,} state, y is automatically adjusted downward 
for that step until the energy does decrease. The iterations are terminated 
when the energies stabilize within the machine precision of one part in 
2-48 (-14.4 decimals). Since these computations involve the cancellation 
of large forces, it is essential to use at least 48-bit precision. Conjugate- 
gradient methods do not improve this technique because of the highly 
convoluted structure of the energy surface. 

To compare the geometric properties of the equilibrium states, it is 
useful to rotate the configurations into a standard set of orientations. 
According to (1.3) the N charges of a locally stable state may be labeled 
by their partial energies. Suppose that these are ordered in a non- 
decreasing sequence, that is, 

E , ( N )  5 E,(N) 5 E,(N) 5 .  . . C r  E,(N) (2.7) 

As a first step in orienting, pick a charge with the lowest partial energy- 
if E , ( N )  = E,(N),  and so forth, this won’t be a unique choice!-and 
rotate the configuration so that this charge is placed at the north pole, 
8 = C#I = 0. Consider next the set of charges with the second lowest partial 
energies: for instance, E,, E4,  E,,  if (2.7) has the special form 

El = E,< E, = E ,  = E, < E,, . , . , C r  EN (2.8) 

Find the (not necessarily unique) charge in this set closest to the north 
pole and rotate the entire configuration so that this second charge is at 
zero longitude, 8 = 0. If the second charge happens to be at the south 
pole, repeat the process with another charge from the set with the third 
lowest partial energies. This scheme is adequate because the orientations 
are unique for irregular configurations, and the ambiguities are irrelevant 
for comparing symmetric configurations 

The numerical reproducibility of the computations can be checked by 
comparing the results obtained from minimizing runs starting at different 
random initial configurations. For instance, for N = 84, the reproducibili- 
ties of some of the typical values that describe the characteristics of the 
configurations-in this case the chiral states with the largest capture 
basin-are 

Total energy, Eq. (1.3): 3103.478 717 096 13 digits (2.9a) 

Lowest partial energy, Eq. (1.3): 36.885 477 8 digits (2.9b) 

Typical angular 0.039 852 25 7 digits 
( 2 . 9 ~ )  coordinates (rad.): {: 0. 010 146 18 7 digits 
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The disparity in significant digits between the total and partial energies is 
not due to statistical fluctuations in roundoff errors. Rather, it indicates 
that the computer runs end in a multiplicity of shallow stability valleys 
that merge into the local energy minima. The relation of these eigen- 
modes to the Hessian stability criterion, Eq. (2.6b), is discussed in 
Appendix A. The basic numerical consequence is that the slight varia- 
tions of the individual charge positions and energies compensate in such a 
way that the total energies of the equilibrium configurations are reproduc- 
ible with a gain of five additional significant digits. 

3. LOCALLY STABLE STATES OF THE SURFACE COULOMB 
PROBLEM 

A. Variation of the Number of States with the Particle Number N 

The computer trials show that when there are only a few interacting 
charges-that is, N is in the range 2 5 N 5 14-the energy minimizing 
algorithm leads to a unique terminal energy E ( N )  for every value of N .  If 
the associated charge configurations are rotated into a standard orienta- 
tion by means of the conventions established in Section 2.B, then the 
resulting geometrical patterns C(N) are also unique. A new level of 
complexity appears at N = 15. In this case all the computer searches still 
converge to a unique final energy value E( 15) = 80.670 244 11; but the 
associated charge configurations are split into a pair of enantiomeric 
states: Out of a total of lo4 randomized initial configurations 4958, or 
50%, of the energy minimizing sequences terminate in a charge pattern 
@"( 15), which is the chiral transform of another pattern C"( 15) reached 
in the other 5042 energy minimizations. 

Three distinct terminal configurations appear when N = 16. As indi- 
cated in TableVIII in Appendix B, 75.7% of the lo4 minimizing runs end 
at an energy of E,(16) = 92.911 655 30. The frequency of occurrence of 
this state, or capture basin, is in turn almost evenly divided (37.7 and 
38.0%) between two enantiomeric configurations C:( 16) and Cp( 16). 
The remaining 24.3% of the computer searches end at a locally stable 
state with a slightly higher energy, E,(16) = 92.920 353 96. The associated 
charge configuration C2(16) is a symmetric set of four rings outlining a 
series of four relatively rotated squares with a charge at every corner. 
Figures l(a)-l(d) show these configurations in detail. 

A summary of the multiplicities of the states M ( N )  for all N in the 
range 2 5 N 5 112 is given in Table I. As indicated in column 2 of Table 
1, M( 15) = 2 and M( 16) = 3 because every chiral configuration is counted 
as a separate state. Columns 3, 6, 9, and 11 also list the cumulative 
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(a ) 

Figure 16). Charge configuration for N = 16 (metastable state). This is a perspective 
view showing the charges arranged in a highly symmetric pattern of four rings with four 
charges in each ring. These rings are symmetrically positioned with respect to the equator at 
11.342” north and south latitude, and 51.684” north and south latitude. The auxiliary lines 
show the associated Coulomb polyhedron: This figure has 26 faces and 40 edges. 

number of states 

The graph in Figure 2 shows that M , ( N )  increases at an exponential rate 
with N .  In particular, if we assume that 

M ( N )  = Ae”N (3.2a) 

then (3.1) implies 

M , ( N )  = A(eVN - e ” ) / ( l  - e -” )  (3.2b) 

A Newton-Raphson optimization shows that for 70 5 N 5 112, Eq. 
(3.2b) provides an excellent fit of the data with 

A = 0.382 and v = 0.0497 ( 3 . 2 ~ )  
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fb) 
Figure l(b). Charge configuration for N = 16 (metastable state). This is a plan view of 

the four-ring structure looking down from the north pole. The squares and open and filled 
circles indicate corresponding points on Figures l(a) and l(b). 

An exponential growth of the multiplicities of states is also observed in 
two-dimensional arrays of pivoted magnets. Extensive experiments with 
n x n,  2 9 n 5 6 systems, initially stirred by fluctuating magnetic fields, 
and then allowed to settle into locally stable configurations, show that the 
number of distinct patterns M " ( N )  is of the order of 

M " ( N )  -- 1.3e".lgN (3 .3)  

where N = n x n is the number of r n a g n e t ~ . ~ ~ ' ~ ~  Figure 2 shows that the 
multiplicity of the magnetic states grows much more rapidly than the 
multiplicity of the surface Coulumb states. This trend is plausible because 
the magnets are coupled by a vector interaction that generates complex 
domain structures. 

There are several other N-body systems that exhibit an exponential 
growth of M ( N )  with v - 0.07 and 0.16." In these statistical models the 
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(cl 

Figure l(c). Charge configuration for N = 16 (ground state). This is another perspective 
view similar to that shown in Figure I(a). The ground state is less symmetric than the 
metastable state. In fact, as shown in Figure l(d), this configuration can exist in two 
enantiomorphic variants. 

index v is identified with a maximum configurational entropy, that is, 

1 
v = lim N ln[M(N)] 

N- 
(3.4) 

If these results are combined with the trends of the surface Coulomb 
problem and the magnetic arrays, it is plausible to conjecture that in 
general the number of locally stable states of N-body cooperative systems 
increases exponentially with N .  This conjecture has several practical 
consequences: If the exponential growth in the number of metastable 
states of the surface Coulomb problem continues to increase at the rates 
indicated in (3.2a) and (3.2c), then the numerical simulation of large 
systems N > O( lo3) involves severe problems. For instance, the energy 
manifold describing the Coulomb interaction of 2000 charges constrained 
to the surface of a sphere would have about 5 x lo4* locally stable 
minima. Implementing numerical optimization or search algorithms and 
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(d) 

Charge configuration for N = 16 (ground state). The relative orientation of 
Figures l(c) and l(d) can be inferred by comparing the positions of the filled and open 
circles on the two diagrams. The enantiomorphic character of this configuration can he 
verified by copying it on a transparency, flipping the transparency over, and checking that 
the obverse figure cannot be rotated into coincidence with the original diagram. 

Figure l(d). 

testing for stability on such an intricately corrugated energy landscape 
would strain current computing resources beyond their limits. 

B. Energy Distributions 

The electrostatic energy of the N-particle surface Coulomb problem, Eq. 
(2.1), is given explicitly by 

where (pi E [0,7r] and 0, E [-P, 7r] are the spherical coordinates of the ith 
charge. 

Geometrically, E(41, . . . , O N )  corresponds to a surface in a 2N + 1 
dimensional space. The highest peaks on this energy “landscape” are 



COMPLEX SYSTEMS 511 

TABLE I 
Variation of the Number of States M(NI with the Particle Number N 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
3 
1 
I 
1 
1 
2 
2 
2 
2 
1 
2 
3 
2 

9 

15 

22 

31 

29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 - 

2 
3 
1 
2 
1 
2 
5 
2 
3 
2 
4 
6 
3 
7 
1 
1 
3 
8 

10 
3 
2 
lh 
3 
8 
3 

10 
11 
8 

43 

54 

71 

86 

110 

145 

57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 - 

9 
18 
9 

11 
13 
6 
4 

10 
6 
4 
2 
9 
9 

13 
7 

10 
10 
22 
6 

12 
9 
7 
7 

10 
19 
30 
31 
30 

200 

239 

276 

331 

376 

85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
- 

19 
46 
39 
32 
37 
44 
37 
49 
41 
55 
35 
41 
21 
37 
24 
52 
82 
87 
52 
56 
70 
93 
86 
75 
86 
93 
88 
91 

505 

703 

920 

1095 

1442 

1875 

2054 

a Cumulative number of states, Eq. (3.1). 
' M ( N ) > l  for N>50.  

generated by configurations where some of the charges are close together. 
The median range of heights is associated with randomly distributed sets 
of coordinates-such as those used as the starting configurations for the 
computer searches. The lowest points of the valleys and craters corre- 
spond to locally stable configurations of the surface Coulomb problem. 
As indicated by (3.2a) and (3.2c), the number of these local minima 
increases at an exponential rate with N .  Geometrical comparisons show 
that for a given value of N >> 1, the charge configurations associated with 
these minima all tend to be quite different. Nevertheless, the relative 
energy variations between the lowest and highest local minima are less 
than 0.006% even for the largest multiplicities of states, that is, M(112) 2: 
0.382e5.56 = 100. 
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1 I i I I I I I I I I I 

0 20 40 60 80 100 1 
N 

'0 

Figure 2. Variation of the number of states with the number of particles. The M , ( N )  
points are plots of the data given in Table I. The fitted line represents the exponential 
function in Eqs. (3.2b) and (c). M " ( N )  show the corresponding data for magnetic dipole 
arrays; cf. (3.3) and Refs. 55 and 56. 

B. 1 .  Energies of Random Initial Configurations 

Let E;""(N), 1 S j s p ,  denote the energies of a set of random dis- 
tributions of N charges on the surface of a unit sphere, where a total of 
p >> 1 configurations are generated. Then ergodic arguments and rigor- 
ous results of potential theory54 both show that the average energy of the 
set of random states is given by 

where N 2 / 2  is the Coulomb energy of a continuous uniform spherical 
surface charge distribution with total charge N .  Figure 3 and Table I1 
show some of the results obtained from computer simulations with 
p = lo5, and N varying throughout the range 6 s N 5 100. The overall 
agreement is good although the computer-generated averages ( ER""(N) ) 
tend to exceed the theoretical values N 2 / 2  by about 6%. This bias is also 
evident in the asymmetric distribution of the maximum and minimum 
energy values about the mean displayed in columns 3, 4, and 5 of Table 
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Figure 3. Energies of the surface Coulomb states. The dashed ( E R " " ( h r ) )  curve 
represents the average energies of randomly chosen initial states (cf. Table 11). The crosses 
show the minimum energies found by computer searches (cf. Table VIII). The semi- 
empirical formula (3.8) matches the data points more accurately than can be shown on this 
graph. 

TABLE I1 
Electrostatic Energies and Dipole Moments of Random Spherical Charge Distributions 

N N'i2 a (ER""(N)) a L7 Max{ER""(N)} Min(ERa"(N)} R 

10 
20 
30 
40 
50 
64 
80 

100 

50 
200 
4.50 
800 

1250 
2048 
3200 
5000 

47.30 
197.85 
457.74 
835.63 

1317.2 
2182.0 
3428.9 
5392.4 

7.76 
13.32 
78.76 

198.4 
288.9 
446.5 
630.3 
864.1 

99.11 
270.65 

2594 
3716 
4416 
6229 
7824 

10 886 

34.35 
164.82 
395.85 
721.6 

1143 
1920 
3047 
485 1 

1.116 
1.092 
1.107 
1.204 
1.092 
1.050 

~ 

a Equation (3.6). 

' Equation (3.7). 
Standard deviation. 
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11. The underlying reason is that random selections of angular coordinates 
include charge clusters:’ and these configurations boost the energy values 
in (3.5). 

The computer simulations of the random charge configurations can 
also be checked by calculating their dipole moments, Eq. (1.2a). In an 
independent series of trials the random walk result (Id(N)I) Ran = 
0.9213N”2, cited in (1.2b), was verified by generating 100 random 
configurations for every value of N in the range 3 5 N 5 64. Finally, by 
combining (1.2b) and (3.6) in the invariant ratio 

= [GI ’” = 1.095 637 R =  ( I d ( N ) I  ) R a n  

( ER””(N))  1’4 
(3.7) 

it is possible to cross-check the consistency of the energy and dipole 
moment simulations. The numbers listed in the last column of Table I1 
yield an average ratio of R = 1.110, which is within 1.3% of the 
theoretical value. 

B.2. Minimum Energy States 

Let E,(N) denote the lowest energy states of the N-body surface 
Coulomb problem found by computer searches. A complete set of values, 
ranging from E1(3) = 3’” = 1.732. . . , to E1(112) = 5618.044 882 33, is 
listed in column 4 of Table VIII in Appendix B. In the absence of 
rigorous analytical bounds, we cannot exclude the existence of other 
configurations with even lower energies. The sequence of crosses in 
Figure 3 shows the variation of El  with N in graphical form. On this 
coarse energy scale E, (N)  is a smooth monotonic function: The simple 
expression 

E I F ( N )  = 0.5N2 - 0.5513N3’* (3.8) 

fits the data with error bounds of 0.1% at N = 20 and 0.01% at N = 112. 
Using E I F ( N )  as a smooth baseline, it is possible to construct scatter plots 
of the energy differences EIF(N) - E,(N) on an enlarged scale. However, 
searches for systematic deviations resembling the energy peaks associated 
with atomic clusters59 or analogues of Thomas-Fermi oscillations6’ have 
not led to any conclusive re~ul t s . ’~’~’  See also Ref. 69. 

The functional form of EIF(N) has two physical interpretations3’: (i) 
N 2  / 2 is the electrostatic energy of a uniform surface charge density-with 
total charge N - o n  a unit sphere. To recover the energy of a distribution 
of N point charges, it is necessary to subtract the self-energies of a set of 
N uniformly charged spherical caps centered on these points. For N >> 1, 
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it is plausible to approximate the caps by disks. Since the energy of an 
infinitely thin disk of charge with radius a is ED = 27r2w2a3 {0.4244}, 
where u is the charge density;6’,62 the total self-energy correction is of 
the order of NED where w = For simplicity, suppose that all the 
disks have the same radius. Then the crudest measure of the total area 
covered by the N disks is the surface area of a unit sphere, that is, 
Nnu2 = 47r. Consequently, the self-energy correction is approximately 
given by 

N E D  = 0.4244N3I2 (3.9) 

which accounts for the second term in (3.8). More elaborate estimates 
that improve the agreement with the empirical coefficient 0.5513 are 
outlined in Ref. 40. (ii) Equation (3.6) shows directly that N2 /2  can also 
be identified with the average energy of a set of N unit charges randomly 
distributed over the surface of a unit sphere. In this case, the O(-N3I2)  
term represents the correlation energies of the ordered Coulomb equilib- 
rium states. 

