Vector product operations

$$
\begin{aligned}
\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c}) & =\mathbf{b} \cdot(\mathbf{c} \times \mathbf{a})=\mathbf{c} \cdot(\mathbf{a} \times \mathbf{b}) \\
\mathbf{a} \times(\mathbf{b} \times \mathbf{c}) & =(\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{c} \\
(\mathbf{a} \times \mathbf{b}) \cdot(\mathbf{c} \times \mathbf{d}) & =(\mathbf{a} \cdot \mathbf{c})(\mathbf{b} \cdot \mathbf{d})-(\mathbf{a} \cdot \mathbf{d})(\mathbf{b} \cdot \mathbf{c}) \\
\boldsymbol{\nabla} \times \boldsymbol{\nabla} \psi & =0 \\
\boldsymbol{\nabla} \cdot(\boldsymbol{\nabla} \times \mathbf{a}) & =0 \\
\boldsymbol{\nabla} \times(\boldsymbol{\nabla} \times \mathbf{a}) & =\boldsymbol{\nabla}(\boldsymbol{\nabla} \cdot \mathbf{a})-\nabla^{2} \mathbf{a} \\
\boldsymbol{\nabla} \cdot(\psi \mathbf{a}) & =\mathbf{a} \cdot \boldsymbol{\nabla} \psi+\psi \boldsymbol{\nabla} \cdot \mathbf{a} \\
\boldsymbol{\nabla} \times(\psi \mathbf{a}) & =\boldsymbol{\nabla} \psi \times \mathbf{a}+\psi \boldsymbol{\nabla} \times \mathbf{a} \\
\boldsymbol{\nabla}(\mathbf{a} \cdot \mathbf{b}) & =(\mathbf{a} \cdot \boldsymbol{\nabla}) \mathbf{b}+(\mathbf{b} \cdot \boldsymbol{\nabla}) \mathbf{a}+\mathbf{a} \times(\boldsymbol{\nabla} \times \mathbf{b})+\mathbf{b} \times(\boldsymbol{\nabla} \times \mathbf{a}) \\
\boldsymbol{\nabla} \cdot(\mathbf{a} \times \mathbf{b}) & =\mathbf{b} \cdot(\boldsymbol{\nabla} \times \mathbf{a})-\mathbf{a} \cdot(\boldsymbol{\nabla} \times \mathbf{b}) \\
\boldsymbol{\nabla} \times(\mathbf{a} \times \mathbf{b}) & =\mathbf{a}(\boldsymbol{\nabla} \cdot \mathbf{b})-\mathbf{b}(\boldsymbol{\nabla} \cdot \mathbf{a})+(\mathbf{b} \cdot \boldsymbol{\nabla}) \mathbf{a}-(\mathbf{a} \cdot \boldsymbol{\nabla}) \mathbf{b}
\end{aligned}
$$

