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The domain structure and its development in 
thin plane-parallel soft-magnetic elements have 
been investigated from both the experimental 
and the theoretical point of view. The 
experimental observations for verifying the 
predictions have been realized by means of the 
Bitter, Kerr, and Lorentz techniques. 

In the first part, a self-consistent domain 
theory, based on micromagnetic principles, is 
unfolded for two-dimensional solenoidal 
magnetization distributions present in ideally 
soft-magnetic thin-film objects that are 
rectangular cylinders. The solenoidality implies 
that both the external field and the conduction 
currents are taken as zero. Two types of domain 
structures are distinguished: the basic 
structures in simply connected regions and the 
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parallel configurations in special types of 
multiply connected regions—the parallel 
regions. A decomposition of the area of the 
object into disjunct subregions, either simply 
connected or of the parallel type, whose union 
completely covers the object, is put forward. A 
procedure for constructing all feasible parallel 
regions is presented. In each region, the 
appropriate solenoidal magnetization distribution 
is specified with which the magnetization M is 
taken parallel to the boundaries of the 
subregion. Thus, all the domain structures 
possible in the thin-film objects with arbitrary 
lateral shapes can be constructed. A number of 
experimental examples are provided. 

In the second part, the M distribution is 
studied on a local scale, at which the 
requirement of solenoidality is dropped; i.e., 
external fields and conduction currents are 
allowed. The concept of the domain-wall cluster 
is introduced in order to obtain the maximum 
information about the M configuration in the 
entire object. Here, we employ the fact that 
domain walls are the preeminently visible 
features and that most information is available 
at those locations where a number of these 
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walls meet. A domain-wall cluster is the 
collection of all domain walls that have one 
region^the so-called cluster knot—in common. 
Three different categories of clusters 
characterized by the positions of their cluster 
knots with respect to the edges of the thin-film 
object are distinguished. Wall clusters with 
cluster knots at two, one, and no edges are 
defined as the corner, edge, and free clusters, 
respectively. General features of the 
magnetization distribution near the cluster knots 
are discussed for each of the above classes. 
The reversible transformations of the clusters 
are reviewed. Two different types of these 
conversions are recognized, to wit the cluster 
creation (fading) and the cluster furcation 
(fusion). Experimental evidence of these 
relationships is provided. 

In the third part, the domain structures are 
considered as a concatenation of domain-wall 
clusters. During the domain-structure 
transformations, clusters are added to and 
removed from the domain-wall network. The 
conversions are reversible along specific 
branches of the hysteresis curves at which the 
changes can be comprehended in tenms of the 
above reversible cluster conversions. 
Notwithstanding the reversible character at 
these branches, the domain configuration often 
develops itself into a subminimum of the energy, 
from which sudden irreversible transformations 
take place toward other branches with lower 
energy. In many cases, the latter alterations are 
attended by jumpwise adaptations in the overall 
object magnetization component along the field, 
and reveal themselves in the hysteresis curve. 
The part of the internal domain-wall structure in 
the hysteresis is elucidated, and its dependence 
on the film thickness is emphasized. Many 
examples are given for the purpose of 
demonstrating the strongly interwoven character 
of the domain netwoilc, the prehistory in the 
magnetic sense, the internal structure of the 
domain walls, and the macroscopic object 
hysteresis. 

1. Introduction 
Since their origin, applications of ferromagnetic media 
have been hindered by the phenomena of magnetic 
domain structures which are inevitably associated with 
ferromagnetic materials. Nowadays, the situation is even 
more pressing, since devices with magnetic elements with 
dimensions in the {sub)micrometer range have become of 

great interest—particularly soft-magnetic elements such 
as thin-film heads [1,2], magnetoresistive detectors [3,4], 
cross-tie memories [5], and field-access bubble 
propagation circuits [6]^and such applications are 
greatly hampered by unpredictability in the magnetic 
domain configurations. 

Various techniques have been used to circumvent the 
formation of domains, by almost complete suppression 
by an adequate lamination [7] of the soft-magnetic 
films and/or by biasing the M distribution (M = 
magnetization) with an appropriate effective field, so that 
a well-defined continuous M-state occurs in the film 
region that is critical to the device operation. This 
effective field may be induced by an electric current 
through a conducting shunt layer [8,9], or by a 
permanent magnetic [10] or an antiferromagnetic shunt 
layer [11]. Although a significant improvement has been 
realized by film lamination, the domain effects still 
surface [12], partly because of the mismatch in the 
thickness between the various layers [13] and partly 
because of the magnetic history of the sample. Therefore, 
questions concerning the origin of the domain structure, 
its uniqueness, and ite entanglement with the 
phenomenon of hysteresis have not lost any topicality, 
and such questions constitute the subjects of this paper. 

We initially consider the issues of the inevitability of 
and the uniqueness in the domain structure in the ideally 
soft-magnetic plane-parallel thin-film elements. Until 
recently, the domain theory was still in the stage so aptly 
summarized by Brown [14]: "a patchwork of plausible 
assumptions, inspired by experimental observation, 
whose starting points are sometimes mutually 
inconsistent and cyclical." Pioneers in the domain theory, 
to wit Landau and Lifshitz [15] and Kittel [16], 
developed the following line of thought. The existence of 
domains, i.e., regions where the configurations bear a 
continuous character, and of domain walls, which are 
surfaces of jumpwise-rotating M, was accepted as 
experimental fact. The disintegration into domains was 
explained in terms of a trade-off of magnetic anisotropy 
and domain-wall and magnetostatic energy. In the bulk 
of the object, M was assumed to be parallel to one of the 
easy-anisotropy axes; however, continuation of this 
parallelism toward the bounding surface of the object led 
to magnetic surface charge, and hence to a high level of 
magnetostatic energy. To stave off the generation of 
magnetic charge, the domain walls were introduced, so 
that M was guided parallel to the boundary of the 
object, and a divergence-free coupling with M in the 
bulk, still supposed to be parallel to the easy axes, was 
achieved. Subsequently, the general features of the 
domain geometry were posited by taking a preliminary 
look at experimental data while a few geometrical 
parameters were left undetermined, in order to be able to 541 
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minimize the total energy. The lowest-enei^ 
configuration among a number of known domain 
geometries in a specific object was thus determined 
[17-19]. 

It is tempting to try to play the same tune: However, 
one must bear in mind that there is no self-consistent 
framework by which the above questions of domain 
inevitability and uniqueness can be treated. Moreover, 
the assumption of uniformity of M in the domains is 
premature in the soft-magnetic media with small intrinsic 
anisotropy. The micromagnetic theory [20] should 
constitute the basis for a self-consistent domain theory. 
Brown [14] claimed that a rigorous micromagnetic 
treatment should lead to domain-like and domain-wall-
like regions. However, straightforward calculations lead 
to a system of nonlinear partial differential equations for 
the equilibrium distributions, and the demonstration of 
their stability has so far proved insuperable for arbitrary 
specimens. The present author does not attempt to cope 
with this general problem. Instead, he confines himself to 
a specific class of ideally soft-ra^netic materials, to 
plane-parallel thin-film objects with cyhndrical edges 
perpendicular to the film plane, and to objects that are 
not subjected to external field sources. It should be 
emphasized that in this section this implies that the 
intrinsic anisotropy of the medium is 0. Subsequently we 
discuss the impact of the intrinsic anisotropy; however, 
we will always confine ourselves to media with low 
Q[Q = 2K/(ij.gMl)], where K is the anisotropy energy 
density and M^ the saturation magnetization. Within 
these constraints, a self-consistent theory is elaborated by 
which definite answers to the above questions concerning 
the inevitability and uniqueness of magnetic domains are 
given. 

Of course, the situation in which external fields are 
applied has great practical significance. It should be 
incorporated into a theoretical framework in order to 
cover the development of the M distribution as a 
function of the external field. For this purpose, a less 
ambiguous local approach is adopted in which the 
relationship between the mutual domain-wall positions 
that have one region in common—the cluster knot—and 
the M distribution outside the wall regions in the 
immediate vicinity of the cluster knot is determined. The 
collection of all domain walls that have one specific 
cluster knot in common is referred to as a domain-wall 
cluster. With the cluster concept, a better interpretation 
of the domain-structure observations by means of the 
Bitter, SEM, and Kerr techniques is possible. It also 
improves the understanding of Lorentz images in the 
ripple-free films, where no direct information is gained 
about the M distribution within the domains. In terms of 
the domain-wall clusters, each domain structure can be 
considered as a concatenation of interconnected wall 

clusters, in which each cluster provides local information 
about the M distribution that can be mutually correlated 
in order to reconstruct the M distribution in the entire 
object. When an external field induces changes in the M 
distribution, wall clusters are added to the already 
existing domain structure in some phases of the domain-
structure progression, while they disappear during other 
periods. How these alterations in the number of wall 
clusters can take place in a reversible fashion is briefly 
reviewed. 