B.3. Energies of Metastable States 

The most striking feature of the metastable states is that their energies 
are closely bunched just above the minimum energy states. This trend 
begins with the first metastable state at N = 16: As indicated in column 4 
of Table VIII in Appendix B, the energy difference AE( 16) between the 
two states is 

AE(16) = E2(16) - E,(16) 

= 92.920 353 96 - 92.911 655 30 

= 0.008 698 66 (3.10) 

and this implies AE(16)/E1(16) 29.36 x Figures l(a) and l(c) show 
that this small relative energy difference is not reflected in any geometric 
similarities between these two states. At the other extreme, for N = 112, 
the computer searches lead to 60 locally stable states with distinct energy 
values-31 of these states occur in enantiomorphic pairs. In this case it is 
convenient to describe the level spacings by the average energy difference 
( A E (  112)), that is, 

(AE(112)) = [E6,(112) - E1(112)]/59 

= [5618.419 481 31 - 5618.044 882 231159 

= 0.006 349 14 (3.11) 
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which indicates that the relative spacings are of the order (AE(112))l 
E,(112) 2: 1.13 x 

In general, (AE(N)) = [ E , ( N )  - E , ( N ) ] / ( n  - l ) ,  for N charges, where 
n ( > l )  denotes the number of distinct energy levels. Table I11 shows the 
trends in level spacings for 18 values of N ranging from “small” to 
“large.” Since ( A E ( N ) )  IE,(N) - lop6 for N > 100, computer searches 
for the lowest energy states in complex systems of this type require high 
precision. In fact this energy scale is so fine that neither the empirical fit 
(3.8) nor its graph on Figure 3 can discriminate between the ground and 
metastable states. 

It is also interesting to display the distribution of the density of states. 
Table VIII in Appendix B shows that for N = 112 there are 60 states with 
energies spread between 5618.044 and 5618.419. If these states were 
distributed uniformly, there would be about 8 states per bin for bins of 
width 0.05. With this particular choice of bin width, the first bin covers 
the energy interval 5618.044-5618.094 but according to Table VIII 
contains only two states. The second bin extends from 5618.094 to 
5618.144 and contains no states, and so forth. Similarly, for N = 111, the 
first bin of width 0.05 spans the interval 5515.293-5515.343 and contains 
only the ground state, and so forth. The histogram in Figure 4 shows the 
combined statistics for N = 111 and 112-a total of 112 states. Clearly the 
level distribution is not uniform. There is a dip, or level repulsion, in 
the energy bin just above the ground state; a pronounced maximum in 
the middle of the range; and an eventual decrease in the density of the 
highest levels. This density profile formally resembles the Wigner dis- 
tribution of the energy level spacings of large random Hamiltonian 
systems.63 

Figure 5 shows a semilog plot of the density of states weighted by the 
probability of occurrence. It is a straightforward matter to include this 
additional information. Specifically, for N = 112, Table VIII shows that 
the two states falling into the first energy bin between 5618.044 and 

TABLE 111 
Variation of the Average Energy Level Spacing ( A E ( N ) )  with the Number of Charges N 

N 16 
n 2 
( A E ( N ) )  0.008 70 
N 55 
n 6 
( A E ( N ) )  0.005 49 
N 107 
n 52 
( A E ( N ) )  0.007 38 

21 22 
2 2 

0.000 29 0.020 42 
56 57 
4 5 

0.051 22 0.022 16 
108 109 
47 56 

0.007 37 0.004 94 

27 
2 

0.006 99 
58 
10 

0.013 08 
110 
59 

0.00401 

30 

0.000 45 
59 
5 

0.004 36 
111 
52 

0.007 16 

32 
2 

0.207 12 
60 
6 

0.030 07 
112 
60 

0.006 35 
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ENERGY ABOVE GROUND STATE 

Density of states. The histogram combines level statistics for N = 111 and 112 
compiled from Table VIII. In both cases. the zero of energy is taken to be the ground-state 
energy. 

Figure 4. 

5618.094 appeared 620 times in 1000 computer searches starting from 
different random configurations. On average, therefore, their relative 
probability of occurrence is 62%. Similiarly, for N = 111, the state in the 
first energy bin occurred in 48% of the computer trials. The combined 
average for these three states therefore is 55%; and this is the value 
indicated for the first bin in Figure 5. The rest of the histogram can be 
obtained by similar means. 

The most conspicuous difference between the two histograms in 
Figures 4 and 5 is that the maximum of the probability density occurs 
near the minimum energy states. In general, this implies that for values of 
N 5 100 there is about a 95% probability that a computer search will er.d 
at an energy level within 0.003% of the ground states. But it is difficult to 
improve this precision. In the range 100 5 N 5 112, the average probabili- 
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Figure 5. Density of states weighted 
by the probability of occurrence. This is a 
semilogarithmic plot that shows the quali- 
tative shift in the histogram of Figure 4 
when the probabilities of occurrence are 
taken into account. 

ty that a computer minimization will actually reach the minimum energy 
state is only 35%. Of course, this result depends on the choice of 
minimizing algorithm. Nevertheless, similar statistical behavior occurs in 
the distribution of patterns in magnetic cooperative arrays.56 All of these 
systems display the same basic trend: As the number of interacting 
objects increases, the statistical weight of the ground state decreases. 

The survey of metastable states summarized in Table VIII is based on a 
total of about 7 x lo5 computer trials. Rare states, with probabilities of 
occurrence as low as 0.01% are found for N = 21, 30, 42, 48, 58, and 61. 
Possibly there are additional states with still smaller capture basins. 
Certainly it is plausible that for N = 112 some states on the high-energy 
tail of the histogram in Figure 4 have been missed due to limited statistics 
(only 1000 energy minimizing searches). But the essential observation is 
that none of the numerical trials-for any value of N-has yet turned up 
any trace of isolated energy levels; that is, single levels separated by large 
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"band gaps" (>> ( A E ( N ) ) )  from the cluster of states above the ground 
state. It remains to be seen whether this trend continues for still larger 
values of N .  

B.4. Energies of Individual Charges 

The total electrostatic energy of a locally stable state of N charges can be 
represented as the sum of the partial energies associated with the 
individual charges. These partial energies have two interesting properties: 
(1) The variation of the individual charge energies within a configuration 
is generally much larger than the variation of the total energy between 
configurations. And ( 2 ) ,  since the energy apportioned to a charge is 
simply the sum of the inverse distances to all the other charges, the 
variation of the individual energies is a measure of the geometric 
regularity of the configurations. Figure 6 illustrates some of these energy 
relations. Specifically, let E,(N)  denote the total energy of the mth state 

. . 
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. *  . *  .= . . .  . 
* *  

lar c *- . 
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Figure 6. Total and individual Coulomb energy differences. The graph shows a scatter 
plot of the ratio R ( N )  defined in Eq. (3.15) for all values of N in the range 16 5 N c 112. 
The only values of N for which the average energy differences within configurations are 
smaller than the average total energy differences between configurations are N = 32, 51, 77, 
and 78. The two smallest values of R-R(32) = 0.26 and R(78) = 0.51-are highlighted by 
the arrows. The maximum value is R(45) = 305. 
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of N charges. Then a slight extension of (1.3) shows that 

where E,,,(N) is the partial energy of the ith charge in the mth state of N 
objects. The scatter plot in Figure 6 begins at N =  16. This entry 
corresponds to the following array of total and partial energies; cf. (3.10): 

N = 16; ground state 

Figs. l(c) and l(d) 

E1(16) = 92.911 655 30 

El,,(16) = 5.762 143 2 

N = 16; metastable state 

Figs. l(a) and l(b) 

E2(16) = 92.920 353 96 

E2,1(16) = 5.793 787 0 

1 1 
E1,4(16) = 5.762 143 2 

E1,5(16) = 5.821 923 5 

l&(16) = 5.793 787 0 

E2,9(16) = 5.821 257 1 

1 .1 
E1,,6(16) = 5.821 923 5 E2,16(16) = 5.821 257 1 

(3.13) 

The spread of partial energies in the ground state is - 

E1.1(16) = 0.059 780 3; and in the metastable state E2,16(16) - E2,1(16) = 

0.027 470 1. Consequently, the average maximum energy variation within 
these configurations is 0.043 625, whereas the total energy difference 
berween the configurations is only E,(16) - El( 16) = 0.008 698 66-small- 
er by a factor of 5 .  This disparity is also reflected in the individual charge 
energies: Twelve charges in the ground state, El,5(16), . . . , El,16(16), 
have greater energies than any of the charges in the metastable state! 

In the general case, when there are n distinct energy levels associated 
with N charges, the average maximum variation of partial energies within 
the configurations ( AEpart(N)) is given by 

Table IV shows that this energy spread is a slowly increasing function of 
N .  The differences in partial and total energies can be combined in the 
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TABLE IV 
Variation of the Partial Energy Differences ( A E D a c , ( N ) )  Within Configurations 

N 16 21 22 32 55 60 111 112 
( A E p a r , ( N ) )  0.043 0.055 0.030 0.054 0.117 0.098 0.211 0.208 
R ( N )  5.01 189 1.44 0.26 21.3 3.19 29.5 32.7 

a Equation (3.14). 
Equation (3.15). 

ratio 

energy differences within configurations 
energy differences between configurations - (3.15) 

which is the ordinate of the scatter plot in Figure 6. Some representative 
values are also listed in Table IV. Clearly most of the points in Figure 6 
fall into the band between 5 < R ( N )  < 50. This demonstrates that the 
scale of total energy differences between successive metastable states is 
much finer than the variation of the individual charge energies. A 
complementary pattern is exhibited by the stabilities: Equations (2.9a) 
and (2.9b) show that the numerical reproducibilities of the total energies 
of the configurations generally exceed the reproducibilities of the partial 
energies by 5 orders of magnitude. 

The contrast between individual and collective energies is also illus- 
trated by the following example: Suppose that the partial energy of a 
charge has the value 36.935241. Then it is easy to verify from the 
computer results that this charge cannot be a constituent of any locally 
stable state with either N I 83 or N 2 85; it must belong to one of the 30 
configurations with N = 84. However, there is no finer scale of energy 
rankings to help in locating this charge. Every one of the 30 states is 
comprised of sets of 84 partial energies that straddle the value 36.935 241. 
Consequently all of these states have to be examined in detail before it 
can be established that 36.935 241 corresponds to E,,,,,(84)-the partial 
energy of the 37th charge in the 10th equilibrium state of 84 objects. This 
assignment is unique because all 84 partial energies in the 10th state are 
different, and ~5,,,~,(84) # E,,,(84) for all 1 s  i 5 84 and m # 10. The 
only remaining ambiguity is geometric: as indicated in Table VIII, 
E,,(84) has two enantiomeric configurations. 

Equation (3.12) shows that the partial energy of a charge is propor- 
tional to the sum of its inverse distances to all the other charges. This 
implies that highly symmetric equilibrium configurations that “look alike” 
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from every charge or vertex have unique partial energies, that is, 
E,,,(N) = E,(N)/N for all 1 s  i 5 N .  Indeed, this is the case for three of 
the Platonic solids, the tetrahedron, octahedron (dipyramid), and 
icosahedron, whose vertices are the equilibrium positions of the surface 
Coulomb problem for N = 4, 6, and 12 respectively. The partial energies 
are also unique for N = 8 and 24, even though these configurations are 
not included among the standard semiregular (Archimedean) polyhedra. 
Clearly, less symmetric charge distributions will have a greater variety of 
reciprocal distances, and this dispersion can be used as a measure of 
geometric irregularity analogous to the angular diversity ratio (1.1): If 
ne(N,  rn) denotes the number of distinct partial charge energies that occur 
in the rnth state of N objects, then the corresponding energy diversity 
ratio (%) is given by 

(3.16) 

In the range 2 I N 5 112, the computer trials yield 1142 equilibrium states 
with distinct energies; 912 of these states occur in enantiomorphic pairs; 
cf. Table I .  The associated energy diversity ratios are listed in column 9 of 
Table VIII in Appendix B and displayed graphically in Figure 7. Two 
trends are evident: (i) D,(N, m) is a slowly increasing function of N .  The 
first configuration that is so irregular that all of its partial charge energies 
are different occurs at N = 35; that is, D,(35,4) = 100%. By the time N 
reaches 102, 34 out of a total of 54 locally stable states have energy 
diversity ratios in excess of 95%. This is another confirmation of the basic 
trend that increasing complexity is correlated with greater geometric 
irregularity. (ii) Figure 7 also shows that the energy diversity ratios tend 
to cluster in a series of bands near i, +, i, f ,  and 1. It is plausible that 
this regularity is connected with a deeper symmetry of the surface 
Coulumb problem. 

4. GEOMETRIC PROPERTIES OF THE SURFACE COULOMB 
STATES 

The locally stable solutions of the N-charge surface Coulomb problem are 
constrained solely by spherical boundary conditions and the O(4) symme- 
try of the Coulomb interaction. The exponential growth of the multiplici- 
ty  of solutions-M(N) - e , Eq. (3.2a)-shows that these restrictions 
are compatible with a great variety of geometric structures. Only in the 
simplest systems is there an overlap with the criteria of strict regularity 
that underlie the classical theories of polygons and p01yhedra.l~ For 

O.OSN 
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N 
Figure 7. Scatter plot of the energy diversity, Eq. (3.16). Large values of this ratio are 

correlated with irregular charge configurations. The bands in the vicinity of D, - 100% and 
50% indicate a marked statistical preference for these values. 

instance, the Coulomb solution for N = 3 corresponds to an equilateral 
triangle inscribed in a great circle: This is the simplest example of a 
regular polygon, that is, a plane polygon with equal interior angles and 
equal sides. Similarly, regular polyhedra are bounded by congruent 
regular polygons and have congruent vertices. Only the solutions for 
N = 4 (tetrahedron), N = 6 (dipyramid), and N = 12 (icosahedron) share 
this high degree of symmetry. The other Platonic solids, the cube with 8 
vertices and the dodecahedron with 20 vertices, do not correspond to 
solutions of either the surface Coulomb or Tammes problems. The 
semiregular polyhedra are also bounded by regular polygons with con- 
gruent vertices and edges, but the polygons do not all have to be 
congruent to each other. This class of objects includes the 13 Archime- 
dean polyhedra as well as infinite sets of semiregular prisms and anti- 
prisms. None of the surface Coulomb configurations match any of these 
semiregular polyhedra. In particular, the well-known “bucky ball,” or 
truncated icosahedron, associated with C,, is not a solution of either the 
Tammes or surface Coulomb problems for N = 60. 
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Every Archimedean polyhedron has a dual formed by joining a point 
that is above the center of each face of the polyhedron to equivalent 
points above all the neighboring faces. The lines connecting these points 
are constrained to intersect the edges of the original polyhedron. The 
resulting duals of the semiregular polyhedra have congruent faces but 
none of these faces are regular polygons. These duals are also less 
symmetric than the Archimedean figures because not all of their vertices 
lie on a single sphere; consequently none of the dual polyhedra coincide 
with any of the solutions of the surface Coulomb p r ~ b l e r n . ~ ~ - ~ ~  However, 
there is an interesting “near miss” for N = 32. The pentakis dodecahedron 
is a convex polyhedron with 32 vertices, 90 edges, and 60 faces composed 
of congruent isosceles triangles: This object is the dual of the truncated 
icosahedron, which has 60 vertices and 32 faces. The two types of edges 
of the pentakis dodecahedron intercept angles of 

sin-’($) = 0.729 727 656 

and (4.1) 

i[n- - sin-’($) - tanp’(2)] = 0.652 358 139 

as seen from the center of symmetry, that is, the origin of the 
i n t e r ~ p h e r e . ~ ~ . ~ ~  These values agree to within six significant figures with 
the corresponding angles of the minimum energy Coulomb configuration 
for N = 32 (see the entries on lines 13 and 14 of Table V). A pictorial 
comparison of the pentakis polyhedron and the Coulomb configuration 
would show that they are essentially identical. But pentakis breaks strict 
spherical symmetry because its 32 vertices are distributed over two 
concentric spheres whose diameters differ by 2.58%. Consequently, the 
ratio of the two edge lengths of the pentakis dodecahedron, 1.127322, 
deviates by 0.77% from the corresponding edge ratio, 1.118600, of the 
Coulomb solution. In this instance, the surface Coulomb problem actually 
leads to a more symmetric “dual” partner of an Archimedean polyhedron 
than the original construction of pentakis by Catalan in 1862P’ Moreover, 
the minimum energy solution for N = 32 is not only geometrically regular, 
but it is also robust: In the range 12 < N 5 65, it is the only equilibrium 
configuration common to both the Coulomb and logarithmic inter- 
actions.I6 

In addition to the 5 Platonic solids and 26 Archimedean polyhedra and 
their duals, there are only 92 other convex polyhedra whose faces are 
entirely composed of regular polygons-generally not all of the same 

These objects are geometrically irregular or nonuniform in the 
sense that there are no symmetry operations that transform a particular 
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TABLE V 
Regular Coulomb Polyhedra 

Nearest neighbor 
N "  E b  f' e / e d  n,  0,"" (%) ' angles (degrees) Multiplicity 

12 49.165 20 3011 1 3.3 63.4349' 

16*h 92.911 28 4214 2 9.5 48.9362 
52.5452 
54.6580 
61.8004 

16 92.920 26 4014 2 10.0 50.1269 
52.0044 
54.2578 
63.0252 

24 * 223.347 38 6013 1 5.0 42.0653 
45.0400 
45.7102 

32 412.261 60 90/2 2 2.2 37.3773 
41.8103 

72* 2255.001 140 21014 2 1.9 24.4917 
24.9262 
25.4334 
28.2068 

30 

6 
12 
12 
12 

8 
8 

16 
8 

24 
24 
12 

60 
30 

60 
30 
60 
60 

* Number of charges or vertices. 
Coulomb energy, Eq. (3.5). 
Number of faces, Eq. (4.6). 
Number of edgesldistinct edge lengths, Eq. (4.7). 
' Number of distinct partial energies, Eq. (3.16). 
'Diversity ratio, Eq. (4.7). 
*Number of times this angle appears. 

' 2sin-'[f(2 - 2 / ~ ' ' * ) " ~ ] .  
Enantiomeric states. 

vertex into each of the other vertices in turn. Twenty-four of these 
nonuniform polyhedra may be inscribed in a sphere.66 By comparing the 
corresponding numbers of vertices and faces, it is easy to verify that none 
of these 24 objects match any of the surface Coulomb equilibrium 
configurations. In summary, therefore, out of a total of 2054 surface 
Coulomb states and 123 convex polyhedra derived from classical geome- 
try, there are only three configurations common to both sets. This 
number is also an upper bound because further extensions of the 
Coulomb problem to larger systems with N > 112 cannot yield any 
additional matches. These results show that the locally stable states of 
complex cooperative systems of this kind tend to have symmetries that 



526 T. ERBER AND G .  M .  HOCKNEY 

differ from those that characterize the regular polyhedral configurations 
of classical geometry. 

A. Dipole Moments 

The distribution of the dipole moments of the surface Coulomb states can 
be used to answer two basic questions: (1) Are the configurations for 
large values of N so irregular that they are approximately equivalent to 
random networks of points on a sphere? And furthermore, (2) do these 
networks approach some kind of universal asymptotic statistical dis- 
tribution that is independent of the laws of repulsion that act between the 
individual charges? To settle these issues, it is convenient to recall from 
Eq. (1.2b) that the average value of the dipole moment of a random 
configuration of N unit changes on a sphere is an increasing function of 
N ,  that is, ( ld(N)l)Ran - N ’ ” .  As indicated in connection with Eq. (3.7), 
the applicability of this random walk result to the Coulomb problem can 
be confirmed by computer trials. In particular then for N = 100, the 
expectation value of the dipole moment of a random distribution is quite 
large, (Id( 100)l)Ran = 9.2; whereas the entries in column 5 of Table VIII 
show that 0 5 Id( loo)[ 5 0.0037 for all 52 of the Coulomb states found by 
computer searches. This upper bound indicates that the metastable state 
with the highest energy and nearly maximal angular diversity (see below) 
for N = 100 has a dipole moment that is about 4 x smaller than that 
expected for a random configuration. Figure 8 shows that this trend of 
small dipole moments prevails for all the Coulomb configurations in the 
range N 5 112. The logarithmic ordinate scale of the graph extends down 
to lop6 ,  which is near the limit of numerical accuracy for large systems, 
N - O( 100). Table VIII shows that states with vanishing dipole moments 
are quite common for small values of N ,  but tend to become less frequent 
as N approaches 100. Nevertheless, they do not disappear entirely: The 
(ground) state with the largest capture basin for N = 112 apparently has a 
vanishing moment. These results clearly show that the charge distribu- 
tions of the surface Coulomb configurations have intrinsic regularities that 
persist despite the lack of the congruences or symmetries associated with 
the polyhedra of classical geometry. 

There are systematic variations of the dipole moments that depend on 
the strength of the force acting between the charges. According to Eq. 
(2 .5 ) ,  if the interaction is logarithmic, or “soft,” all locally stable 
configurations have vanishing dipole moments.“ At  the other extreme, 
the “hard” Tammes potential, Ir, - r j ] - n ,  n+m, leads to states with 
sizable moments. Spot checks of some of the Tammes configurations 
found by Kottwitz’s computer searches3’ yield moments larger than unity. 



COMPLEX SYSTEMS 527 

0.01 I-+ +. 1 

Figure 8. Distribution of dipole moments, Eq. (1.2a). This is a graphical summary of 
all the dipole moments listed in column 5 of Table VIII. 

All the available information can be summarized as follows: 

Force Law Size of Dipole Moment Source of Result 

Ir, - rll - ’ 0 analytical identity, Eq. (2.5) 
Ir, - r1IrZ 0-10-* computer trials ( N  5 112) 

Random ( 8 N / 3 ~ ) ’  ’ 2  combinatorial lemma, Eq. (1.2b) 
Jr, - r,l-n , n >> 1 O(1) computer trials ( N  5 90) 

( 4 4  

Obviously, in the range 2 f N < 0(100), there is no tendency for a 
convergence of the dipole moments associated with the logarithmic, 
Coulomb, or Tammes interactions. This diversity suggests the conjecture 
that for large values of N different force laws lead to distinct asymptotic 
distributions of spherical charge networks. Comparisons of trends in the 
Tammes and Coulomb angles (see Section 4.E.1) also support this 
surmise. 



528 T. ERBER AND G. M. HOCKNEY 

B. Distributions of Angles 

Another measure of the regularity of the surface Coulomb configurations 
is the angular diversity ratio introduced in Eq. (1.1). This has a simple 
basis: If r, and r, specify the locations of two charges on the surface 
of a sphere with unit radius, then the set of N ( N  - 1)/2 angles, 1,/11, = 
cos-'(r, -Ti), where I,$, I 180", 1 I i, j 5 N ,  i Z j ,  describes the geometry 
of the charge distribution. The degeneracy of this set is a measure of the 
symmetry of the configuration. For instance, if 5 points are distributed 
arbitrarily over the surface of a sphere, there will generally be 5 x 4 /2  = 

10 distinct angles between pairs of points. However, in the case of the 
surface Coulomb problem, the unique equilibrium arrangement of 5 
charges is a triangular dipyramid-ne charge at the north pole, another 
at the south pole, and the remaining three charges equally spaced around 
the equator. Obviously, only three distinct angles appear between any 
pair of charges in this highly symmetric configuration: 180" occurs once, 
120" occurs three times, and 90" occurs six times. The corresponding 
angular diversity ratio therefore has the low value of 

number of distinct angles 3 
N(N - 1) /2  10 + 100- = 30% (4.3) D , ( N )  = 100 

Similarly, the clustering of the irregular N = 11 and 13 configurations 
around the highly symmetric icosahedron at N = 12 is immediately 
apparent from the D, fluctuations, without the need for any graphical 
comparisons; viz. 

N Da(N) De(N) Id(N)I 

12 4.5% 8.3% 0 (4.4) 
11 36.4% 45.5% 0.0132 

13 37.2% 46.2% 0.0088 

This array shows that all three indices of regularity-the angular diversity 
ratio D,, the energy diversity ratio D, [Eq. (3.16)], and the dipole 
moment (dl-yield consistent results. These correlations also appear in 
the detailed list of values in columns 5, 9 and 10 of Table VIII in 
Appendix B, as well as in the graphical summaries in Figures 9 and 10. In 
particular, the parallel increase of both the angular and energy diversity 
ratios confirms once again the general conjecture that increasing complex- 
ity tends to be associated with decreasing symmetry. For instance, the 
first configuration that is so irregular that all of its vertices are in- 
equivalent (D, = 100%) and most of its edges have different lengths 
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Figure 9. Scatter plot of the angular diversity, Eq. (4.3). Large values of this ratio 
indicate irregular charge configurations; small values are correlated with symmetric 
polyhedra; cf. Table V. The bands at 50 and 95% are the result of statistical preferences 
analogous to those in Figure 7. 

(D, = 99.2%) occurs at N = 35. Figure 9 shows the development of this 
trend in graphical form. At N = 102, 30 out of a total of 54 locally stable 
states have energy and angular diversity ratios in excess of 95%. These 
irregularities are pervasive for N - O(100). 

is also useful for 
comparing the structures of different charge configurations belonging to 
the same value of N .  Since the data in Section 3.B.3 show that the 
energies of all of these locally stable states are very nearly the same- 
within 0.007% for N = 102-it is possible that some of these states also 
have geometrical resemblances. Well-known examples of sets of complex 
configurations with common “backbones” and minor “peripheral” varia- 
tions include the tautomers and conformers of structural chemistry. 
However, every one of the surface Coulomb stztes with nonidentical 
energies appears to have a distinct structure. For instance, at N = 102, 
there are 87 configurations (cf. Table I) each of which is described by a +,, 
set with 5151 angles. Comparisons show that there are 33 sets that occur 

The distribution of values in the sets of angles 
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Figure 10. Correlation of angular diversity and energy diversity. Symmetric configura- 
tions cluster near the origin, D, and D, < 20%; irregular configurations near D, =: D, - 
100%. There is also a statistical cumulation around D, = D, - 50%. The plot indicates that 
D, and Du always yield consistent measures of regularity. 

twice: Each matching pair has the same energy and is geometrically 
related by an improper isometry+vidently these are just the enantio- 
meric configurations. Apart from these degeneracies, there are then a 
total of 87 - 66/2 = 54 different states. Further comparisons of the 
associated angular sets, +!I:, 1 5 k 5 54, show that the maximum fraction 
of coincidences among any pair of these sets is bounded by 9%. 
Computer surveys for all N in the range 5 0 < N ~  112, where multiple 
states become more frequent, indicate that this overlap estimate is 
actually a general result; that is, if V ( N )  denotes the fraction of common 
angles, then 

W,f: " *:,I < 0.09 
v(N) = N(N - 1)/2 - (4.5) 

where k # I, and the set intersections exclude enantiomeric pairs. The low 
value of this overlap ratio shows that it is implausible that configurations 
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with nonidentical energies share any major structural features such as 
common backbones. 

The overlap bound in (4.5) is based on very conservative angle 
matching criteria. When N F 100, the precision of the angular coordinates 
of the individual charges in rare states can decrease to about one part in 
10’. This is degraded further by the computation of the interparticle angle 
sets GL1. Finally, the coarseness of the matching may be relaxed even more 
to ensure that all the enantiomeric states are correctly paired up. 
Consequently, the actual values of the overlap ratios V ( N )  may be 
significantly smaller than the bound shown in (4.5). For example, at 
N = 84, all 16 states with distinct energies are sufficiently irregular so that 
the positioning conventions of Section 2.B yield unique orientations. 
Under these circumstances, the charge coordinates of all of these states- 
which are known to seven figures, (2.9c)--can be compared directly. 
Extensive spot checks have failed to turn up even one matching charge 
position, apart from the common fixed point at the north pole. It seems, 
therefore, that the exponential increase in the number of states for larger 
values of N (>50) is accompanied by a tremendous proliferation of 
distinct geometric structures. 

C. Coulomb Polyhedra: Regular Configurations 

The coexistence of order and disorder in the geometric structure of the 
surface Coulomb states is illustrated in Figure 11. This diagram shows 
the equilibrium configuration of 19 charges on the surface of a sphere. 
The apparent symmetry of this arrangement is highlighted by the 
auxiliary polyhedron whose vertices coincide with the charge positions. 
The faces and edges of this polyhedron can be constructed with the help 
of some computer graphics: Given N (>3) points on the surface of the 
sphere, the set of all combinations of 3 points determines a maximum of 
N(N - 1)(N - 2)/6 planes. Associated with each plane and triple of 
points-located by the unit vectors r,, j = a ,  p, y-is another vector r, 
extending from the center of the sphere to the plane and perpendicular to 
it. Since the plane and sphere intersect in a circle (Cap,) all the scalar 
products rr .  rl are equal. Suppose now that rk ranges over the positions 
of all the charges not included in the r, triplet-that is, the set {rt}ybo, 
r p ,  r,-and furthermore that rk . rc 5 r, . r,; then the plane containing the 
charges a ,  p, y is a face of the polyhedron. Geometrically, this inequality 
simply means that the spherical cap bounded by CmPr contains no other 
charges. In cases where two or more charge triplets determine coincident 
planes, the associated polyhedron face is bounded by four or more 
vertices. Figure 11 includes an example of this situation. The end result of 
this construction is that the Coulomb polyhedron for N = 19 has a total of 
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Figure 11. Surface Coulomb configuration for N = 19. The symmetry of this arrange- 
ment is partly illusory. The 50 edges are composed of 10 groups of 4 congruent edges and 5 
groups of 2 congruent edges. The polygonal faces are too irregular to tit into the standard 
scheme of polyhedra.".'* 

33 faces. The corresponding number of edges (e)  then follows from 
Euler's formula 

N + f - 2 = e  

or (4.6) 

19 + 33 - 2 = 50 

Column 11 of Table VIII in Appendix B lists the number of faces (f) of 
the Coulomb polyhedra for all configurations in the range 4 5 N 5 112. 