As emphasized previously, the multitudinous domain 
structures are often reflected at the macroscopic level as 
hysteresis. Which of the possible domain structures 
develops itself depends on the prehistory in the magnetic 
sense. Employing the above principle, general 
characteristics in the domain-structure development are 
indicated, and the implications of thew; characteristics for 
the irrevereible part of the transformations are discussed. 
These principles are elucidated by considering, in detail, 
the domain conversions in rectangular thin-film 
specimens. 

2. Divergence-free two-dimensional domain 
structures in plane-parallel thin-film objects 
In this section, the two-dimensional domain structures in 
ideally soft-magnetic plane-parallel thin-film objects with 
cyhndrical edges perpendicular to the film plane are the 
subject of study. Here we consider only magnetization 
configurations which are not exposed to an externally 
applied magnetic field. As will be seen, two-dimensional 
M distributions in which M does not change in the 
direction perpendicular to the film plane (z-axis) are only 
possible when the external field is zero and when the 
object does not carry conduction currents. Moreover, it is 
assumed that the object's dimensions are large in 
comparison with the object's single magnetic domain 
dimensions. Under these circumstances, the author 
reconsidered the micromagnetic equilibrium equations 
and stabihty conditions for the class of ideally soft-
ferromagnetic specimens. In this kind of medium the 
intrinsic anisotropy is set at zero, because the magnetic 
energy density /ig M^ is much larger than its anisotropic 
counterpart. In the domains, the spatial variation term in 
the exchange-energy density can be safely neglected. 
Hubert [21,22] and LaBonte [23] demonstrated that this 
exchange term constitutes a second-order effect even in 
the domain-wall regions of soft-magnetic media. 
Therefore, in first-order approximation, both coupled 
partial differential equations defining the equilibria 
reduce [24] to 

H = dx, y, z)M, 

M . M = Mf, 

while their stability is guaranteed when 

(la) 

(lb) 
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C(x, y, z) > 0; (Ic) 

H is the total Maxwell field and M and M^ are the 
magnetization vector and its magnitude, respectively. As 
emphasized above, we shall confine ourselves to the 
situations where both the external field and the 
conduction currents in the object are zero. In the same 
order of approximation as (1), the total energy G is given 
([25], p. 154) by 

G = - 2 Mo 
all space 

where the integration is over all space, and which is 
minimal when the demagnetizing field H^ is zero, so that 

V . M = 
dM^ dM„ 

dx + dx 
= 0 

within the object volume V, and 

M . n = 0 

(2a) 

(2b) 

on S; K defines the space occupied by the object, and S 
and n respectively denote its bounding surface and the 
outwardly pointing unit vector normal to S. M^ and M^ 
are the lateral M components with respect to a Cartesian 
coordinate system. Relations (1) and (2) are the key 
equations of the present theory. 

• Ambiguities in M 
Since we confine ourselves to the two-dimensional M 
distributions in which M is constrained to lie in the film 
plane, we need only consider the projection of M onto 
the x-y plane. One of the dependent variables in (2a) can 
be removed by virtue of constraint (lb), substituting 

M = M cos 0 

and 

M^ = M. sin 0, 

(3a) 

(3b) 

where <t> is the angle of the magnetization direction with 
respect to the positive x-axis in the x-y plane. Then 
Equation (2a) transforms into 

—y- sm d> + -— cos 0 = 0, 
dx dy 

which can also be written as 

—p sin 4i + g cos 0 = 0, 

(3c) 

(3d) 

being a quasilinear first-order partial differential equation 
of the general form 

G{x, y, 0, p, q) = 0. 

The so-called characteristics of Equation (3d) are 
defined by the following set of ordinary differential 
equations (see [26], pp. 61-66): 

(3e) 

dx 
dt ^ 

dy 
dt ~ 

d<j> 

dt '' 

30 
= -T- = -sm 0, 

3p 

= — = cos 0, 
dq 

dG dG ^ 
dp dq 

dp dG dG 2 

dq dG dG 2 • 

(4a) 

(4b) 

(4c) 

(4d) 

(4e) 

where / is a position parameter along the characteristics. 
Equations (4a)-(4e) define a family of curves in the 
(x, y, p, q, t) space which are given by the intersection of 
the following set of hypersurfaces (see [26], pp. 10-15): 

M, = X cos 0 -f y sin 0 = C,, 

0 = Cj, 

P. 
q 

u. 

u C„ 

u^ = tsin(t> + x = Q , 

P + q ^ u, = y-x+ , = C;. 
p + g 

(5a) 

(5b) 

(5c) 

(5d) 

(5e) 

Equations (5a) and (5b) show that each characteristic 
base curve, being the projection of the characteristic onto 
the (x-y) plane, is a straight line with the magnetization 
perpendicular to it. The boundary condition, given by 
(2b), prescribes an alignment of the dipoles parallel to the 
edge to prevent surface charge from occurring. Hence, 
the characteristic base curves are straight Unes 
perpendicular to the edge. The latter can be made 
plausible in the following way. The characteristic base 
curves are the lines in the x-y plane along which a given 
M direction at point P governs M on its surrounding AS. 

Let 0(x', y') define a stable dilferentiable M 
distribution on AS, and let the y' axis of the coordinate 
system with origin at P be parallel to M at this point. Let 
A0(x', y') be a differentiable perturbation of 0 satisfying 
A0(0,0) = 0. The magnetic charge density p caused by 
this perturbation follows from the left member of 
Equation (3c) by replacing 0 with 0 + A0. The charge 
density at P is given by 

p = 
30 5A0\ . 30 aA0, 

r~7 + "TT COS 0 
dy' dx' ' 

M, 
(3A0 

'' dx'' 

This shows that the variation of M only in the direction 
normal to M is effective in inducing charge, charge that 
tends to recover the original stable situation. This 
direction is in compliance with the normal orientation of 
M with respect to the base curve; however, it does not 
prove the straightness of the latter curve. 543 
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(a) The intersection P of two base curves through the edge points 5, 
and S, (b) All characteristic base curves that intersect at/j" to/^ in an 
ellipse The initiating edge points are S, to 5^ 

(a) (b) 
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(a) Interpietation of the basic structure in terms of the locus of center 
rcles. (b) The position of domain-wall point P with respect to the 
: points 5| and S, 

Figure 1(a) shows two base curves corresponding to 
two edge points S^ and 5*2 that intersect in the point P 
within the object. M is perpendicular to these curves, so 
it is obvious that the edge segments at S; and Ŝ  prescribe 
two incompatible M directions at P. Let us examine 
more closely the consequences of this straightness and of 
the orientation of M. The boundary condition M • n = 0 
shows that the base curves are straight lines perpendicular 
to the edge. In Figure 1(b) a number of these base curves 
corresponding to the edge points with parametric 
position coordinates 5*, to Sg are depicted in an elliptical 
object. Observe that the base curves through S^ and 5, 
intersect at P^ and prescribe two different directions of M 
at the same point. It is shown elsewhere [27] that similar 
conflicting requirements arise in the whole elhpse, where 
a maximum of four intersecting base curves at one point 
can be found in some regions. Thus, we are faced with an 
ambiguity in M, which is a result of the incompatibility 
of the continuous M distributions that are imposed by 
and extend themselves from the various edge segments. 
This nonphysical multiplicity in M can be dealt with 
only by allowing discontinuities in M along lines [27,28], 
i.e., by allowing domain walls such that the M 
distributions imposed by the various edge segments can 
be separated and matched. The simplest domain 
structures—the so-called basic structures—that can 
accomplish this task are treated in the next section. 

• The basic domain structures 
As stated previously, domain walls appear in the two-
dimensional images as curves across which M and the 
attendant base curves perform a discontinuous jump in 
their direction. To preserve the solenoidality of M, the 
component of M normal to the wall surface has to be 
continuous across this surface; i.e., the bisector relation 
applies ([25], Ch. 5). As a resuh, the tangent to the 
domain wall at any point P not at the extremity of the 
wall is parallel to the bisector of the base-curve segments 
with extremities at P and the edge points at which they 
originate. 