The symmetries of the Coulomb polyhedron in Figure 11 are reflected 
in the low values of the energy diversity, D, =& -36.8% [Eq. (3.16)], 
and the angular diversity, D, = 2 30.4% [Eq. (4.3)]. In particular- 
apart from the charge at the north pole with the least partial energy-all 
the other 18 charges occur in pairs: each partner with the same partial 
energy and latitude, but the two charges differing by 180" in longitude. 
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This symmetric pattern has a small but nonvanishing dipole moment, 
ld(19)I = 0.000 135, pointing toward the north pole. The contrasting 
irregular features of this polyhedron arise from a lack of congruence 
among the edge lengths. No more than four edges have equal lengths. In 
fact, the 50 edges are composed of 10 groups of 4 congruent edges and 5 
groups of 2 congruent edges. Consequently, the polygonal faces in Figure 
11 are too irregular to fit into the standard set of nonuniform 
 polyhedra."^'* 

A useful measure of the degree of congruence in the Coulomb 
polyhedra is the ratio of the number of distinct edge lengths to the total 
number of edges. Since the edge lengths are determined by the central 
angles between the corresponding vertices, this congruence measure is 
equivalent to a nearest neighbor angular diversity ratio analogous to (4.3), 
viz. 

number of distinct edge lengths (&) 
D,""(N) = 100 total number of edges (e) (4.7) 

Whereas the angular diversity D, is a global index of the variety of all 
possible angles between charges, 0,"" is a strictly local measure that takes 
into account only the diversity of angles between adjacent charges. In the 
case of the N = 19 polyhedron, both the local and global measures of 
regularity yield nearly the same result 

D,""( 19) 100 x ?& = 30.0% - 30.4% = 100 x + = D,( 19) (4.8) 

Computer surveys of all the other Coulomb polyhedra with N vertices in 
the range 4 < N <  112 show a similar equivalence. If this trend extends 
beyond N - 112, it would simplify the identification of regular charge 
patterns: estimates of D,:"(N) for N >> 1 require at most the comparison 
of 3N nearest neighbor angles. 

Although the dominant geometric trend of the Coulomb states is one 
of increasing irregularity for larger values of N ,  the sporadic appearance 
of small percentages among the diversity ratios listed in columns 9 and 10 
of Table VIII shows that some ordered patterns persist up to the limits of 
the computer explorations. The distribution of these special states is 
indicated graphically by the set of points in the 0-20% bands in Figures 7 
and 9. Quantitative information concerning the most regular configura- 
tions is summarized in Table V on p. 525. For reference, the entries in the 
first line recapitulate the data for the icosahedron ( N  = 12)-the largest 
Platonic solid whose vertices coincide with the solutions of the logarith- 
mic, Coulomb, and Tammes problems. Comparisons with the indices for 
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N = 16, 24, 32 and 72 show that these new polyhedra are also highly 
symmetric. The two N = 16 configurations are depicted in Figures l(a)- 
l(d): They illustrate the interesting point that the lowest energy state is 
not necessarily the most symmetric. Table VIII shows that this situation 
recurs at several other values of N ;  for example, the most symmetric 
N = 82 pattern is ranked eighth in order of increasing energy and has an 
extremely low probability of occurrence. The N = 24 Coulomb poly- 
hedron resembles the snub cube, one of the semiregular Archimedean 
solids. However, the Coulomb interactions distort the symmetry of the 
classical polyhedron: Whereas the snub cube has 32 triangular and 6 
square faces, all with equal edges, the faces of the Coulomb polyhedron 
include 24 scalene triangles:“ The N = 32 situation corresponds to the 
“near miss” of the pentakis dodecahedron discussed previously in 
connection with Eq. (4.1). In this case the Coulomb polyhedron is 
slightly more symmetric than its classical counterpart. The lowest energy 
Coulomb state for N = 72 is also conspicuously symmetric. All faces of 
this polyhedron are triangular. There is no resemblance to the aspherical 
N = 72 “fullerene” cage containing 12 pentagons and 26 hexagons.68 
N = 122, 132 may also be regular.69 

The entries in Table V do not continue beyond N = 72 because the 
more complex symmetric polyhedra contain at least 11 different nearest 
neighbor angles. Nevertheless, the ordered patterns stand out clearly 
among the increasing variety of irregular polyhedra. For example, at 
N = 112, there are at least 60 locally stable states with distinct energies. 
The first, second, and tenth levels are clearly different because their 
nearest neighbor ratios 0,“” [Eq. (4.7)] are 10.5, 8.2, and 24.1%, 
respectively; all the other states have angular diversities exceeding 45%. 
The marked regularity of the second level is also apparent from the small 
number of partial charge energies-equivalent to 10 types of polyhedron 
vertices-and the symmetric grouping of the 330 nearest neighbor angles: 
These occur in 26 sets of 12 equal angles, and a residual set of 18 angles, 
also all alike. Unraveling the complex order of these large polyhedra is a 
challenging problem in “physical” geometry. 

D. Enantiomorphic Configurations 

A set of points on the sphere may be transformed by isornetries or 
congruence mappings that preserve the distances between all pairs of 
points. All isometries, in turn, can be built up from three basic types of 
 transformation^.^' (i) rotations about an axis, (ii) mirror reflections in a 
plane, and (iii) parallel displacements of all points. If the mappings are 
restricted to a fixed sphere, parallel displacements play no role, and the 
congruence transformations reduce to proper isometries or (rigid body) 
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rotations and rotatory repections composed of a reflection and a rotation 
whose axis is perpendicular to the mirror.'3271 Central inversions, in which 
the coordinates of all points are reflected in the origin of the sphere, that 
is, r+ -r, are special cases of rotatory reflections in which the rotation is 
a half-turn. 

If a pattern @, of identical charges on the surface of a sphere is 
sufficiently irregular-though not necessarily random-then the only 
isometric mapping, I: @, + Cr, that yields a final configuration Cr identi- 
cal to the initial state is the identity transformation. In contrast. highly 
symmetric configurations such as the icosahedron are invariant under a 
great variety of isometric transformations, for example, the composite 
group A ,  X CL.I4 The set of solutions of the surface Coulomb, logarith- 
mic, and Tammes problems interpolates between these two extremes: In 
all three cases larger values of N are associated with less symmetric point 

However, as emphasized in connection with the dipole groups. 
moments in Section 4.A, even Coulomb states whose only isometric 
symmetry is the identity transformation have ordered structures. 

When N 2 50, the surface Coulomb states tend to cluster in pairs, each 
with the same sequence of partial energies, equal total energy, and nearly 
equal probability of occurrence. Suppose that C L ( N )  and C R ( N )  denote 
such a pair of states. Since the orientation conventions established in 
Section 2.B automatically include rotational degeneracies, it remains to 
check whether these states are related by an improper isometry. In 
practice, this mirror symmetry can be verified by picking a state, say 
CL(N), and reflecting it in an arbitrary plane through the center of the 
sphere. The resulting configuration is then rotated so that the charge with 
the lowest partial energy is positioned at the north pole, 8 = 4 = 0, and 
the charge with the next lowest partial energy is at zero longitude, 8 = 0. 
If all the partial energies are different, this orientation is unique, and the 
final configuration will coincide with CR(N). In case there is a degeneracy 
in the partial energies, some auxiliary comparisons may be required. 

The distinctions between proper and improper isometries can be 
illustrated with two simple examples: Figure l (b)  is a plan view of the 
symmetric four-ring structure of the N = 16 metastable Coulomb solution, 
@,(16). Obviously, this pattern is invariant under 90" rotations and 
reflections-if the rings are copied on a transparency, and the trans- 
parency is flipped over, the reversed image will coincide with the original 
pattern. This symmetry is broken by the greater complexity of the two 
N =  16 ground states. If Figure l(d) is copied, the image on the flipped 
transparency cannot be rotated into coincidence with the original pattern, 
but it will match the other ground-state configuration. In general, any 
configuration that cannot be brought into coincidence with its mirror 

16,30,41,42 
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image by rotations is chiral or enantiomorphic. Hence the familiar 
example of right (R) and left (L) handedness suggests the notation 
Cy(16) and Ck(16) for the two N =  16 chiral ground states. But for 
arbitrary patterns-in fact , even the simple perspective view in Figure 
l(c)-there are no obvious pictorial cues of handedness, or a “screw 
sense,” and chirality has to be checked by other means such as exhaustive 
computer  comparison^.'^ 

The asterisks in column 3 of Table VIII mark the enantiomeric states 
of the surface Coulomb problem. Comparisons show that N = 15 is the 
common threshold for the appearance of chiral configurations in the 
surface Coulomb, logarithmic, and Tammes  problem^.^^"^'^^ Further- 
more, in the range 1 5 r N s 6 5 ,  the ground states of the logarithmic 
potential are chiral if and only if the ground states of the associated 
surface Coulomb problem are chiral.16 However, the results for N = 15, 
16, 19, 21, and so forth show that there is no such one-to-one corre- 
spondence between the ground states of the surface Coulomb and 
Tammes  problem^.^' 

There are interesting connections between chirality, “chaos,” symme- 
try breaking, and cryptography in the surface Coulomb problem. Let 
M[@Ea,(15)]-t CY(15) represent the mapping of a randomly chosen 
initial state of 15 charges, CEan( 1 9 ,  to one of the pair of chiral ground 
states, CF(15) by means of an energy minimizing algorithm M .  Suppose 
further that the initial configuration is sufficiently irregular so that it can 
be verified that CEan(15) is indeed a chiral state with a mirror image 
Ckan(15). Then it can be shown that the minimizing algorithm of Section 
2.B, as implemented on a computer, preserves chirality. (An analytic 
analogue is discussed in Ref. 73.) This leads to an array of parallel 
mappings that can be extended to include many initial states: 

Strings of (pseudo) random 
numbers 

1 1 
Sets of (pseudo) random 

initial states 

Locally stable energy minima: 
terminal states 

(4.9) 

This diagram shows that the net effect of the chirality preserving map M 
is to transfer the L and R labels from the ground states up to the level of 
the random initial states, and to split these into two corresponding subsets 
{a=:,,( 15)} and 15)}. Since the initial configurations are on the 
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average distributed uniformly over the surface of the sphere, it is 
plausible that slight changes in the angular coordinates of the charges in 
any particular state C",,,( 15) can transform it into a Ckan( 15) state, and 
vice versa. Consequently the end result of an energy minimization can be 
sensitively affected by slight perturbations of the initial conditions: This 
mix of randomized states and unstable evolution is a basic characteristic 
of "chaotic"  dynamic^.'^ 

Chiral symmetry breaking can occur in a variety of ways. For instance, 
varying the index n in the power law Ir, - r,l-n can induce transitions 
between chiral and nonchiral states. The simplest illustration is provided 
by N = 16. In this case the ultrarepulsive Tammes potential )r - r,l-n, 
n + x, can be approximated by choosing n = 1 310 720."'10 Both 
geometrical  argument^'^ and computer trials then show that the N = 16 
Tammes solution is a symmetric four-ring structure closely resembling the 
pattern in Figures l(a) and l(b). (The latitudes of the rings are 3113.632" 
and L51.490" in the Tammes case, and 211.342" and 251.684" in the 
Coulomb case.) But the lowest energy solution for the surface Coulomb 
problem is quite different: It is split into a pair of chiral states one of 
which is shown in Figures l(c) and l(d).  Evidently then, as the potential 
index n decreases from 1310720 to 1, there must be at least one 
threshold where chiral states appear. 

The chiral L and R indices are equivalent to a binary alphabet. In 
principle, therefore, it is possible to construct any desired string or 
"message" with an appropriate series of @p( 15) and Cb( 15) configura- 
tions. But as (4.9) shows, each ground-state configuration can be 
enciphered in an enormous number of ways by the mappings 
M[{CF~( l5)}]+  Cp."(l5). For instance, on a double precision com- 
puter, the number of initial states with a particular chirality can easily 
exceed 10". The element of ambiguity or concealment than lies in the 
assignment of a specific L or R label to any one of these random initial 
states. Although it is easy to verify that a particular state is chiral, the 
spatial arrangement of charges is usually too complex to exhibit an 
obvious handedness-it is necessary to go through an explicit energy 
minimizing sequence leading to either Cp(15) or Cb(1.5) in order to 
identify whether an initial state is L or R. 

The strings of random numbers in the top line of (4.9) refer to the 
angular positions of the charges in the initial configurations. In particular, 
if the latitudes and longitudes of the charges are specified to an accuracy 
of 12 decimals, then the configurations 15) can be represented by 
strings of 15 x 2 X 12 nominally random digits, {d,}:6", d, = 0, 1, . . . , 9 .  
The security of this "chiral-energy" encipherment therefore relies both on 
the algorithmic complexity of the mapping M and the tremendous 
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redundancy of the correspondence 

@~s”,(15)++{dj}~60-+R or L (4.10) 

In analogy with other schemes involving “trap-door” or “one-way” 
functions:6 Eq. (4.10) is hard to invert because the reversion is a set- 
valued function that associates an entire set with a particular input .77 

In practice, the charge coordinates of the initial configurations are 
derived from deterministic pseudorandom number generators. The com- 
plete sequence of the chiral-energy encipherment is therefore a combina- 
tion of (4.9) and (4.10), that is, 

Pseudorandom 
number generator- {dj}:60 - @;s”,(lS): M[CE2(15)]+ @:-“(15) 

+ R o r L  (4.11) 

Since the number generators can be programmed to produce any 
sequence, Eq. (4.11) is a slow but feasible means of encipherment. 

The concealed propagation of order through pseudorandom numbers 
and geometric complexity also adds a novel twist to the problem of chiral 
bias. This concerns the observation that naturally occurring proteins are 
almost exclusively composed of chiral amino acids of the L ~ariety. ’~’’~ 
Although these compounds are far more complex than the surface 
Coulomb states, the basic production mechanisms are presumed to be 
similar in both cases: The underlying idealization is that a uniform 
statistical mix of initial states evolves toward equilibrium in a symmetric 
pair of potential wells whose minima correspond to states of opposite 
chirality. Since processes of this kind always lead to a racemic mix of final 
states, the observed “handedness” of the biosphere is usually attributed 
to a critical fluctuation (“spontaneous” symmetry breaking) or a fun- 
damental chiral force (e.g., 0 decay) that introduces an asymmetry in the 
potential  well^.'^^'^ Equation (4.11) indicates still another possibility: The 
final chirality is actually predetermined by a set of algorithmic instructions 
at a nongeometric level. It is certainly feasible to generate long strings of 
pseudorandom numbers that will consistently produce L-handed initial 
 configuration^.^^ The appearance of a geometrically unbiased mix of 
initial states is therefore an illusion-the L die has already been cast 
before the game begins. 

The binary code of chirality disappears when (4.11) is rewritten for 14 
charges. The essential difference in this case is that the ground state is not 
enantiomorphic even though the pseudorandom initial configurations may 
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be chiral, that is, 

Pseudorandom 
number generator- {d,}:36 * @ ~ g ~ ( 1 4 ) :  M[C:k(14)]+ c,( 14) 

(4.12) 

The transition from (4.12) to (4.11) illustrates another threshold of 
structural complexity. When there are 15 charges represented by 30 
blocks of 12 digit numbers-as in Eq. (4.10)--each string of 360 digits 
specifies a unique dichotomic variable, an L or an R. However, if the 
strings are parsed differently-as in Eq. (4.12)-they are too simple to 
generate the chiral alphabet. By this means the threshold of a geometric 
property is expressed as a minimum complexity requirement for a coding 
algorithm. 

E. Influence of Force Laws on Charge Distributions 

E. l .  Coulomb Angles and Tammes Angles 

The Tammes problem is equivalent to finding the largest angular 
diameter O,(N) of N congruent caps that can be packed on the surface of 
a sphere without ~verlapping.”-’~ Column 7 of Table VIII lists the 
optimum values of O,(N) obtained by Kottwitz3’ and Tarnai7* for 
3 I N  I 100. Clearly, O,(N) is a (not strictly) decreasing function of N ,  
with an asymptotic dependence @,(A’) = (8.rr/31/2N)”2, for N >> 1. 
There is an analogous angle for the surface Coulomb problem O,(N) 
determined by the minimum angular separation between neighboring 
charges in a locally stable c~nf igura t ion .~~ Several examples are contained 
in column 7 of Table V: O,(16) = 48.9362”, O,(24) = 42.0653”, 0,(32) = 
37.3773”, and so forth. A comprehensive survey is given in column 6 of 
Table VIII. Since the optimization in the surface Coulomb problem is 
carried out with respect to total energy rather than nearest neighbor 
separations, the two sets of angles are related by O,(N) > O,(N) when 
N > 6 ,  N #  12. O , ( N )  is a nonmonotonic but generally decreasing 
function of N with an asymptotic estimate resembling the Tammes result; 
O,(N) - (4n-/N)’”, for N >> 1. If this estimate were accurate to leading 
order in N ,  then the relative difference between the two sets of angles 
would approach a constant value for large N, 

[O,(N) - O,(N)]/@,(N)-+ 1 - 31’4/2”2 - 0.07 N>>1 (4.13) 

Figure 12 shows this relative difference in graphical form when a,@” is 
averaged over all locally stable states belonging to a given value of N .  
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Figure 12. Comparison of Coulomb and Tammes angles. @,(A’) is the optimum 
angular diameter of a spherical cap in the Tammes packing problem. @,(A‘) is the minimum 
angular separation between adjacent charges in the spherical Coulomb problem. The graph 
shows the relative difference between the two sets of angles, Eq. (4.13). 

Despite the prominent fluctuations, the overall trend is roughly consistent 
with (4.13). 

The basic purpose of these comparisons is to see whether the 
configurations of points have some kind of asymptotic regularity for large 
values of N that is insensitive to the precise nature of the underlying 
interactions. If the trends in Figure 12 can be extrapolated beyond 
N - 112, then it would be an indication that the local equilibrium states of 
the Coulomb law lr, - r,I -* and the Tammes interaction (r, - r,I 
retain a distinct character even for arbitrarily large values of N .  

- I  310720 

E.2. The Largest “Hole” Angle 

A useful complement to the Coulomb angle O,(N), which measures the 
minimum separation between charges, is the hole angle O,(N), which is 
the angular diameter of the largest spherical cap containing no charges in 
its interior. The set of these empty regions was obtained previously in 
Section 4.C as an aid in the construction of the Coulomb polyhedra. 
Column 8 of Table VIII lists approximate values of the hole angle O,(N) 
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for all surface Coulomb configurations in the range 4 % N s r  112. As 
expected, for regular configurations such as the icosahedron the ratio of 
the hole and Coulomb angles is close to 1-@H(12)/@c(12) = 1.18-but 
shows a larger disparity for irregular states-0,(13)/@,(13) = 1.34. For 
larger values of N ,  the minimum ratio (1.10) occurs at N =  44, and the 
maximum ratio (1.32) at N = 92. There is no evidence for conspicuous 
empty regions that may be analogues of the interstices in complex 
molecules. 

In the Tammes problem, the densest packing of congruent caps on a 
sphere does not necessarily lead to rigid configurations. In fact, Kottwitz’s 
solutions show a slowly increasing trend in the number of caps free to 
“rattle” for larger values of N.3” These partially empty regions can also be 
characterized by a set of hole angles. Specifically, if a Tammes configura- 
tion is represented by the center points of a set of caps, the corresponding 
minimum hole angle i,bH(N) is the angular diameter 
circular region that does not contain any of these points 
is easy to show that 

of the smallest 
in its interior. It 

(4.14) 

where @,(N) is the standard Tammes angle (Sec. E . l ) .  Numerical 
comparisons of the Coulomb and Tammes hole angles for the respective 
ground states lead to the inequality @,(PI) > YIH(N)  for 12 < N 5 90. If 
this relation were valid for all N > 12, it would indicate still another 
optimum property of the Tammes configurations. 

E.3. Edges and Faces of Coulomb Polyhedra 

The conjecture that the surface Coulomb and Tammes configurations 
remain distinct for large values of N is also supported by the statistical 
behavior of the number of faces and edges of the associated polyhedra. 
As in Section 4.C, let e andf denote the total number of edges and faces 
of a convex polyhedron whose N vertices coincide with the charge 
positions. Then if ( q ( N ) )  is the average number of edges that meet at a 
vertex, Euler’s theorem (4.6) shows that 

2e 
(4.15) 

In the special case that all the faces of a polyhedron are triangular, 
3f= 2e, and (4.6) implies 

f = 2 ( N - 2 )  and e = 3 ( N - 2 )  (4.16a) 
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TABLE VI 
Values of the EdgelVertex Ratio ( q ( N ) )  for the Coulomb and Tammes Polyhedra 

N 12 32 71 72 109 112 

Surface Coulomb” 5 5.625 5.775 5.833 5.853 5.893 
Triangular tessellationb 5 5.625 5.831 5.833 5.890 5.893 
Tammes‘ 5 4.125 3.887 4.083 - 54.9988‘ 

* Equation (4.15) and Table VIII. 
Equation (4.16b). 
Ref. 30. 
Equation (4.17). 

These relations yield the sharper constraint 

(4.16b) 

Table VI displays the trends in the numerical values of the “edge /vertex” 
ratio ( 7 ( N ) )  for the ground states of the surface Coulomb and Tammes 
problems. The middle row of the table lists the corresponding values for 
polyhedra whose faces consist solely of triangles. 

Obviously, for large values of N ,  most of the Coulomb polyhedra have 
triangular faces. However, the “hard” Tammes potential (--lri - 
rjl-l 310 720) can generate more complex polyhedra because of inherent 
geometric constraints. Specifically, since in any packing of congruent caps 
on the surface of a sphere any cap can have at most 5 neighbors, Eq. 
(4.16b) and Table VI show that the icosahedron is the only figure with a 
triangular covering whose associated caps have the maximum possible 
mutual contact.29 For N >> 12, the edge/vertex ratios of the Coulomb 
polyhedra tend toward the triangular limit (4.16b), that is, (77)tri+6; 
whereas the Tammes ratios cannot exceed 5. In fact a rigorous sharper 
bound is available: 

There is an ro > 0 such that for any packing of congruent 
caps of radius r 5 r,, on the sphere of unit radius, the average number 
of neighbors of the caps in the packing is at most 

-- -4.99881. . 
4204 
84 1 (4.17) 

Further trials suggest that for any congruent cap packing on the sphere- 
not necessarily the densest packing-the maximum possible value of 
( T ( N +  a)) is 4.4.79 
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E.4 .  Minimal Properties of Coulomb Energies 

The computer results for N = 112 illustrate three general trends in the 
distributions of the Coulomb states: (i) For every N >> 1 there are many 
locally stable states-at least 60 for N = 112. (ii) These states are nearly 
degenerate in energy-for N =  112, Eq. (3.11) shows that the relative 
energy spacings are (iii) And, finally, angular comparisons 
indicate that the geometrical configurations of all of these states are quite 
different. These features impose interesting constraints on the energy 
“landscapes” of the Coulomb states. The data in Table I1 and Figure 3 
show that the average value of the energy E for arbitrary choices of the 
angles . . . , ff?y; O , ,  . . . , O N  in Eq. (3.5) is - N 2 / 2 .  In other words, 
most of the energy surface lies in the highlands. Furthermore, it is 
obvious, since the number of arbitrary (initial) states is far larger than the 
number of terminal equilibrium states, that these highlands surround a 
few valleys whose lowest points lie at a depth -0.55N3’2 below the 
average height of the landscape; cf. Eq. (3.8). What is not at all obvious 
is that according to (ii) all of the valley bottoms are situated at nearly the 
same depth, even though (iii) indicates that these minima are widely 
dispersed over the landscape. The essential implication is that the energy 
surface is bounded from below by a single hyperplane that is effectively 
tangent to every local minimum. This hyperplane is also tangent to every 
rigid Tammes configuration in the range 2 9 N I 87. Specifically, if @,(N) 
denotes the optimum Tammes solution for N points; and each point is 
assigned a unit charge, Eqs. (2.1) and (3.5) can be used to compute a 
Coulomb energy E,,(N) for this configuration. Table VII shows some 
representative comparisons of the ground-state Coulomb energies El ( N )  
and Coulomb-Tammes energies E,,(N) for various values of N .  

Since the Coulomb problem yields the minimum energy for the lrl - 
r, 1 potential, whereas the Tammes problem optimizes interparticle 
distances, it is evident that E,,(N) > E , ( N ) ,  except for N = 2 - 6,  12. But 
there is no a priori reason for the pervasive near equality E,,(N)= 
E , ( N )  displayed in Table VII. In fact, significant differences might be 
expected to arise from the tremendous disparity between the effective 

and the Coulomb law, as well as the Tammes potential, ITr - r,I 
general lack of resemblance of the Tammes and Coulomb equilibrium 
configurations. For instance, in the simplest case N = 7, the surface 
Coulomb distribution consists of five points spaced equally around the 
equator, with the remaining two points at the poles (pentagonal 
dipyramid), while the points of the Tammes solution are given by the 
vertices of an equilateral triangle at 43.476 677” south latitude, another 
equilateral triangle, rotated by 60°, at 12.130 450” north latitude, and the 

- 1  310 720 
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TABLE VII 
Comparisons of Ground-State Coulomb Energies E ,  ( N )  and Coulomb-Tammes Energies 

E C T ( N )  

N 

2-6 
7 
8 

12 
13 
16 
32 
78 
79 
80 
84 
87 

- 

14.452 977 
19.675 288 
49.165 253 
58.853 231 
92.911 655 

412.261 274 
2662.046 474 
2733.248 357 
2805.355 876 
3103.465 124 
3337.000 750 

- 

14.461 864 
19.725 173 

58.909 592 
92.951 183 

412.376 77" 

- 

2662.677 
2734.540 
2805.908 
3 104.142 
3337.978 

[El - ECTI/&-r 
0 

6.15 x 
2.53 x 1 0 - ~  

0 
9.57 x 1 0 - ~  
4.25 x 
2.80 x 

1.97 x 
2.18 x 
2.93 x 1 0 - ~  

2.37 x lo-' 
4.72 X lo-' 

" Values for N 2 32 from Ref. 30 

remaining point at the north pole. Computer trials also confirm that if the 
N = 7 Tammes solution is chosen as the initial configuration of a surface 
Coulomb minimization, the algorithm of Section 2.B will eventually 
converge to the pentagonal dipyramid solution. Despite these qualitative 
distinctions, the Coulomb energies associated with these two configura- 
tions differ by less than 0.062%. 

Although these insensitive energy variations may be accidental, they 
are certainly not isolated accidents. Extensive numerical evidence from 
the analysis of magnetic cooperative and computer simula- 
tions of vortex arrays" also yield examples of complex systems with a 
variety of metastable states all of which are very nearly degenerate in 
energy. The most prominent example of this type is the electrostatic 
interaction energy of ionic crystals. Madelung, in his initial computa- 
tions!' already emphasized the severe requirements of accuracy necessary 
for discriminating between different kinds of lattices. A canonical 
example is the 0.857% difference in Madelung constants between the 
sodium chloride and cesium chloride structures.'* After a long series of 
evolutionary developments, a useful description of these structures is 
finally available; but this requires a quantum mechanical density func- 
tional formalism and implementation on "supercomputers" .833'4 Even 
these sophisticated methods have not resolved the inverse problem: 
Given a complex gradient system, what are the characteristics of the 
configurations that are nearly degenerate in energy with the ground state? 
Or,  more informally, why is it that the energy surfaces of some complex 
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gradient systems have multiple valley bottoms with very little height 
variation? 

5. CONJECTURES CONCERNING THE STABLE EQUILIBRIUM 
CONFIGURATIONS OF COMPLEX GRADIENT SYSTEMS 

The locally stable equilibrium states of the surface Coulomb problem 
share many of the characteristics of planar magnetic dipole configura- 
t i o n ~ . ~ ~ , ~ ~  Similar trends are exhibited by other systems such as arrays of 
vortex pattern;s0’x5 the jellium model, or its equivalent, the three-dimen- 
sional spherical Coulomb problem; and sets of floating magnets inter- 
acting with an external magnetic field.“ These common features suggest 
several general conjectures concerning the locally stable states of complex 
gradient systems.” 

In the simplest cases, when there are only a few identical interacting 
objects, general arguments of balance and symmetry show that the 
equilibrium configurations are regular polygons or polyhedra whose form 
is essentially independent of the detailed nature of the forces.” The 
underlying assumption is that the potential energy of these systems can be 
derived from the superposition of identical pairwise interactions. Al- 
though these results agree with observations, the steps from arguments or 
conjectures to rigorous assertions are incomplete even for the smallest 
gradient systems consisting of only three to six objects. Analytical 
methods involve tedious computations, 10,32.55,88,89 and topological esti- 
mates of the number of critical points, including stable equilibria, are just 
being devel~ped.’~ 

For the spherical charge systems, the influence of the force laws 
becomes dominant in the transition from six to seven objects. Specifically, 
when N 5 6 ,  all of the force laws, ranging from the soft logarithmic 
interaction to the hard Tammes potential, generate identical equilibrium 
patterns; whereas for N 2 7 (f 12,32), all of the ground states appear to 
be markedly different.43 This sensitivity to the form of the interactions 
also appears in magnetic arrays: As the number of interacting objects 
increases, the organization of the domain structures shifts from the 
control of the strong dipole interactions to the weaker octupole forces.26 
It is plausible to conjecture that this sensitivity is a general attribute of 
cooperative gradient systems when all of the N(N - 1)/2 interparticle 
forces are taken into account. A more complicated analogue is the folding 
of protein molecules under the influence of nominally weak secondary 
and tertiary f o r ~ e s . ~ ~ , ~ ~ , ~ ’  

The diminishing importance of strict geometric symmetry as an 
organizing principle in complex systems is also illustrated in a different 

10 
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but related problem concerning the positions of N points in a unit square 
arranged so that the minimum distance d, between any pair is as large as 
possible. Evidently, this is a two-dimensional version of the Tammes 
problem in which a set of N congruent circles with diameter d, is packed 
into a square with side 1 + d,. The successive panels in Figure 13, taken 
from Ref. 28, show that beginning at N = 10, the optimum configurations 
in this problem also tend to be asymmetric. Clearly, this trend parallels 
the evolution of the surface Coulomb states, where for increasing values 
of N ,  computer graphics and other indices such as the dipole moments 
(1.2a), and energy and angular diversity ratios (3.16), (4.3), (4.7),  show 
that the equilibrium configurations became more irregular. When N > 12, 
there is no overlap with any of the 123 convex regular p~lyhedra,'~'' '  and 
indeed many states are so disordered that their only invariant isometry is 
the identity transformation. Since this progression from "broken" sym- 

fi= 1.414 ... G-fi= 1.035 ... 1 G I 2  = 0.707.. yi -:a:- ri -. - .  1-1 .. . .  1-1 
?--------- --.--..- .. . : .- -. 