The domain-wall pattern and the dipole distribution of 
the basic structure in objects with an arbitrary lateral 
shape can be rigorously derived by using differential 
geometry [28]. Here we confine ourselves to stating 
without proof the ultimate conclusion and to discussing 
this result. It was proved [28] that the domain walls of a 
basic structure constitute the locus of all the centers of 
circles that, first, touch the object edge at at least two 
points and that, second, are completely situated within 
the object. 

We illustrate this law with the well-known Landau-
Lifshitz structure in a rectangular platelet [see Figure 
2(a)]. The circles marked 1, 2, and 3 touch at minimally 
two points at the edge and lie completely within the 
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platelet, so that their centers, 1', 2', and 3', respectively, 
are located at the domain walls. Note that circle 2 is 
touching the edge at three points, implying that its center 
2' coincides with a free domain-wall cluster knot (see 
[23], Ch. 4). Circle 6 is also completely situated within 
the platelet; however, it touches the edge at one point 
only, so that its center 6' does not belong to the locus. 

Opposite to this, circles 4 and 5 are touching at 
sufficient edge points; however, they are lying only partly 
within the object, so that centers 4' and 5' are not at 
domain walls. Having thus elucidated the law, let us turn 
our attention to an attempt to comprehend certain of its 
aspects. Figure 2(b) shows point F at a domain wall, 
together with both base lines that interconnect P with the 
edge points S, and Sj. We apply the Gaussian law to Part 
1 of the object, which is bounded by the edge and base 
lines PS, and PS^. Bear in mind that M is parallel to the 
bounding surface of the object, so that 

I I I V . M & = 0, 

and therefore, 

\ \ M • n rfS + M • n rf5 = 0. 

From this it follows that PS, and PS^ are of equal length, 
because the objects are plane parallel and thus have a 
constant thickness, and because M is normal to the 
characteristic base curves. The circle with radius PS^ and 
center P touches the edge at S, and S^ because the 
tangents to the edge at S, and S2 are perpendicular to PS^ 
and FSj, respectively. Note that this does not imply that 
the circle is completely situated within the object. 

Let us focus on a second consequence of the law and 
take a look at the extremities of the domain walls. Figure 
3(a) shows one single domain wall along the symmetry 
axis of an ellipse which clearly constitutes the basic 
structure of Figure 1(b). The edge pointe S, and S^ of 
Figure 1(b), which correspond via the base curves to the 
wall extremities 0, and 02' demarcate two edge 
segments, imposing two (in principle) incompatible M 
distributions, which are matched at the domain wall. 
Obviously, the wall at Q, separates the base curves 
corresponding to the edge points at infinitesimal 
distances from S^ and on both sides of S,. The base 
curves mentioned above intersect at Q^, so that Q^ is the 
center of curvature of the edge at S,. It can easily be 
understood that the radii of curvature are locally minimal 
at S, and S^. In general [28], each extremity of a domain 
wall in a basic structure that does not coincide with 
extremities of other waUs is located at the center of the 
radius of curvature of a convex edge segment with a 
locally minimal radius. In the case of edges with vertices, 

— T™" m rA 
{^^^•H 

1 

gf -v:r- % 

idi 

,: Ferrotluid pattern', of b4sic structures in Permalloy thin-film 
; elements with various lateral shapes. Dimensions of the specimens, 
" ^0 to 100 Aim thll.kne^•. 2500 \ 

as in the rectangular platelet, these centers of curvature 
coincide with the vertices. The requirement of convexity 
to the edge segment follows from the fact that the base 
curves of concave edge segments have no points of 
intereection in the region adjacent to this segment where 
M is governed by this segment. An example is provided 
by Figure 3(b), where no domain wall adjacent to the 
sole concave vertex betrays itself, while, opposite to this, 
each convex vertex has its wall. Figure 3(c) shows the 
positions of the wall extremities in the case of two convex 
edge segments. 

The degenerated domain structure in the circular 
object of Figure 3(d) deserves special attention. In this 
case, the family of circles mentioned above reduces to 
one single circle, namely the circular contour of the 
object, so that the wall configuration simpUfies to one 
single point in the object center. One single domain wall 
matches the M distributions imposed by both circular 
segments in Figure 3(e). It has been proved elsewhere 
[29] that this wall possesses an elUptical shape. Finally, 545 
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(a) 

(b) (c) 

Kerr obseivations of basic domain structures in rectangulai 
Peimalloy thin-film specimens. Dimensions: (a) 20 x 50 jum, 
(b) 50 X 50 yixm; thickness of both specimens = 350 A. (Courtesy ot 
B Aigyle and coworl^ers, IBM T. i. Watson Research Center. 
Yorktown Heights, NY.) 

(a| A multiply connected Pei malloy specimen v, ith an outer diameter 
ot 50 /am and film thickness ot 2500 A. (b) The corresponding basic 
configuration, (c) Construction of the actual domain structure with 
shorter wall length. 
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the symmetrical configuration in a regular hexagon is 
shown in Figure 3(f). Figures 4(a) and 4(b) show the 
basic structures in rectangular Permalloy samples, as 
observed by Argyle and coworkers by means of their 
Lamon-Kerr system, in which the M distributions within 
the domains can also be discerned. The agreement with 
the predicted M distributions is completely satisfactory. 
Additional examples of basic structures can be found in 
[30-34]. 

Until now, only simply connected objects have been 
discussed. Figure 5(a) provides an example of a simple 
domain structure in a multiply connected object (an 
object with one or more holes) which is not a basic 
structure. The corresponding basic structure is shown in 
Figure 5(b). Note that it is characterized by a greater wall 
length in comparison with Figure 5(a), and that the 
actual M distribution exhibits a smaller energy, and, in 
good approximation, is also solenoidal (divergence-free). 
The observed structure is an example of the 
so-called composite structures coming up for discussion 
in the next sections. How this minimal wall-length 
configuration can be systematically constructed is 

described in [28] [see also Figure 5(c)]. A more dramatic 
reduction in the wall length in comparison to the basic 
structure is observed in the ring-shaped object of Figure 
6. The inner edge of this object runs perpendicular to the 
characteristics stretching out from the outermost edge, so 
that no conflicting dipole distributions are imposed by 
the inner and outer edges. Moreover, note that the 
characteristic base curves intersect in the center of the 
ring, where no magnetic material is present. Therefore, 
the origin of the conflicting requirements to M, by which 
the domain waUs become inevitable, is removed. This 
ring constitutes an important case, for it is a preeminent 
example of the so-called paraUel regions discussed in the 
next section. 

• The composite domain structures 
In the foregoing sections, we have been faced with the 
inevitability of domain walls as a consequence of the 
nonUnearity of Equation (3) due to the constraint 
M • M = MJ. In this section, this nonUnearity also 
emerges as the origin of multiplicity in the domain 
structure. To demonstrate this nonuniqueness, we 
decompose the area of the object by defining auxiliary 
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.'-•Vi^mmf4s0m 
(.a) Ring without domain structure (b) Basic structure in a Permalloy 
ring with an outer diameter ol 50 /xm and fihn thickness of 2500 A. 

edges into a number of disjunct subregions whose union 
completely covers the object. In each subregion, we 
define a solenoidal M distribution with M parallel to the 
boundaries of the subregion. Of course, these solenoidal 
distributions do not mutually interfere via magnetic 
fields, so that such a decomposition is always allowed, 
and the aggregation of the subdomain structures is a 
feasible configuration in the object. In order to cover all 
domain structures possible, we shall again examine the 
general characteristics of the M distributions in the 
domains. 

We elaborate a general procedure in the foUovring 
subsection by which a unique decomposition of the 
object into disjunct subregions that completely cover the 
specimen is accomplished. This decomposition into 
subregions is completely defined by the M distribution. 
A procedure is subsequently outlined from which all 
feasible subregions can be derived that cover any 
arbitrary thin-film object, and that defines domain 
structures satisfying our requirement of solenoidality. 

Decomposition into subregions 
In Figure 7(a), we have depicted domain ABCDE, which 
exhibits no interior domain-wall configuration, so that 
the characteristic base lines (denoted by the thin lines) 
defining M in this domain have no points of intersection 
here. Moreover, we have plotted all orthogonal 
trajectories (the dashed curves) of this family of base lines 
that pass through the cluster knots A, B, C, D, and E (see 
Section 1 for the definition of a cluster knot) and all 
trajectories that touch at domain walls. Note that these 
trajectories coincide with field lines of the M vector field 
and are parallels in the geodesic sense, and that the 
decomposition of the domain area is uniquely defined. 
Each pair of adjacent parallels bounds a region, a so-
called parallel superregion, with a specific width, which is 

(b) 

msmmm 
i; (a) Decomposition of domain ABCDE into regions bounded by the 
; parallels through the cluster knots A. C, D, and E. (b) Further 

decomposition of legion "! by cluster knot H 

the geodesic distance between the parallels measured 
along the base curves. 

Let us trace the production of the parallel superregion 
3 across wall CD. It was emphasized previously that the 
bisector relation applies to the M jump across the wall, so 
that the base curves of domain ABCDE intersecting wall 
CD transpose uniquely into base curves in domain 
CDFGH. The parallels bounding region 3 are produced 
in domain CDFGH without changing the width of region 
3 [see Figure 7(b)]. Note that region 3 contains cluster 
knot H, where the flux of this region bifurcates. 
Therefore, 3 is further decomposed into 3' and 3". This 547 
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(a) Separating domain wall between two adjacent segments (i) and 
(i + 1 ) . (h) The coupling of three successive segments, (c) The 
coupling of four parallel segments whose points of intersection 
at the p-edges coincide, (d) A complete parallel subregion and its 
domain walls. 

decomposition also extends itself into the original 
domain ABCDE, so that the widths of the subregions 3' 
and 3" are preserved through aU domains, pro\dded no 
further bifurcation at cluster knots or at domain walls in 
other domains takes place. When 3' contains a cluster 
knot in some domain, a further decomposition is carried 
out. In this way, a unique decomposition into subregions 
bounded by parallels can be specified for any solenoidal 
two-dimensional M distribution. (Situations not covered 
above are treated elsewhere [35].) 

Let us examine more closely one such subregion, e.g., 
3" in Figure 7(b). Assume that this region is not further 
subdivided by a cluster knot; if this is not the case, we 
consider region 3'" that satisfies this condition. In Figure 
7(b), we consider the segment abed of 3". At the 
characteristic through a and b, M is assumed as indicated 
by the arrow, so that M at line cd can only have the 
marked direction normal to cd. Evidently, hne cd cannot 
coincide vsdth the object edge, so there must exist another 
segment cdef of 3" that meets segment abed at line cd. 
Thus, line cd is replaced by ef However, the same 
argument for the extension of abed applies also to abef. 
Therefore, an impeding expansion of the number of 
segments of 3", and, along with this, an unbridled growth 

of the 3" area, can only be warded off by allowing line gh 
to coincide with ab. 

In other words, 3" and thus all subregions are bounded 
by two (or in special cases by one) closed curves, which 
are orthogonal trajectories of the characteristic base Unes. 
In principle, the M distribution in these multiply 
connected regions bounded by two of these curves— t̂he 
so-called parallel (sub)region—is not yet known, while 
the simply connected ones bounded only by one closed 
curve contain the well-known basic structures. Hence we 
are able to construct all solenoidal M distributions 
possible when a general procedure for the derivation of 
the parallel regions and their M distributions is at our 
disposal. This is the main theme of the following section. 

Parallel subregions 
As discussed, a parallel subregion is a multiply connected 
ringlike area bounded at both sides by parallels, which 
are orthogonal trajectories of the base curves. A specific 
width can be attributed to each parallel subregion. We 
compose each parallel subregion by combining basic 
units—the so-called parallel segments—where the width 
of the parallel segments is equal to the width of the 
parallel subregion under consideration. The 
magnetization in a parallel subregion has a specific 
rotation sense, and the segments of the subregion are 
consecutively numbered in compliance with this sense. 
How the adjacent segments in such a ring are linked and 
what restrictions apply are outUned only roughly here; for 
further details the reader is referred to [35]. We now 
define a parallel segment. 

A parallel segment is a region with a continuous M 
distribution that is enclosed by two parallels of a family 
of straight characteristic base Unes and two of these base 
curves at both ends [see Figure 8(a)]. The parallels of 
segment (0 are denoted by (0^ or (i)^ depending on 
whether they are on the right-hand or left-hand side, 
respectively, of the arrow indicating the circulation sense. 
Clearly, both corresponding edges of two successive 
segments have to intersect; however, they may also touch 
each other pairwise. In the latter case, the base curve that 
passes through both points of contact of both 
corresponding edges constitutes the intermediate 
boundary between the effective parts of segments (i) and 
(/ -f- 1). Note that the union of these parts is again a 
parallel segment, so that the definition in this case (i + 1) 
does not make much sense. Figure 8(a) presents the 
opposite situation with two points of intersection 5, ,^, 
and P, ,+ |. Here, the M distributions of segments (i) and 
(i + 1) are matched by the domain wall running between 
S*,;̂ , and P; ;^,. It is shown elsewhere [35] that this wall 
is the locus of centers of circles that touch both at 
segment 5", ,+ ,S; and at Sll^^Sj^^ or, alternatively, that 
touch both at segment P^^^Pi+i and at P,;,+,P,. Herein, 
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each pair of points (5*,,+ , and 5",), (5,,.^, and 5',+ ,), 
(Pij+, and P,) and (/*,,+ , and P,^,) is located on the same 
characteristic base Hne. 

Consider the three successive segments (1), (2), and (3) 
[see Figure 8(b)]. Of course, we can express the 
separating wall between each pair of adjacent segments in 
terms of a locus of centers of circles. However, both 
domain walls are not mutually independent. They should 
arise in the right sequence and should not have points of 
intersection. This requirement is satisfied when the points 
of intersection of the corresponding edges have the 
correct sequence, and, in addition, when the edge 
segment 82^8^ does not intersect its pendant S^^S,- The 
necessity of the latter requirement is proved in Appendix 
A; however, that such a relationship exists can be 
intuitively seen by bearing in mind the following. The 
edge segments ^2 35*3 and 5, j ^ , together with edge (2)̂  
determine the course of the walls between parallel 
segments (3) and (2) and of the one between segments (2) 
and (1), respectively. Of course, for reasons of symmetry, 
a similar restriction applies to edges (1)̂  and (3)^. 

The region of segment (2) between the above walls is 
denoted as ^3. The chain of segments in the parallel 
subregion can be extended at will on the condition that 
TT, n TTj n • • • n ir„ = 0, where n is the total number of 
segments of the subregion. 

We examine briefly one important particular situation. 
Observe that three walls meet at cluster knot C in Figure 
7(b). Thus, three segments of region 3" have one point in 
common at the segment edges at this vertex of 3". Such a 
configuration can be considered as a degeneration of the 
situation of Figure 8(b), when P^ 3 and P, 2 coincide in 
the hmit. Note that P2 3 and JP, 2 still arise in just the 
correct order. Of course, the restrictions to the shapes of 
the segment edges, as discussed above, apply again. In 
general, we are not restricted to a number of three 
parallel segments with one common edge point. Figure 
8(c) shows a combination of four segments. However, it 
can be shown by the cluster relations [35] (see also the 
subsection on corner clusters) that this number of 
segments must be even when the vertex angle inside the 
parallel subregion is smaller than n. 

A degeneration of the above situation presents itself 
when we take the vertex angle equal to TT; i.e., the vertex 
is replaced by a continuous edge. From the edge-cluster 
relations [35] (see also the subsection on edge clusters), it 
can be seen that the number of parallel segments is even 
and larger than two. An example of a complete parallel 
subregion in which these types of segment combinations 
can be observed is given in Figure 8((i). 

Construction of the composite structures 
We now recapitulate the principal findings of the 
previous sections. The decomposition of the area of the 
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(a) 

(b) (c) 

(a) Decomposition of the object into subregions. Auxiliary edges are 
indicated Iny the dashed lines, (b, c) Two of the domain structures 
corresponding to decomposition (a). 

object into a number of disjunct subregions that 
completely cover the object has been introduced. Two 
different kinds of subregions have been distinguished: 
first, simply connected subregions in which the basic 
domain structures are present, and second, multiply 
connected parallel regions with their associated dipole 
distributions. It has been shown that any solenoidal two-
dimensional M distribution possible in thin-film objects 
can be described in terms of united subregions with either 
basic or parallel configurations. Therefore, a general 
procedure by which any parallel subregions can be 
constructed suffices to cover all possible dipole 
configurations. 