*.. .:.r------- -. .. .-? : - t. . .  
-. 

. . . .  
- .  .- .- 

. . .  . . .  . . *  
nx- ....... ...... .' . *  . *  . .  .. -.. 

.- .. 
*: ..- -. '. -.. 

~%?/6=0.601 ... 2 ( 2 - G ) = 0 . 5 3 6  ... ( ~ ? - c ) 1 2  =0.518 ... 0.5 

.... 

0.42127 ... 0.398 ... m i 1 5  = 0.389 ... (0- 1112 = 0.366 ... 
(Schluter) (Goldberg) (Schluter) 

Positions of N points in a unit square arranged so that the minimum distance 
between any pair is as large as possible. The configurations for N 5 9 are known to be 
optimal. This diagram is reproduced from Ref. 28 with permission of Springer Verlag. See 
also Ref. 92. 

Figure 13. 
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metries to “fragmented” symmetries appears in other N-body problems, 
it may be a general attribute of many complex systems. Nevertheless, it 
still remains unclear what characteristics distinguish force laws that lead 
to complicated equilibrium states from those that generate extended 
regular lattices. 

As emphasized in Ref. 91, diversity is a prerequisite for complexity: In 
general, complex systems should exhibit many significantly different 
states. A typical chemical illustration of the proliferation due to simple 
combinatorics is the estimate that “C167H336 is the smallest alkane with 
more realizable isomers than the observed universe has ‘particles’ 

Similar arguments can be applied to sets of coupled nonlinear 
oscillators to determine their maximum configurational entropy (3.4). 
The results support the general surmise that the number of local minima 
of the energy landscapes of N-body cooperative systems increases at an 
exponential rate with N.57,94 Direct confirmation of these trends is 
displayed in Figure 2. The magnetic data are derived from extensive 
experimental observations of the stable configurations of planar dipole 
arrays: The graph showing the increase in the number of surface 
Coulomb states is based on the summary of computer results given in 
Tables I and VIII. In the currently accessible ranges of N, the evidence 
for exponential growth is consistent and convincing. 

Angular comparisons among the sets of surface Coulomb configura- 
tions for fixed values of N (>> 1) show very little overlap (4.5). This is a 
counter-example to the presumption that the structural properties associ- 
ated with different local minima are fairly similar;36 but is in accord with 
the general diversity conjecture which asserts that complex systems 
should appear in many significantZy different states. This diversity is also 
connected with the irregularity of configurations and their sensitive 
dependence on the nature of the underlying interactions. If, for instance, 
contrary to the observations, the surface Coulomb configurations were all 
in the form of regular polyhedra, then there could not be any more than 
123 different equilibrium states.” Analogous constraints of symmetry 
limit the total number of possible crystallographic space groups to 230 
distinct types.13 In this obvious sense, significant diversity is not compat- 
ible with symmetry. 

For large values of N ,  it is possible that the trend toward increasing 
diversity eventually merges into a statistically regular sequence of pat- 
terns that is effectively insensitive to the details of the interparticle forces. 
However, all the available evidence from the spherical charge systems 
points in the opposite direction. The stable configurations can be 
characterized by their dipole moments, or centers of charge [cf. (1.2a) 
and Fig. 81; the nearest neighbor angles (4.7); and the average number of 

- 1080. ,393 

56 
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edges that meet at the vertices of the associated polyhedra (4.15). 
Comparisons of these indices for the ‘soft’ logarithmic interaction, the 
Coulomb law, and the ‘hard’ Tammes repulsion, given in Eq. (4.2), 
Figure 12, and Table VI, show that they are all different. Moreover, in 
the range N up to 0(100), there is no indication of any trend toward 
confluence. Of course, it remains an open question whether there are any 
qualitative changes for still larger values of N .  

Planar magnetic dipole arrays exhibit a different type of structural 
stability. Experimental observations and computer checks show that the 
domain patterns generated by pivoted dipoles are insensitive to variations 
of the individual magnetic moments and perturbations of the underlying 
lattices. The net result is that the domain structures are robust under 
changes of scale, but vulnerable to qualitative shifts in the strength of 
multipolarities.26 These examples indicate that various levels of structural 
stability and instability can coexist in complex systems. 

This duality also appears in the mingling of order and disorder in 
complex systems. For instance, most of the surface Coulomb configura- 
tions seem to be highly irregular, but their small dipole moments (4.2), 
and the band structures in Figures 7 and 9, clearly show that the charge 
distributions are far from random. The most striking element of order is 
the uniformity of the energies displayed in Table 111. These correlations 
imply that the corresponding Coulomb energy landscapes are bounded 
from below by a single hyperplane that is effectively tangent to every 
local minimum (cf. Section 4.E.4 and Ref. 95). Table VII shows that this 
same “flat bottom” underlies the Tammes landscapes when the energy 
minima of the Iri - r,I interactions are rescaled to the Coulomb 
values. Furthermore, the occurrence of “ r a t t l e r s ” 4 r  nonrigid configura- 
tions-in more complex Tammes solutions indicates that the associated 
minima actually lie in flat valley bottoms that are nearly tangent to this 
bounding plane.30 Similar uniformities of the energy minima occur in 
magnetic arrays even though the corresponding domain patterns are quite 
distinct. All of these observations run counter to the expectation that the 
energy landscapes of complex systems have a random-possibly Gaus- 
sian-distribution of local minima as a function of “altitude.”” But this 
does not necessarily imply a contradiction. Combinatorial arguments can 
lead both to narrow as well as widely scattered distributions of pseudo- 
random variables. The near degeneracy of the local energy minima in 
many cooperative systems may be connected with the sharply peaked 
distribution of the zeros of random p~ lynorn ia l s .~~  

Another basic characteristic of complex systems is contingency, or 
more precisely, the history dependence of their evolution.’* In the special 
case of gradient systems, all continuous quasi-static changes can be 

- 1  310 720 . 
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described in terms of trajectories on the corresponding energy land- 
scapes. The situation that is most frequently considered is the transition 
from some arbitrarily chosen set of initial states, scattered throughout the 
highlands of the landscape, down to the local energy minima in the valley 
bottoms. Since these steepest descents are not equilibrium processes, and 
the energy minima are often nearly degenerate, Boltzmann statistics 
cannot be used to infer the occupation probabilities of the terminal states. 
An obvious alternative is to assume that the occupation probabilities are 
proportional to the size of the drainage or capture basins that surround 
each local minimum. Experiments and computer trials show that this size 
is determined by the lowest neighboring mountain passes in the “slow 
cooling” limit, and by the mountain crest lines or watershed basins, in the 
“fast quench” limit.55 In either case, the topography of the energy 
landscapes controls the occupation probabilities of the various minima. 

All the available evidence indicates that in many cooperative systems 
the occupation probabilities are highly nonuniform even if there are many 
local minima that are nearly degenerate in energy. A typical example is 
shown in Figure 5 .  In first approximation, the decrease from the peak 
follows a steep power law, which then trails off into a plateau. This type 
of empirical Pareto or Zipf distribution has long been familiar in 
demographics (ranking of cities by population) and economics (apportion- 
ment of wealth).97 Occupation probabilities that are concentrated in a 
small number of states are also connected with search problems such as 
the Levinthal Namely, how does a protein find a global 
optimum without an unreasonably long global search? In the case of the 
gradient systems, the explanation is simply that a few states are favored 
because they are fed by the largest drainage basins on the energy 
landscapes. Although this picture is consistent with computer simulations, 
it has to be interpreted with caution because minimizing algorithnis-such 
as the procedure described in Section 2 . B - d o  not necessarily correspond 
to physical processes. This is illustrated by the discussions in Refs. 
98-100, which show that discrepancies can arise from differences in the 
computing schemes without any import on the basic physics. 

APPENDIX A. MINIMA OF COMPLEX ENERGY LANDSCAPES 

The surface Coulomb problem is a special type of gradient system with 
 constraint^.'^ Its extremals are determined by the simultaneous solutions 
of 
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where E is the energy given in (3.5). There are also infinite energy 
maxima at cusps due to coincident charges. The extremals are often 
referred to as critical, stationary, or equilibrium points. The simplest 
locally stable minima are a subset of extremal points P ( + ~ ,  O j )  whose asso- 

pace ciated Hessian matrices %[P(+~ ,  O,)] are positive definite; 
rotational degeneracies. Since these Hessians are arrays of all second- 
order partial derivatives of the energy-including terms such as 
d*EI&#+ &jj, d2Eld+i doj ,  and d2EldOi  dOj-it is convenient to introduce a 
single symbol f l K ,  1 5 K 5 2N, that ranges over all the angles +1 ,  . . . , &, 
O1 , . . . ,ON.  The Hessian at p then is 

107,108 

A necessary and sufficient condition for a real symmetric matrix such as 
X [ p ]  to be positive definite is that all of its eigenvalues are positive. 

Figure 14(a) is a plan view of part of an energy landscape containing 
three locally stable minima at Em, Em+,,  and Em-l. For N charges, this 
landscape is actually a surface in a 2N + 1 dimensional space spanned by 
O, ,  . . . , KtZN, and E. Figure 14(b) is an elevation showing the altitude or 
energy variations along a steepest descent path (path 1) connecting Em 
and Em+,. As indicated in Figure 14(a) there may be several mountain 
pass routes between adjacent valleys. The saddle points at 
SP‘”, . . . , SP‘”, and so forth are, of course, also extremals satisfying 
(A.1). These points are distinguished by the property that the associated 
Hessians X[SP] have at least one negative eigenvalue: specifically, if A 
denotes the number of negative eigenvalues, then 0 < A < 2N. 

Figure 14(a) illustrates some of the technical problems that can occur 
in mapping complex energy landscapes by means of computers. For 
instance, the convolutions of path 3 indicate that some minima may be 
difficult to reach from random initial points located in the energy 
highlands. The large iteration values listed in column 2 of Table VIII for 
N = 7 ,  13, 19, 36, and so forth are probably due to such labyrinthine 
obstacles. But these results have to be interpreted with caution because 
the convolution of paths has a dual significance: (1) Analytically it refers 
to steepest descent paths constrained to wind through highly corrugated 
landscapes and (2) numerically it corresponds to complicated patterns of 
steps generated by computer algorithms seeking lower ground on rugged 
terrain. Path 4 illustrates these distinctions in a complementary setting. 
Suppose for the moment that Em were not a strict minimum because-as 
shown in Figures 14(a) and 14(b)-there is another winding narrow defile 
leading from Em to a lower energy minimum at Em - If this track passes 
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4 -"IT' t 
SADDLE 

MINIMUM 

Figure 14(a) and (b). Energy landscape of a gradient system. The plan view in (a) shows 
three minima and a mountain range. Some of the corresponding heights are indicated in the 
elevation (b). Paths 1 and 2 are two possible gradient routes linking Em and E m + , .  If 
E(SP'") < E(SP'*'), then path 1 is the minimax route."* The valley bottom at Em is a locally 
stable minimum if we omit path 4. But if path 4 is joined to Ern-,  through a narrow exit, 
then Em is numerically stable only relative to a coarse search grid. The positions of the 
saddle points SP"', . . . , SP'5', indicate the extent of the capture basin surrounding Em. 
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through the mountains via a flume rather than a saddle pcjint, the energy 
can decrease monotonically between Em and Em- l .  In principle, the 
existence of such a narrow exit from Em presents no difficulties for an 
analytical description. It simply means that the associated Hessian would 
show that Em is a shallow saddle point with respect to one direction. But 
numerically it would be very difficult to detect the existence of this escape 
route if the scale of topographic variations of the energy surface were 
comparable to the roundoff errors of the search routines. Similar 
computational problems can occur for minima with small capture basins. 
If we revert to the assumption that %[Em] is positive definite, standard 
Morse theory shows that Em is an isolated minimum.'0'~'02 This means 
that Em is located in the interior of an open neighborhood all of whose 
points have energies exceeding Em. But this theorem is of little practical 
use in cases where the neighborhood is so small that it falls below the 
threshold of resolution of numerical surveys. 

All the surface Coulomb states listed in Table VIII were screened for 
numerical robustness with respect to roundoff. Generally, N-charge 
equilibrium configurations are described by 2N angular coordinates with a 
resolution of 10 decimal digits. Every coordinate was successively trun- 
cated to 6, and then to 3 decimal digits. All of these sets of truncated 
coordinates were taken as the starting configurations of new energy 
minimizing searches. Numerical stability was then verified in every 
instance by checking that these minimizations led back to the original 
equilibrium configurations. Nevertheless, despite these precautions, nu- 
merical methods can both under- and overestimate the actual number of 
minima. As indicated previously, states may be missed because they are 
concealed by tortuous approaches or have minute capture basins. And 
states may be counted as locally stable minima because narrow escape 
routes such as path 4 on Figure 14(a) can be overlooked by numerical 
surveys. 

The correspondences between the analytical and numerical descrip- 
tions of multivariable gradient systems tend to be even more complicated 
in situations where the Hessian matrices are singular at critical points. 
Figures 14(c) and 14(d) indicate some of the topographic complexities 
that can appear on the energy landscapes. In particular, the rippled 
stalagmite in Figure 14(c) is a schematic representation of the cumulation 
of critical points around a nonisolated singularity. Typical one-dimension- 
a1 potentials illustrating such a clustering of sequences of maxima and 
minima around the origin are U ( q )  = e cos(l/q), and e-1/qzsin2(1/ 
4 )  .'(" ~ '04 Although the surface Coulomb potential (3.5) clearly does not 
contain any factors resembling terms such as sin( l / q ) ,  the exponential 
increase of extremals (3.2a) on a (2N + 1)-dimensional surface is bound 

- I / q Z  
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Figure 14(c). Topography of the 
energy surface in the vicinity of a Hes- 
sian singularity. This rippled stalagmite 
is a schematic representation of the 
cumulation of local maxima and/or 
minima around a nonisolated Hessian 
singularity. 

( C )  

to produce a crowding that is numerically equivalent to a clustering. 
Figure 14(d) shows two extremal lines in the form of intersecting valley 
bottoms. If the crossing point is taken as the origin of a set of local 
coordinates, say a ,  p,  . . . , then potential expressions such as U - a2p2  
will generate this kind of topography. Generally, the lower the rank r of 
the Hessian, that is, r < 2N, or equivalently, the larger the dimensionality 
of the nullity ( = 2 N  - r ) ,  the “flatter” will be the associated valley bottom 
on the energy surface.”’ The rattling or labile states found by Kottwitz3’ 
at N = 19, 20, and so forth for the extremely repulsive Tammes potential 
I r r  - $ 1  310720 are examples of such extended minima. Similiar trends 
appear in the surface Coulomb problem. For instance, the 13-digit 
reproducibility of the total energy in Eq. (2.9a) represents the sharply 
defined level of a valley bottom on the energy landscape-that is, 
lim inf E[@,(84)] = 3 103.478. . . . But the much lower precision of the 
individual charge coordinates (2.9b,c) reflects the influence of shallow 
grooves (or eigenmodes) surrounding the minimum. This quasi-degener- 
ate behavior is also connected with the poor performance of conjugate- 
gradient methods in the Coulomb problem. 