The starting point in this construction is the parallel 
segment. A parallel segment is bounded by two field hues 
of the M vector field, the parallels, and, at each end, by 
one characteristic base line. The parallels have 
continuous directional derivatives, and, measured along 
the characteristic base curves, the edges have constant 
distance, namely the segment width. A parallel subregion 
is a combination of overlapping parallel segments with 
equal width that constitute a ring-shaped closed 
configuration. Either two adjacent segments are coupled 
by one domain wall that interconnects the points of 
intersection of corresponding parallels, or a continuous 
transition exists in the case where the parallels of both 
segments touch pairwise. The various segments 
separating domain walls cannot intersect each other and 549 
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A number ot composite structures in which the object decomposes 
into a number of simply connected subregions. The dashed lines 
indicate the auxiliary boundaries of the subregions: (a) Permalloy 
(60 X 20 /xm, thickness 2500 A); (b, c) Permalloy (60 /u,m, thickness 
2500 A). 
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can only have their extremities in common. In the latter 
case, regions arise that, at first glance, can hardly be 
recognized as parallel regions [see Figure 8(d)]. 

During the construction of the parallel configurations, 
we have assumed a specific circulation sense of M. It is 
obvious that the ultimate shape of the parallel subregion 
and its domain-wall configuration are equally valid when 
the circulation sense is the opposite. Similarly, the basic 
wall configuration in simply connected subregions does 
not depend on the circulation sense. On the other hand, 
a 180° wall must arise at the intermediate boundary 
between adjacent subregions with opposite M on both 
sides of the intermediate boundary, so that the domain-

wall configuration is positively affected by the circulation 
senses in the various subregions. Given only the shapes of 
the n subregions in which the object is decomposed, 2""' 
different wall configurations are possible. A few examples 
are provided by Figures 9(a)-9(c), where two of the 
sixteen possible configurations are shown. In this, the 
auxiliary edges are indicated by dashed Unes. In Figure 
10, three examples of Bitter patterns are given in which 
the composite structures are simply the composite of a 
number of basic structures in a simply connected 
subregion whose auxiliary boundaries are, again, 
indicated by the dashed lines. Of course, each of these 
basic structures is again the locus of centers of circles that 
touch minimally at two points of the corresponding 
subregion's boundaries and are completely situated 
within that particular subregion. A Kerr image of the 
same type of composite structure is provided in Figure 
11(a), while Figure 11(b) shows a composite structure in 
the PI layer of a thin-film head as observed by A. Hubert 
and coworkers (Siemens A. G., Erlangen, FRG, private 
communication). 

Composite structures with greater complexity in which 
parallel subregions also show up are presented in Figure 
12. The domain structure of Figure 12(a) in a thin 
Permalloy layer exhibits two cross-tie types of 
substructures. The area of the object is decomposed into 
three simply connected subregions along the sample's 
central axis and two parallel subregions. In particular, the 
outermost parallel subregion is composed of a large 
number of parallel segments, which are coupled in a 
rather complex fashion. Figure 12(b) shows an 
interpretation of DeBlois's observation of a composite 
structure (see Figure 11 of [36]). This structure catches 
the eye because two "floating" domain walls are present 
with unconnected extremities in the middle of the 
specimen. The fundamental possibility of such situations 
is elucidated by the simply connected subregion of the 
dumbbell type, which contains two concave segments. 
Figure 12(c) shows another example of a complex 
composite structure borrowed from DeBlois (see Figure 
32 of [37]), which demonstrates the validity of the 
procedure presented above for specimens in which the 
impact of the anisotropy is distinctly visible. References 
[2, 33, 36-42] represent an arbitrary selection from the 
literature with photographs of composite structures in 
thin-film elements, and [43-48] of this kind of domain 
configurations in soft-magnetic whiskers. 

• Discussion of the solenoidal domain structures 
From the above examples, it can be concluded that we 
are faced with an overwhelming variety in structures and 
also in actual objects. All of these structures in a specific 
object have the same energy when the anisotropy and 
wall energy are neglected. Transformations between these 
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Kerr image of composite structures: (a) An array composed of basic 
I substructures (courtesy of B. Argyle and coworkers, IBM T. J. 
! Watson Research Center, Yorktown Heights, NY), (b) The PI layer 
, of a thin-film head, length 100 /am, thickness 5000 A (courtesy of 

A. Hubert and coworkers, Siemens A.G., Erlangen, FRG), 
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(b) 

solenoidal configurations can be realized by gradually 
varying the shapes and distribution of the subregions, on 
the condition that the geometrical rules for the parallel 
regions remain obeyed. No energy barricade is erected 
against these conversions, which, therefore, are reversible. 

Composite domain structures with parallel subregions: (a) Permalloy 
specimen (60 x 30 jum, thickness 2500 A), (b) Interpretation of 
domain structure of Figure 11 from [36]. (c) Interpretation of domain 
structure of Figure 32 from [37]. 
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The latter need not necessarily be true when an external 
field is present, because the M distributions are no longer 
solenoidal. There are strong experimental indications [49] 
that there exists a close correlation between the domain 
structure and the distribution of the Maxwell field, and 
that the latter penetrates the domains. As a consequence, 
the system's energy for a given external field will likely 
depend on the domain structure. A similar dependence 
on the domain geometry was observed in garnet layers, 
where it leads to topological hysteresis [50], in which, 
however, the domain-waJl energy also plays an essential 
part. Even so, the wall-stray fields in soft-magnetic 
elements may result in a net hysteresis [51] (see also 
Section 4). 

In the ideally soft-magnetic objects, these wall-stray 
fields originate in the domain-wall cores, where the 
torques due to the first-order variation in the exchange 
energy, which is not covered by constraint (lb), are 
counterbalanced by magnetic fields. However, there is a 
much more obvious reason that accounts for differences 
in the energy among the various domain structures. 

Until now, no attention has been paid to the impact of 
the anisotropy energy upon domain structures. This 
energy will certainly be diiferent for the various domain 
structures in a given sample. In elements with small 
lateral dimensions, there is a tendency toward domain 
structures with a minimal wall length, i.e., toward basic 
structures in simply connected objects. This can be 
explained as follows. Given a certain lateral shape, the 
wall and anisotropy energy are a linear and a quadratic 
function of the linear scaling factor of the lateral 
dimensions, respectively. Therefore, the anisotropy 
energy dominates in objects with large lateral dimensions 
and thus tends to enforce complex structures—the 
composite structure—in order to reduce the area of 
domains with an unsuitable M distribution. 
Experimental support of this statement is abundantly 
provided by, e.g., the previously cited works of DeBlois 
[36-37]. 

A brief discussion of DeBlois's [37] broad view of the 
order in the domain structure is called for. He defined 
topological diagrams involving a number of closed loops 
in the domain structure along which there is fiux closure. 
It is self-evident that these closed loops resemble the 
parallel subregions. On the other hand, in general, each 
DeBlois loop contains a number of parallel and simply 
connected subregions. However, DeBlois's approach is 
meant as a schematic analytic tool and is not an attempt 
to predict the possible domain-wall configurations in his 
rectangular thin-film objects. 

A discussion of the work of Williams [52], who 
confined himself to domain structures in ideally soft-
ferromagnetic thin-film elements with polygonal lateral 
geometry, is also timely here. His domain configurations 

exhibit a very close resemblance to the basic domain 
structures presented in this paper; however, differences 
reveal themselves in the case of objects with concave edge 
segments. In the polygonal simply connected segments to 
which Williams confines himself, this situation presents 
itself as soon as vertices are present that cover an arc 
larger than 180° inside the specimen. In this situation, the 
basic structures have shorter wall lengths and thus lower 
wall energy and are therefore more likely. It is self-
evident that, because of these deviations, the Williams 
structures do not fit into our unifying description of the 
basic structure in terms of loci of centers of circles. 
Moreover, the present approach not only covers a wider 
range of object geometries but also the large variety of the 
composite structures. Finally, this work offers a 
methodology by which all possible configurations can be 
generated in a systematic fashion. 

Let us reconsider our solenoidal domain structures 
from the viewpoint of topological defects [53]. In our 
two-dimensional projection of M, the domain walls 
constitute one-dimensional defects, i.e., lines of 
discontinuity in M. Toulouse and Kleman [54] proved 
that only point defects are topologically stable in a two-
dimensional vector of fixed magnitude. In their view, any 
basic structure in simply connected objects should always 
contain only one point defect, having winding number 
one, while more point defects may arise in composite 
structures. The inconsistency in the conclusions of the 
present and the topological approach can be explained as 
follows. The topological theory is based on the 
continuous extension of M into the interior of a closed 
curve, at which a continuous M is defined, while, in the 
present theory, we impose the extra requirement of 
solenoidalily on M. This implies that the above extension 
of M is subjected to an extra requirement of the 
solenoidality on M, implying that the above extension of 
M is subjected to extra restrictions. It is still an unsolved 
problem whether these requirements of solenoidality also 
require line and surface defects to occur in the three-
dimensional vector fields. In the near future, an answer 
to this question will Hkely be found by means of the 
three-dimensional theory presented recently [55]. 

3. Domain-wall clusters and their conversions 
In Section 2, we have focused on the two-dimensional 
divergence-free M distributions in the plane-parallel thin-
film objects. Unfortunately, we cannot rely, in the ideally 
soft-magnetic objects, on the assumption of solenoidality 
when an external magnetic field is applied. Up to now, 
no theory that provides explicit solutions for the M 
distribution has been developed. This even applies to the 
category of the ideally soft-magnetic media, although 
these are governed by the relatively simple constitutive 
equation (1) and the Maxwell equations for the quasi-
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static case. The reason for this is the nonlinearity 
introduced by the constraint M • M = M^. We therefore 
return to a less ambiguous local approach. 

We focus our attention at those locations where the 
most information can be derived from observations 
about the M distribution and where extra constraints are 
imposed on M. Domain walls are the best visible 
magnetic features, and as a consequence those positions 
where a number of these domain walls meet are 
preeminently suitable as the object of study. Therefore, 
the domain-wall cluster is defined as the collection of all 
domain walls that have one region—the so-called cluster 
knot—in common. In this paragraph, we present a 
number of relations that correlate the mutual domain-
wall positions and the dipole distribution in the domains 
in the immediate vicinity of the cluster knot. The mean 
lateral M component (M >, averaged over the film 
thickness, will herewith be the central parameter. The 
extent of the region in the lateral direction in which 
sufficient correlation exists is sufficiently large in 
comparison to the domain-wall core widths that a two-
dimensional projection of the M distribution on the film 
plane suffices. Thus, the domain walls show up as simple 
lines. 

We do not derive the formulae used, since a derivation 
can be found in [25]. Instead, special attention is devoted 
to relatively simple clusters, which are frequently 
encountered in practice. In this way, we hope to 
emphasize the usefulness of the cluster concept as an 
analytic tool from which much additional information 
can be derived. Moreover, it reveals much about the 
general order in the domain-structure transformations in 
the soft-magnetic thin-film objects. 

• Domain-wall clusters: Static properties 
We formulate a few starting points, assuming that no 
singularities in the magnetic space-charge density can 
occur within the ideally soft-magnetic objects except for 
their bounding surfaces, at which surface charge can be 
present. This implies that no net surface charge can be 
present at the domain-wall surfaces; i.e., the component 
of M normal to the wall surface is continuous across this 
surface. This introduces a relationship between the wall 
surface and the M directions at both sides, a correlation 
often referred to as the bisector rule. 

The validity of this assumption is carefully considered 
elsewhere [25]; however, its ultimate origin can easily be 
understood. Equation (1) prescribes that outside the wall 
cores, the total Maxwell field H should be parallel to the 
magnetic dipoles at both sides of the wall surface. The 
dipole rotation across the wall surface has a 
discontinuous character, at which the M component 
tangent to this surface exhibits a jump. The Maxwell field 
H is continuous in a region where the magnetic space-

charge density remains finite, so H must be zero at the 
wall in these circumstances. Of course, surface charge can 
be assumed at the wall surface; however, such a charge 
pattern gives rise to a discontinuity in the field 
component normal to the wall surface instead of parallel 
to the surface. It has been shown [25] that in the presence 
of this surface charge, it is impossible by the addition of a 
continuous field to obtain a situation where the total 
Maxwell field is simultaneously aligned along the dipoles 
at both sides of the wall. Therefore, the total Maxwell 
field is zero at the wall, and the bisector relation applies 
in the present idealized situation of perfectly soft-
magnetic media. Of course, differences will occur due to 
the finite width of the actual wall cores and due to the 
unavoidable residual traces of intrinsic anisotropy. A 
rough estimation teaches us that the impact of these 
perturbations is the largest for domain walls with about 
zero wall angle. The deviation from the bisector rule in 
this worst case is about a few degrees from realistic layers 
and media. 

Above, we have discussed the impossibility of surface 
charge at surfaces within the object. Next, we shall pay 
attention to Une-charge singularities, and, in particular, to 
those that might coincide with the cluster knot. Here, a 
careful analysis is omitted (see [25]); rather, a display of 
the essential ideas is pursued. Let us focus on the dipole 
distribution of Figure 13(a), which shows the top view of 
one of the simplest dipole configurations that gives rise to 
a space-charge singularity. This circular M pattern with 
constant radial M component (M,) produces a charge 
density p = {M^}/r within the cylinder about the cluster 
knot with height ft, equal to the film thickness. Here, r is 
the distance with respect to the cylinder axis of P, the 
point where p is determined. By applying the Gaussian 
law and the relation V • M = - V • H, it can easily be 
seen that a discontinuity arises in the radial component 
H^ of the field H when passing through the cluster knot 
[see the diametric points P, and Pj in Figure 13(a)]. Since 
both points P, and Pj can be chosen at a very short 
mutual distance, the contribution H^ to the Maxwell field 
H of the other field sources located outside the cylinder is 
in good approximation equal in P^ and Pj. Since H^ is 
opposite to (M^) at both P^ and P2, it is impossible to 
select H^ such that Equation (1) is simultaneously 
satisfied in both P^ and P^. As a result, this space-charge 
Une singularity represents no feasible dipole constellation 
in ideally thin-film objects. It is shown elsewhere that the 
same conclusion applies to the general line singularity. 

An important implication of the absence of these kinds 
of singularities reflects itself at the cluster knot. Actually, 
the above paragraph leads to the conclusion that (M^) 
has to be zero; i.e., no net (M) flux is allowed into the 
cluster knot in any sector. Let us have a look at the M 
distribution near the cluster knot 0 between the domain 553 
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(a) 

(b) 

direction of the tangent to wall (1) at 0. Since the space-
charge density is finite within such a uniform sector, the 
rotation of M across this sector declines to zero at a very 
short distance from cluster knot 0. Of course, a similar 
uniform sector bounded by wall (2) and the dashed curve 
at the left in Figure 13(b) is present adjacent to wall (2). 
Between the dashed curves, a sector—a so-called rotation 
segment—remains in which M rotates in a circular 
fashion about the cluster knot. Here, (M^) reduces to 
zero at an infinitesimal distance from the knot (an 
analytic derivation is given in [25,26]). 

In conclusion, two different continuous magnetization 
modes have been traced for tracking the course of M 
about the cluster knot: to wit, the uniform sectors 
adjacent to the domain walls and the rotation segment in 
the middle of the domain sector between two uniform 
sectors, being bounded by two segment edges [the dashed 
curves in Figure 13(b)]. A domain that merely contains 
one single uniform sector with respect to a specific cluster 
knot 0 will be called a uniform domain of that cluster 
[see Figure 14(b)]. On the other hand, a domain that 
contains two uniform sectors and one intermediate 
rotation segment will be referred to as a rotating domain 
of the specific cluster [see Figures 14(a) and 14(c)]. It 
should be noted that the sector angle 0 of the rotation 
segment may be zero in a degenerated rotating domain 
[see Figure 14(a)], so that the M rotation across the 
domain sector reduces to zero near the knot; however, it 
is still a rotating domain, containing segment walls. 

Finally, we shall put forward a classification scheme for 
the clusters which is based on the position of the cluster 
knot with respect to the object edge. This distinction is 
inspired by the difference in the boundary conditions that 
apply for clusters (see Figure 15) with knots located at 

(a) A circular dipole distribution witli a radial M component <M> 
near the cluster knot (b) The continuous magnetization modes with 
respect to the cluster knot 0 
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walls (1) and (2) [see Figure 13(b)]. A jump in the M 
direction takes place at a domain wall (1). As a result, a 
radial M component is always present at both sides of 
this domain wall, which is ostensibly inconsistent with 
the above conclusion concerning (A/̂ >. However, note 
that any first-order perturbation of a uniform distribution 
also does not focus the M flux in a p-divergent fashion. 
Therefore, two sectors—the so-called uniform sectors— 
extend themselves at both sides of wall (1). Each of them 
covers an arc | <̂ ,' — (a, -I- 7r/2)|, where <i>[ and a, are 
respectively the (M) direction at infinitesimal distance 
from wall (1) within the domain in question and the 

1. No edge—the free clusters. 
2. One edge—the edge clusters. 
3. Two edges—the comer clusters. 

The free clusters are considered first. These are 
characterized by a great flexibility in the mutual domain-
wall positions and in the M distribution that corresponds 
to a specific domain-wall pattern. 