It is plausible that for increasing values of N ,  the energy landscapes of 
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( d )  

Figure 14(d). Topography of the energy surface in the vicinity of a Hessian singularity. 
The fluted landscape surrounds valleys whose minima are networks of lines rather than 
isolated points. In higher dimensions these lines correspond to areas, that is, frat valley 
bottoms. 

the surface Coulomb problem include a greater proportion of complex 
features such as those shown in Figures 14(c) and 14(d). Analytically, this 
incidence of singular Hessians means that more of the critical point 
behavior falls outside the scope of Morse theory."' The corresponding 
numerical description of singular or close-to-singular 2N X 2N matrices 

First, with N > 100, then also requires greater computational effort: 
it is necessary to evaluate all of the N(2N + 1)-independent matrix 
elements in (A.2) at the relevant critical points. And then, since roundoff 
errors make it impractical to check directly whether det) Z [ p ] l  vanishes, 
the proximity of singularities has to be detected by sensitivity analyses. 
One criterion of this type is the condition number of a matrix, which is 
also proportional to the inverse "distance" to a ~ingularity."~ Standard 
software packages are available for implementing these diagnostics, but it 
remains to be seen whether they will be of any significant help in 
extending the surface Coulomb analysis to more complex systems. 

105,106 
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APPENDIX B: SUMMARY OF RESULTS 

Table VIII contains a survey of the numerically robust states of the 
surface Coulomb problem extending up to 112 charges. The first column 
lists the number of charges N .  The next column shows the average 
number of iterations required to reach an equilibrium state. (Note that 
every charge is simultaneously moved at each iterative step.) The 
frequency of occurrence, or capture basin, of each state is indicated in the 
third column. The asterisks mark enantiometric states. Column 4 lists the 
dimensionless energy (1.3) of each state. The center of charge, or 
magnitude of the dipole moment (1.2a), of every configuration is given in 
column 5.  Column 6 shows the minimum angular separation (radians) 
between pairs of points of the surface Coulomb states. A corresponding 
set of values for the Tammes problem is listed in column 7. The hole 
angles, given in column 8, approximate the angular diameters of the 
largest spherical caps containing no charges in their interior; cf. Section 
4.E.2. Columns 9 and 10 list the energy and angular diversity ratios 
defined in (3.1) and ( l . l ) ,  respectively. Finally, column 11 indicates the 
number of faces of the polyhedra associated with each configuration; cf. 
Section 4.C. 
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Acrylic polymers 

chain, 249-250 
elliptic cross section. 251 
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experimental results. 391-399 
Gittleman model, 385-388 
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mixing of cubic and uniaxial 

symmetries. 302-305 
strain. 299 
surface. 297-299 
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dielectric permittivity. 171 
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Antiferromagnetic particles. fine particles. 
466-467 

magnetic measurements. 468470 
magnetic state and relaxation time. 

Mosbauer spectroscopic studies. 470-475 
466-467 

in-field. 472.474-475 
zero applied field. 470-473 

Archimedian polyhedra. 496.498.524 
Arrhenius law. 378 
Arrhenius rate plot, 252 
Associating fluid model. 126-127. 129 

Atomic closure, versus molecular closure 

Atomistic models, 22-25 
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polymer fluids. 120 
p-Azoxyanisole. 147. 149. 155 

Berthelot potential model, 88-89 
Berthelot tail potential model. 102 
Block copolymers. self-assembling. 83-103 

analytic predictions in Gaussian thread 
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limit, 96-103 
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Berthelot potential model. 88-89 
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apparent spinodal phase diagram, 
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low-temperature radial distribution 
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reciprocal partial peak scattering 
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magnetic interparticle interactions. 
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functions. 92-93 
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Blocking temperature. variation with 

33 1-340 
applied field effects. 335-336 
average problem. 334-335 
dipolar interactions. 33 1-332 
(EB)~ , , ,  approximations. 336-339 
other models. 338.340 
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statistical model. 333-334 
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Born-Green-Yvon equation. 129-1 30 
Brazovskii analysis, 99-100 
Brownian rotational motions. liquid 

crystals. 163-164 

Carbon-carbon radial distribution. 

Carnahan-Starling equation of state. 

Central inversions, 535 
Chandler-Silbey-Ladanyi formulation, 

Chiew theory, 128 
Chirality. 536-538 
Clausius-Mosotti equation. 220 
Coarse graining. relationship of different 

Coercive field. 383-384 
Cole-Cole plot 

chain-averaged. 26 

127-128 

132-133 

chain models, 25-27 

dielectric relaxation. 259. 264 
liquid crystals. 177-178 
method for analyzing dielectric data. 

Cole-Davidson function. 259-260.265-266 
Collective density fluctuation melt 

Complex energy landscapes, minima, 

Complex gradient systems. stable 

Complex systems, 495-590 

225-226 

structure factor, 25 

549-554 

equilibrium configurations. 545-549 

angular comparisons. 547 
equilibrium configurations, 556-590 
locally stable equilibrium 

locally stable states. 506-522 
configurations. 503 

average energy level spacing. 516 
Coulomb energy differences. 5 19-520 
density of states. 516-518 
electrostatic energy. 510. 513-514 
energies of individual charges, 519-522 
energies of metastable states, 515-519 
energies of random initial 

configurations. 512-514 
energy distributions. 510-522 
energy diversity scatter plot. 522-523 
minimum energy states. 574-575 
number. variation with particle 

self-energy correction. 515 
surface Coulomb problem. 502-506 
.see a h  Surface Coulomb states, 

number. 506-51 1 

geometric properties 
Configurational entropy. maximum, SO9 
Congruence mappings. 534 
Correlation functions. time-dependent. 

224-225 

Coulomb angles. 539-540 
Coulomb energy. 502 

Coulomb polyhedra 
minimal properties. 543-545 

edges and faces. 541-542 
regular configurations. 531-534 

Coulomb problem. see Surface Coulomb 

Coulomb-Tammes energies, 543-544 
Curie temperature. electric polarization. 

Curling mode. 320 

Debye dynamic model, 220-221 
Debye equations, 241-242 
Debye equilibrium model. 219-220 
Debye model, 263 

criticisms, 222-223 
Debye theory. 394 
Dielectric anisotropy 

problem 

246 

liquid crystals. 173-174 
pressure dependence, 207 

complex 
Dielectric constant 

complex plane plot. 255,258 
relaxation function parameters. 255. 

258 
equilibrium. 247 

frequency-dependent, 161 
instantaneous and equilibrium. acrylic 

polymers. 249-250 
instantaneous tensile compliance. 

252-253 
time-dependent. 247-248 

as function of log(time). 255. 257 
transverse. liquid crystals. 196-198 

broad. electric polarization, 255-261 
comparison with viscoelastic dispersions. 

as function of c, 255. 259 

Dielectric dispersions 

264-27 1 
Dielectric effect. nonlinear, liquid crystals. 

Dielectric permittivity, pressure effects. 207 
Dielectric relaxation 

204-206 

liquid crystals. 161-164, 176-191 
activation enthalpy. 179, 184 
activation parameters. 178. I 8 I .  

activation volume, 182-1 83 
Cole-Cole plots, 177-178 
effect of molecular core. 180. I82 
mean-field interaction coefficient. 190 
nematic potential versus order 

parameter plots. 188-190 
relaxation times. 177. 179-180. 182 
retardation factors. 186-188 

183-184 
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plot of models. 259,264 
Dielectric relaxation time. dependence on 

viscoelastic relaxation time. 254 
Diffusional models. 418-420 
DiMarzio-Bishop model. 226-228.261-264 
Dipolar interactions. 331-332 
Dipole moment. 497-498. 502 

surface Coulomb states. distribution. 
526-527 

Discrete orientation models. 416-419 

EFC tensor. 478-479 
Electric polarization. 217-280 

apparent relaxation, 246-248 
broad dielectric dispersions. 255-261 
Cole-Cole plot. 225-226 
comparison with DiMarzio-Bishop 

Curie temperature. 246 
Debye dynamic model. 220-221 
Debye equilibrium model. 219-220 
Debye model. criticisms. 222-223 
fluctuation theory, 226 
general case. 234-237 
inconsequential electrostatic interactions. 

1 i miting behavior. 244-246 
log(tensile compliance) as function of 

models including time-dependent 

molecular strain. 243-244 
multiple dispersions. 248-255 
Onsager-Kirkwood approximation. 

reaction field model. 223 
relaxation time distribution. 223-224 
small molecules, 271-275 
strain versus polarization energies, 

results. 261-264 

237-238 

log(1ime). 255-256 

viscosity. 226-230 

239-243 

230-234 
equilibrium case, 230-233 
time-dependent case. 233-234 

time-dependent, 241-243 
time-dependent correlation functions, 

time-dependent dielectric constant as 

Electric quadrupole interaction. 478-479 
Electromechanical properties. polymers. 

275.277-280 
Electrostatic energy. surface Coulomb 

problem. 510. 513 
Electrostatic interactions 

224-225 

function of log(tinie). 255. 257 

energy. 498 
inconsequential. 237-238 

Enantiomorphic configuration. surface 
Coulomb problem. 534-539 

Energy landscapes. complex. minima. 

Equation of state. polymer fluids. 34-38 

Euler's formula. 532 
Euler's theorem. 541 

Fe particles. embedded in AI,O, matrix. 

a-Fe particles, Mosshauer spectra. 423-425 
a-FezOj particles. Mossbauer spectra. 

Ferritin. Mdsshauer spectra, 470-472.474 
Ferroelectricity. liquid crystals. 194--197 
Ferroelectric liquid crystals. 194-195 
Ferromagnetic resonance. fine particles. 

549-554 

hard-sphere, 35-36 

448-450 

472-473 

438-445 
Y-FK~O, ferrofluids. 442-444 
magnesioferrite particles in MgO. 

thermal fluctuations. 439-440 
440-442 

Filed-cooled magnetization. fine particles. 

Fine particles, 283-481 
347-351 

AC susceptibility. 384-396 
experimental results. 391-394 
Gittleman model. 385-388 
other models. 388-389 
T, versus T,,,,, 389-391 

combination of. 300-305 
cubic symmetry. when K, is not 

negligible. 301-302 
magnetocrystalline. 295-296 
magnetostatic. 296-297 
mixing of cubic and uniaxial 

symmetries. 302-305 
strain, 299 
surface. 297-299 

coercive field, 383-384 
effect of interparticle interactions. 

ferromagnetic resonance. 438-445 
y-FeZO, ferrofluids. 442-444 
magnesioferrite particles in MgO. 

thermal fluctuations. 439-440 
field-cooled magnetizations, 347-35 I 
interparticle interactions. 322-34 I 

an  isot ropies. 295-305 

363-364 

440-442 

blocking temperature variation with 
magnetic interactions. 331-340 

transition from superparamagnetism 
toward collective state. 322-331 

isothermal remanence magnetization. 

magnetization under moderate and high 
373-375 

applied fields. 365-370 
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Fine particles (Conrinued) 
magnetocaloric effect. 454-456 
magneto-optic properties. 456-457 
magnetoresistance. 452-454 
Mosshauer spectroscopy, 396-406 

hulk and surface static studies. 401-41 1 
effect of large applied field. 431-435 
effect of medium or weak applied field. 

y-FezO,. 407-409 
magnetic hyperfine field. 402-406 
recoil-free fraction. 401-402 
spectrum. 399-401 

spin canting effects. 406-41 I 
superparamagnetic relaxation in zero 
applied field. 412-431 

basic discrete orientation models. 

blocking temperature. 425-429 
diffusional models. 419-420 
lineshape models. 414-422 
low temperature limit, 420-422 
magnetic splitting at T + T,, 429-431 
modeling of experimental spectra, 

quadrupole interaction. 413 
stochastic relaxation model, 41s-416 
Zeeman splitting, 412 

neutron experiments. 445-452 
inelastic neutron scattering, 457-45 1 
other experiments. 45 1-452 

435-436 

exploitation. 409-41 1 

416-419 

422-425 

SANS. 445-457 
nonrelaxing magnetization 

quantum tunneling. magnetization. 

relaxation time calculation. 305-321 

determination. 365 

457-466 

Brown's model, 309-320 
with applied field in uniaxial 

sy.mmetry. 3 13-31 5 
curling mode, 320 
elongated particles, 320 
hypothesis. 310-313 
t calculation 

cubic symmetry. 318-320 
other cases, 320 
symmetry. 315-318 

Nkel's model. 308-309 
problem statement. 306-308 

remanence magnetization. 370-373 
superparamagnetic behavior, 287-295 

complexity of systems. 291-295 
single-domain particles. 287-288 
superparamagnetic particles, 288-291 

superparamagnetic state, 35 1-363 

thermoremanence magnetization. 

zero-field-cooled magnetizations. 

see also Anti ferromagnetic particles 

athermal polymer blends, 42 
mean-field, 55 

375-383 

344-347 

Flory-Huggins theory 

Flory mean-field theory. incompressible. 56. 

Fluctuation theory. 226 
Fokker-Planck equation. 309-310.313-314. 

Free energy charging formula. 35 
Free energy variational approaches. 

Freely jointed chain model, 22 

Gamov exponent, 458-459 
Gaussian fluctuation potential. 105 
Gaussian string model. 17 
Gaussian thread 

analytic predictions, 78-80 
chains, 15-18 
limit. analytic predictions, self-assemhling 

58-59 

318.320. 340 

108-1 10 

block copolymers, 96-103 
Gaussian thread model. 40 

analytic, 53-55 
molecular closure approximations. 72 

Gay-Berne potential, 156 
Gedanke experiment. 215.277 
Generalized Flory dimer equation of state. 

Giant magnetoresistance. fine particles. 

Gibhs-Bogoliubox inequality, single-chain 

Gibbs free energy of mixing. 58 
Gilbert equation. 309-310.312 
Gittleman model. 385-388 
Glass transition. relaxation. 197. 199 
Global architecture. macromolecule 

35-36 

452-454 

free energy. 108 

degree. 6 

Hamiltonian. unperturbed. 236 
Havriliak-Negami equation. 161 
Helmholtz free energy. 37 
Hemosiderin. Mosshauer spectra. 470-472. 

Hessian matrix. 550, 552-553 
Hessian singularity. energy surface in 

vicinity of. 553-554 
High-temperature approximation. 57-58 
Homopolymers 

blends. multiple-site. athermal. 47-49 
good solutions. theory/simulation 

474 
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comparisons. 1 1  1-1 17 

Gaussian thread chains. 15-18 
single-site. 15-27 

Hydrogen iodide, 273-274 
Hypernetted chain approximation. I 1  
Hysteresis loop. liquid crystals. 195-196 

Incompressible random phase 

Inelastic neutron scattering. fine particles. 

Integral equation theories. 3 

approximation. 98 

447-45 1 

closure approximation. 4-5 
many coupled. 4 
self-consistent treatment of intramolecular 

thermodynamic inconsistency problem. 5 
and intermolecular correlations. 5 

Intermolecular correlations. self-consistent 
treatment, 5 

Intramolecular correlations. self-consistent 
treatment. 5 

Isometries. 534-535 

Jellium model, 496-497 
Jonscher equation, 161. 177 

Langevin equation. 309 
Langevin function, 432.439 

approximation, 336 
Largest “hole” angle. 540-541 
Lennard-Jones interaction. 20-21 
Lennard-Jones potential. 37-39, 154 
Levinthal paradox. 549 
Liquid crystals. 143-208 

activation parameters. 162 
atom-atom potential. 155 
dielectric measuring cell. 166. I69 
dielectric studies, at elevated pressures. 