The free wall clusters 
The course of the lateral (M) vector through a domain 
near the cluster knot is determined by the mutual 
positions of the rotation-segment walls and the domain 
walls. A free cluster is a cyclical system in that the (M) 
direction must return to the direction of departure after 
tracing (M) at an infinitesimal circle around the knot 
over 360°. This constraint imposes hmitations on the 
possible combinations of rotation segments and uniform 
sectors. Here, a number of these relations are merely 
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posed, whereas the formal proofs can be found in 
[25, 56, 57]. 

Rotation segments have been traced as one of both 
magnetization modes that can exist in the domains. The 
course of M through such a segment is determined on 
the one hand by the sector angle 0, [see Figure 13(b)], 
and on the other hand by its circulation sense, which 
may be either clockwise or counterclockwise. It was 
proved that the circulation senses of the rotation 
segments in a specific free cluster are identical. 

In the Introduction, it was emphasized that only the 
domain walls arise as well-delineated features in most 
images, whereas rotation segments are often hardly 
visible. This fact hampers the analysis of the free clusters. 
Therefore, it is interesting to know whether the uniform 
domains, which arc lacking these rotation segments, can 
occur. A uniform subcluster is defined as the unbroken 
collection of all uniform domains in which each member 
has at least one domain of the collection next to it. It was 
proved that each uniform subcluster consists of an even 
number of uniform domains. Even so, a rotating 
subcluster has been defined as the unbroken collection of 
all rotating domains in which each member has at least 
one rotating domain of the collection next to it. Such a 
subcluster contains an arbitrary number of domains. Of 
course, the question arises whether there exist free 
clusteR consisting merely of uniform domains—the so-
called completely uniform clusters. It has been proved 
[25, 57] that completely uniform free clusters can exist, 
and that these comprise an even number of domains 
larger than three. 

In summary, it can be concluded that three different 
situations can present themselves: to wit, the free cluster 
may be a completely uniform cluster, it may contain an 
equal number of uniform and rotating subclusters, or, 
finally, it may be a completely rotating cluster. 

Across a domain wall, M changes jumpwise, and a 
specific clock-sense can be attributed to this jump, at 
which a specific observation direction, say from above, is 
presupposed [see Figure 16(a)]. This clock sense becomes 
distinctly apparent when the domain structure is 
visualized by Lorentz microscopy. In Figure 16(b), the 
deflection pattern of the electron beam near both 
domains of Figure 16(a) is depicted. Observed from the 
condenser side of the microscope, the clockwise and 
counterclockwise domain walls appear respectively as 
dark and bright bands in the image. It should be 
emphasized that the clock sense of the walls is always 
discerned in the Lorentz image, while the M distribution 
in the domains is only accessible when the object exhibits 
ripple due to stochastic spatial variation in the physical 
parameters. Let us return to the clusters and have a look 
at Figure 14 again. Figure 14(b) shows a uniform 
domain, and it can be seen that the clock senses of both 

i,.i) Domain -'i:'': !:hii'.>;r;i ;i:;i^iK'li.-j|:''i; ;:',i .\ iinit'nrr:. ;l'Vr-.iiii 
(c) Determining M near the cluster knot of a rotating domain requires 
knowledge of two domain-wall and segment-wall positions. 

'r^wm m Ihe classes of wall clusters (1) Free wall clusters, (2) Edge wall 
clusters, (3j Comer clusters. 

domain walls bounding that domain are opposite. It can 
be formally proved [25] that this inversion in clock sense 
is characteristic for uniform domains. As a consequence, 
a uniform (sub)cluster consists of a pattern of domain 
walls with alternating clockwise and counterclockwise 
rotation senses. In a Lorentz image, such a completely 
uniform cluster appears as a Ene pattern in which each 
dark line is enclosed by two bright lines, and vice versa. 
Returning again to Figure 14, we see that parts (a) and (c) 
show rotating domains in which the clock sense of both 
enclosing domain walls is identical. It can easily be seen 
that this relationship always applies for the rotating 
domains. Therefore, it can be concluded that each 
rotating (sub)cluster merely contains domain walls with 
one specific clock sense. 55S 
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Top view 

(a) 

Cross section 

1 ^ 'i»xj!t,-tf 

I Definition of the positions of the domain walls Oj and the M 
directions <l>. and 4>', in the unifomi sectors of domain (/). 

lb) where « > / > 0 and A: is an integer. In Equation (7a), 

(d) The flock sense of rotation of M acioss a domain wall when 
j viewed from the condenser lens side of the electron microscope, 
f (b) The deflection of a parallel electron beam and the image of a 
I domain in the object plane of the magnifying lens of the electron 
! microscope. 

•Mmmi 

Let us explicitly define the mutual positions of the 
domain and segment walls in a free cluster. The direction 
angles of the consecutive domain walls satisfy the 
inequality (see Figure 17): 

0 < a , < ttj • • < « , _ , < a , < a ; ^ , • • < a . < 2ii (6) 

The domain (i) may contain a rotation segment, so that 
the directions #, and #/ of the in-plane <M) components 
in the uniform sectors adjacent to domain walls (i- 1) 
and (/), respectively, are related by 

0; = 0, + / j , , 

where (3, denotes the sector angle of the rotation segment. 
By exploiting the bisector rule, a straightforward 
procedure [25] yields 

556 -i-"'ti- + 27' - fi', + 2rk, (7a) 

yi^li-if-'^ (7b) 

if J > / > 1, for J < /; t'J = 0, 

and 

if j > / > 1, but for J<i, 

fii=0. 

N o t e t h a t <t>„ = <!>,. 
Let us apply the above rather complex formula and 

our previously posited general rules to the simplest 
possible free clusters. 

The free singlet that contains one single domain wall 
only is the simplest cluster possible [see Figure 18(a)] 
which is always a completely rotating cluster. The 
rotation segment angle may vary between 360° and zero. 
In the latter degenerate case with p^ = 0, the domain wall 
disappears, and a locally uniform M state is present. Two 
examples of these free singlets can be seen in Figure 3; in 
general, however, they do not tend to show up very 
frajuently (for other examples, see [36, 37]). 

The cluster next in complexity—the free doublet— 
contains two domain walls. It contains rotating domains 
only. It can be seen from Equation (7) that the rotation 
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segment angles j3, and /Ŝ  are correlated with the mutual 
domain-wall positions a, and a2 by 

tf, - ft) 
+ kw. (8) 

where fc is an integer. It follows immediately from (8) 
that j8, = 02 when both domain walls are in line. Figure 
18(b) provides an example. On the other hand, both 
domain walls are at an angle when ^, = 0 and ft 5̂  0 [see 
Figure 18(c)]. Figure 18(d) shows the tip of a zigz^ 
domain which frequently represents this condition 
[58,59]. It is obvious that such a free doublet with one 
uniform domain has no reason for existence in soft 
magnetic media from the present point of view. When 
carefully observed, the image presented by Wade [60], 
duplicated in Figure 19, is presumably a more accurate 
representation of the tip of the zigzag wall. 

Let us shift our attention to the free triplets marked by 
B in Figure 19. Judging from the alternation in the dock 
sense of the domain walls in that Lorentz image, a 
uniform subcluster is present in each of these clusters. 
Note that these uniform subclusters do indeed consist of 
two domains. A detailed analysis of this situation [25] 
indicates that such a uniform subcluster can only exist 
when all three domain walls are located within a Kctor 
smaller than 180°, However, it can easily be seen by 
comparing Figures 18(e) and 18(f) that this is a 
necessary condition, though not a sufficient one. The 
triplet of Figure 18(g), which is a reconstruction of the 
Bitter pattern of Figure 20, has to be the completely 
rotating type, judging from the arc over which the 
domain walls are distributed. Observe that the rotation 
segments betray their presence by a rippled circular 
distribution of ferrofluid whose centers of symmetry 
coincide with the cluster knot. A Lorentz photograph 
(Figure 21) provides several examples of completely free 
triplets, which do not satisfy the uniformity condition. In 
each of these clustere, the domain walls show up as a 
pattern of either solely dark or solely bright lines. It 
should be emphasized that all Lorentz oteervations of 
this kind of free triplets presented in the literature [60-
64] confirm our predictions of their rotating nature. Let 
us determine when all domains of the triplet are 
uniformly magnetized. From Equation (7), it follows by 
putting ^4 = 4>i that 

(a) 

(e) 

\ / 
/ o \ 

(b) 

(f) 

(d) (g) 

(a) The simplest free cluster, (b) A free doublet with two dotnain 
walls that are in line (a, = a, — ir). (c) A free doublet with a kink in 
the domain walls at the cluster knot, (d) The tip of a zigzag wall, (e) A 
uniform subcluster in a free triplet, (f) .A. domain-wall configuration 
of Figure (18e) with only rotating domains, (g) Reconstruction of the 
free cluster of Figure 20. 