169-208 
dielectric anisotropy. 173-174 
dielectric relaxation. see Dielectric 

relaxation. liquid crystals 
femoelectric C* phase. 194-198 
isotropic phase. 169-172 
nematic phase. 172-191 
nonlinear studies. 204-208 
parallel permittivity component, 

polymeric liquid crystals. 197. 199-204 
smectic phases, 191-194 
static permittivity, 170-176 

experimental methods. 165-169 
Gay-Berne potential, 156 
high-pressure autoclave, 166. 168 
high-pressure dielectric measurements. 

176-178 

setup. 166-167 

Lennard-Jones potential, 154 
Maier-Meier equations. I60 
mesogenic compounds. phase transitions. 

mesomorphic behavior. 145- I47 
nematic, 152-156 

dielectric properties, 158-164 

147-150 

dielectric relaxation, 161-164 
retardation factors. 163-164 
static permittivity. 158-161 

mesophase. 145-146 
polymeric. 147 
smectic 

A phase. 156-158 
mesophase. 146-147 

thermodynamic coefficient. 153 
thermodynamic properties, 149 
transition temperatures as function of 

under pressure. phase diagrams, 150-152 
usefulness of high-pressure studies. 

pressure. 152 

144-145 
Lorentz model. application, 353-356 
Lower critical solution temperature case. 83 

Macromolecule potential surface. effective 

Magnesioferrite particles. in MgO, 440-442 
Magnetic dipole arrays, planar. 548 
Magnetic hyperfine field. Mossbauer 

single. I 0 4  

spectroscopy. 402-406 
demagnetizing field. 403 
surface hyperfine field. 403-406 

Magnetic hyperfine interaction. 479-480 
Magnetic suspensions. theory of 

Magnetic viscosity. temperature 

Magnetization 

ferromagnetic resonance. 440 

dependence. 461-462 

nonrelaxing. 294 

superparamagnetic state, 35 1-363 
determination. 364-370 

comparison with experimental results. 

final formulas and outcomes, 359-362 
Lorentz model. 353-356 
Onsager model. 356-359 
problem statement. 352-353 

Magnetocaloric effect. fine particle!;, 
454-456 

Magnetocrystalline anisotropy. fine 
particles, 295-296 

Magnetoelastic energy. exterior strains. 299 
Magneto-optic properties. fine particles. 

Magnetoresistance. fine particles, 452-454 

362-363 

456-457 
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Magnetostatic anisotropy. fine particles, 

Maier-Meier equations. 160. 173 
Maier-Meier theory. 159-160 
Maier-Saupe potential. 163 
Maier-Saupe theory, 153-154, 156 

Martytnov-Sarkisov closure. 11 
Maxwell-Boltzmann statistics. 220 
Mayerf-bonds. I10 
Mean spherical approximation. 10 
N-(p-Methoxybenzy1idene~p'-butylaniline. 

Molecular closure approximations, 67-83 

296-297 

nematic phase, 163 

148-1 49 

versus atomic closure. 68-72 
attractive energy scale variable. 81 
changes in blend pair correlations upon 

chi parameters. 68-69 
compressibility contribution. 82 
concentrated solution symmetric model 

critical temperature. 75-76 
con formational and interaction 

asymmetric blends. 80-82 
effect of attractions on 

solvent quality. 82 
structure. 82 

cooling. 76-77 

fluctuation phenomena in symmetric 

analytic predictions for Gaussian 

numerical results. 74-77 
Gaussian thread model. 72 
heating-induced phase separation. 83 
inverse osmotic compressibility, 78 
linear polymeric fractals. 70 
liquid-vapor equilibrium of  chain 

nonlinear transcendental equation, 79 
physical clustering. long-wavelength 

renormalization ratio. 73 
site interaction potentials. 71 
spinodal temperature. 80-81 
tail potentials, 775 
thermally driven assembly. 89 

Molecular dynamics. simulations. 

Molecular solubility parameter theory, 

Molecular strain, electric polarization. 

Monte Carlo simulation 

blends. 72-80 

threads, 78-80 

molecule fluids. 83 

concentration fluctuations. X3 

comparison with PRISM theory, 43-44 

65-67 

243-244 

athernial polymer blends. 44-45 
single-chain. 108 

Mossbauer spectroscopy 

electric quadrupole interaction. 478-479 
fine particles. 396-406.470-475 

bulk and surface static studies. 401-41 I 
magnetic hyperfine field. 402-4061 
recoil-free fraction. 401 -402 
spectrum. 399-401 

isomer shift. 477-478 
magnetic hyperfine interaction. 479-480 
recoil-free fraction. 476-477 
relative intensity of absorption lines. 

480-48 1 

Nanostructured materials. enhanced 

Nee1 calculation. 298 
Neel's model. relaxation time calculation. 

Neutron depolarization experiment. fine 

Neutron experiments. fine particles. 

properties. 286 

308-309 

particles. 451-452 

445-452 
inelastic neutron scattering. 457-451 
other experiments. 451-452 
SANS. 445-457 

Newton-Raphson optimization. 507 
Nitromethane. 272-273 

Octylcyanobiphenyl. 19 1 - 194 
Octyloxycyanobiphenyl, 191 -194 
Onsager-Kirkwood approximation. 

Onsager model, application. 356-359 
Onsager's equation. isotropic phase. I60 
Optimized perturbation theory. 110-1 I I 
Ornstein-Zernike equation, 7-10 

generalization to molecular liquids. 8 
total correlation functions, 10 

Ornstein-Zernike-like equation. 89. 

Omstein-Zernike-li ke matrix equations. 

239-243 

127-128 

9-10 

Pairing function. intermolecular. 51-53 
Pentakis dodecahedron. 524 
trun.s-4-Pentylbicyclohexyl-4-carbonitrile. 

Percus-Yevick approximation. 7 
Perturbation theory. Barker-Henderson 

version. 37 
Phase segregation. entropy-driven. 

semiflexible blends. 49-53 
Platonic solids. 523 
Plum pudding model. 496 
Polydispere mixture. 127 
Polyethylene. 22-25 

one-site model. 27 

191 -192 
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predicted interchain radial distribution 

PRISM predictions for site-site radial 

radial distribution functions. 47-48 
spinodal curve. 61 

function, 26 

distribution function. 23-24 

Polymer alloys, 119-120 
Polymer blends 

athermal. 41-55 
analytic Gaussian thread model. 53-55 
comparison with computer 

excess partial free energy of mixing 

intermolecular pairing function. 51-53 
intermolecular radial distribution 

Monte Carlo simulations, 44-45 
multiple-site homopolymer blends. 

nonrandom mixing. 44 
semiflexible blends and entropy-driven 

stiffness asymmetry. 45 

chi parameters, 62-64 
Gibbs free energy of mixing, 58 
liquid-liquid spinodal phase separation 

miscibility of semiflexible chain 

molecular solubility parameter theory. 

phase behavior of atomistic models. 

thermodynamic perturbation theory. 

simulations. 42-47 

changes. 45-46 

functions. 42-43 

47-49 

phase segregation. 49-53 

thermal effects. 55-67 

temperature. 56 

models, 61-65 

65-67 

59-61 

57-59 
symmetric. fluctuation phenomena, 

72-80 
Polymer fluids. 1-34 

atomistic models. I20 
constrained polymers. 120 
dense one-component repulsive force 

free energy variational approaches. 

future directions. 131-134 
homo pol ymrr  good sol u t ion.\. 

liquids. 10 

lox-I 10 

theory/simulation comparisons. 
111-117 

I I X - l  I9 

associative fluid model. 126-127. 129 
Born-Green-Yvon equation. 129-1 30 
Chiew theory. 128 

influence of variable bare chain stiffness. 

integral equation approaches. 126-131 

first-order thermodynamic perturbation 

Wertheim thermodynamic perlurbation 
theory. 127 

theory. 127. 130 
intrachain solvation pair potentials. 115 
large N behavior. 117-1 18 
mean-square end-to-end distance of 

hard-core chains. 112-1 14 
numerical and  analytic model 

calculations. 117-1 19 
optimized perturbation theory, 

1 1 0 - 1  I I 
polymer alloys. 119-120 
self-consistent solution. single 

macromolecule problem, 106-1 I I 
single-chain Monte Carlo simulation. 

I08 
solvation potential theories. 105-107 
star-branched, 120-126 

basic model and  theory. I 2 I - I 22 
conformation and  liquid structure. 

mean-squared radius-of-gyration. 

nonideal conformational effects. 123 
self-consistently determined 

122-126 

122-123 

intermolecular site-site pair 
correlation functions. 123-1 :25 

potential, 123-124 
self-consistently determined solvation 

three-region scheme. 121-122 
total collective structure factor. 125 

Polymeric liquid crystals. dielectric studies. 
theta and poor solvents. 119 

197.199-204 
activation plots. 2(M-201 
a process. 199.202 
6 relaxation. 197. 199 
y relaxation. 199 

Polymerization. macromolecule degree. 6 
Polymer melt. dense 

intermolecular packing, 36-37 
one-component. 12 
structure and thermodynamics. 13- 

atomistic models. 22-25 
coarse graining and  relationship of 

equation of state. 34-38 
Gaussian thread chains. 15-18 
melt solubility parameters. 38-41 
multiple-site vinyl polymers, 27-34 
semiflexible chain models. 18-22 
single-site homopolymers. 15-27 
thermodynamics. 34-41 

Polymer Reference Interaction Site Model. 
see PRISM theory 

different chain models. 25-27 
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Polymers 
constrained. 120 
electromechanical properties, 275. 

osmotic pressure. 38 
277-280 

Polymethacrylates. dielectric loss tangent. 

Poly(N-hexyl methacrylate). 268-269. 

Polypropylene. isotactic. 32-34 

PRISM theory. 3-4. 131-132 

248-249 

275-276 

cohesive energy, 39 

application to flexible polymer systems. 

atomistic. 19 
based on  R-MPY closure. 74 
basic aspects. 7-13 
comparison with 

11-12 

exact computer simulations, 5 
molecular dynamics simulations. 20-22. 

43-44 
earliest version. X-9 
intramolecular structure factors, 12-13 
molecular closure approximations, .see 

Molecular closure approximations 
with molecular closures. 70-7 I 
predictions for site-site radial distribution 

PY closure. 20 
quantitative accuracy. 12 
relationship with heavily coarse-grained 

function. polyethylene. 23-24 

scaling and field-theoretic approaches. 
6-7 

84-X5 

115-1 I6 

self-assembling block copolymers. 

self-consistent structural predictions. 

thermal effects, .see Polymer blends. 

total structure factor. 31-32 
thermal effects 

PY closure. 20 

Quantuni tunneling. magnetization. 
457-466 

Euclidean action. 459-460 
magnetic noise spectrum, 464-465 
magnetic viscosity, temperature 

remanent magnetization. time 

switching rate as function of 

dependence. 461-462 

dependence, 461 

temperature. 458-459 

Radial distribution functions. 
intermolecular. 42-43 

Reaction field model. 223 

Recoil-free fraction. 476-477 

Reference Interaction Site Model theory. 

Relaxation time 

fine particles. 401-402 

see RISM theory 

calculation, fine particles, 305-321 
Brown's model. 309-320 
Neel's model. 308-309 
problem statement, 306-308 

distribution. electric polarization, 

point dipoles. electric polarization. 
223-224 

246-248 
Remanence magnetization. 370-373 

isothermal, 373-375 
time dependence. 461 

Retardation factors. liquid crystals. 163- I64 
RISM theory, 7-8 

flexible polymer solutions, 8 
radial distribution functions, 8 

Rotatory reflections. 535 

SANS experiments. fine particles. 445-447 
Self-avoiding walk. 103 
Self-energy correction. 515 
Semiflexible chain models, 18-12 

chain aspect ratio. 20 
miscibility, 61-65 

Shape factor. complex plane plot, 261-262. 

Shtrikman and Wohlfarth model. 333 
Single-domain particles, 287-288 
Single macromolecule problem, 

self-consistent solution. 106-1 1 1  
Site-site pair correlation functions. 8-9 
Snub cube. 498 
Solubility parameters, polymer melts. 38-41 
Solvation potential theories. 105-107 
Spin canting effects, fine particles. 406-41 I 
Static permittivity. liquid crystals 

768 

isotropic phase. 170-171 
nematic phase. 172-176 

Static permittivity. liquid crystals. ISX-I61 
Statistical model. 333-334 
Stochastic relaxation model. 415-416 
Stoner-Wohlfarth model, 310-31 1 
Strain anisotropy, fine particles. 299 
Sturm-Liouville problem. 313 
Superparamagnet, isotropic. resonant 

frequency condition, 438 
Superparamagnetic particles. 288-29 1 
Superparamagnetic state 

field-cooled magnetization. 347-35 1 
interparticle interactions effect. 363-364 
magnetization. 351 -363 
zero-field-cooled magnetization. 344-347 



SUBJECT INDEX 623 

Superparamagnetism. transition from 
toward collective state. 322-331 

collective state properties. 325-327 
comparison w/experimental data. 

temperature dependence. 324-325 
temperature of transition toward 

collective state. 329-33 I 
at very low temperature, 323 

327-329 

Surface anisotropy. fine particles. 297-299 
Surface Coulomb problem. 497.502-506 

analytic formulation. 502-504 
computer algorithms. 504-506 
Coulomb energy, 502 
dipole moments, 502 
equilibrium states, 499-501 
standard set of orientations. 505 

Surface Coulomb states. geometric 

array of parallel mappings. 536 
Coulomb polyhedra. regular 

configurations. 531-534 
dipole moments. 526-527 
distributions of angles. 528-531 
duals of semiregular polyhedra. 524 
enantiomorphic configurations. 

influence of force laws on charge 

properties. 522-545 

534-539 

distributions, 539-545 
Coulomb and Tammes angles. 539-540 
edges and faces of Coulomb polyhedra. 

largest “hole” angle. 540-541 
minimal properties of Coulomb 

541 -542 

energies, 543-545 
pentakis dodecahedron. 524 
Platonic solids. 523 
pseudorandom number generators. 

538-539 

calculation, 32 
Suter-Flory rotational isomeric state 

polyolefins. hard-core atomistic RIS 
models. 33 

Tammes angles. 539-540 
Tammes problem. 503 

Thermodynamic perturhation theory, 57-59 

Thermoremanence magnetization. 37.5-383 

biological. 496 

first-order. 127 

field dependence. 375-376 
magnetic viscosity. 381 
time dependence. 376-383 

Thomas-Fermi oscillations. 514 

Ultrafine magnetic particles. 286 

Vinyl polymers 
multiple-site. 27-34 

average structure factor. 3 1-32 
intramolecular structure functions. 27 
isotactic polypropylene, 32-34 
Monte Carlo simulations. 28 
polyolefins. 33-34 
prepeak. 32 
radial distribution functions, 29-30 
scattering density. 31 
two diagonal partial structure f. rictors. 

28 
three-site model. 27 

Viscoelastic dispersions. comparison with 

Viscoelastic model. 268. 274 

Wentzel-Kramers-Brillouin approximation. 

Wertheim thermodynamic perturbation 

dielectric dispersions, 26427 I 

45 8 

theory. 127. 130 

Zeeman splitting. 412 
Zero-field-cooled magnetization. fine 

particles. 344-347 