3 f*! X , 

which simplifies to 

3 •"• , 

= 7, + - + ^ir 

(9) 

for the situation with only uniformly magnetized 
domains. We take ^, = 0, so that y] is either w/2 or 

3x/2. In principle, both cases are equivalent and are 
represented by Figure 18(e) when the only rotating 
domain remaining is also uniformly magnetized. 
Subsequently, for <̂ , = w/l, the only situation of interest 
is defined byy\ = -w which, in principle, corresponds to 
the completely rotating free cluster of Figure 18(g), when 
all domains are uniformly magnetized. 5S7 
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I • I IU7 im.ijc III M.Horiil cclyc ulaslers of coniplelely lotaiiim-
u |i t> .IIKI OI -WO i.(iniplclel\ roKiilng free iju.ntcts (eciir 
•I s R, l leril . IBM T. J. Watsim Re>earch Center. Yorkti 

II I 'UN. NY). 

I iiti n: i i i . u e vi tree subelus ters wtlh Uiiilorni subciLf^lers 
III IK il. 1 b li and !w(i pairs ol" luinliiiked doiiunn w.ilK vvhieli 
pnlenlialK eonstilute ihe /itvaL' lips lOnirlesy of R.H. Wade (W'l). 

•:.,.r_.-7<j''.. 

t A ferrofluid pallem ot j i.umplLle'> roiatnit; tiee iriplel will iraeis 
that show the presenec ol the rotation sLgnienIs (Permallov iliiel ness 
2500 A) 

as cross-tie wall. The Lorentz image due to Feldtkeller 
and Fuchs [65] [see Figure 22(b)] demonstrates the lar 
number of domain walls that can reveal themselves in 
one single (in this case free) cluster. 

Let us recapitulate the most important properties of 
the free cluster as discussed above. 

1. The sector angle of a specific domain of a cluster ca 
generally be decomposed into two uniform sectors 
adjacent to the domain walls and a rotation segmer 
in the middle—a rotating domain, or ^lis angle 
contains one single uniform sector—a uniform 
domain. 

2. The rotation sense of the rotation segments is the 
same in a specific free cluster. 

3. The uniform subclusters consist of an even number 
larger than one of uniform domains, while no such 
restriction applies to the rotating subclusters. 

4. A completely uniform cluster consists of an even 
number of domains and walls larger than three, wh 
m odd cluster conM«s at least one rotatinl'domair 

5. The clock sense of the domain walls alternates in a 
uniform (sub)cluster, while it is the same for all wal 
of a rotating (sub)cluster. 

55B 

The number of domain walls in the free clusters 
considered up to now has been too small to yield 
completely uniform free clusters, which according to our 
view should contain at least four domain walls. Figure 
22|a) (due to Herd et al. {40]) shows four completely 
uniform free quartets. According to Equation (7), 

7* = («< - a j ) + («2 - « , ) 

is equal to ir for such a cluster. This type of pattern is 
frequently met in thin Permalloy films and is well known 

The edge clusters 
The edge cluster is characterized by the location of its 
cluster knot at one of the edges of the object. In contra 
to the free clusters, any closed path around the edge-
cluster knot contains a finite arc outside the magnetic 
medium, in which the previously signified rotation 
sectors and uniform sectors have ri6 meaning. Therefo 
it should be expected that the general order in the edge 
clusters deviates from that in their pendant—the free 
clusters. 

The location of the edge-cluster knot at the edge of t 
pbjea has important implications for the correlation 
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between the M distributions in both outermost domains 
of the edge cluster. The M component normal to the 
edge must be continuous at the edge and thus across the 
cluster knot, in order to prevent discontinuities in the 
surface-charge density from occurring. Such a 
discontinuity should lead to a singularity in the tangential 
component of the total Maxwell field, which should 
cancel out the discontinuity, as can be seen from 
Equation (1). Because of the continuity in the normal 
component in M, a rather strong correlation exists 
between the magnetization directions in both outermost 
uniform sectors of the edge cluster. Two situations can be 
distinguished: first, the M components tangential to the 
edge in both outermost uniform sectore are parallel—the 
so-called odd edge clustei^—or they are opposite, 
resulting in even edge clusters. It h ^ been proved 
elsewhere [25,66] that an odd edge cluster consists of an 
odd number of domain walls larger than two [10], while 
an even cluster with the opposite tangent M components 
at the edge contains an even number of domain waUs 
larger than one. Moreover, it has been revealed [25] that 
the ei^e clusters merely contain uniform domains. This 
fact indicates that a close relationship exists between the 
mutual positions of the domain waEs and the M 
distribution near the duster knot. This inter-"waveness" 
is reflected by the following relation [25] for an edge 
cluster with n walls (see Figure 23): 

/ i ^ ') 

0,-.,=f - ( - I ) ' ""T: + 27; - (-i)'fc^ + k,2w, (10) 

where A:, = 0, ± 1, ±2, • • •, with 

h-l 

if J > J > 1. If this condition is not satisfied, 7^ = 0. 
The parameter k is either zero or one, and is fixed for a 

specific edge cluster. It is obvious from Equation (10) that 
the M distribution, apart from a freedom of 180° 
represented by k, is uniquely specified by the mutual 
domain-wall positions. It is often convenient to have an 
explicit expression for the domain-wall angle | ̂ , | of wall 
(0 at our disposal, which follows immediately from 
Equations (7b) and (10): 

= 2 | ( - 1 ) ' ^ ' 'T^ -1-7, + irlj (11) 

where 1, is chosen such that 0 < | ̂ ^̂  | < ir. 
Since the above formulas, though general, are a little 

obscure, they are made explicit in Table 1 for a number 
of simple clusters which are frequently met in practice. 

Within the present framework, the edge singlet, i.e., a 
single domain wall with an extremity at a smooth edge, is 
only possible when the domain wall touches at the edge. 

• a) Font tuiiiplelely uniform quartets in a 360-A-thick Permalloy 
layer |4<.)|. (bi A free st-stel in a 3(Xl-A-thick Permalloy layer (65). 

The mutual positions of the domain walls in an (odd) edge cluster and 
the M directions in the domains. 

sss 
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T a b l e 1 The magnetization directions <̂ , and the wall angles | sp^ | for singlet, doublet, triplet, and quartet edge clusters. 

Cluster type M directions, 4> 
{For M ' = - M ; i|> + jr = < '̂) 

Wall angle, #j 
0 £ 11̂  J < 1-

Singlet 
n= 1 

Possible only when wall touches edge 

Doublet 
« = 2 • - - (aj - a^) 

2̂ = - + {«2 + «,) 

#3 = ^ + {Oj - a,) 

(12a) 

(12b) 

(12c) 

llAil = 2 | l , i r - a 2 (12d) 

1, = 1; a, a -

1. = 0: a, < • 

| ^ 2 - | = 2 | a , - I j j r l (12e) 

1, = 0: a, < T 

Ij = 1; a, > : 

Triplet 
n = 3 ^ - 2 + "3 ~ ("2 ~ " i ) 

~ 2 ~ " ' * "̂̂  '*' "' ' 

*4 = - ^ + «3 ~ («2 ~ «l) 

(13a) 

(13b) 

(13c) 

(13d) 

1̂ 11 = 2 loj —a2+ li*l (I3e) 

- n.\ < — 
2 

5r 

2 

| ^ 2 l = 2 | « 3 - a , + l 2 i r | (130 

2 

| ^ , | = 2 | ( « j - a , ) + l3* | (13g) 

2 

Quartet 
H = 4 ( « 4 - « } ) - ( « 2 - « l ) 

<̂2 = 2 + («4 ~ %) + («2 + «l) 

" ' " 2 • («4 - «3 + ("2 - « ) ) 

^̂  = - + (a^ + a^ - (a^ - a,) 

*5 = 2 "̂  ^"'' ~ "'^ ''' "̂̂  ~ "'^ 

(14a) 

(14b) 

(14c) 

(14d) 

(14e) 

| # , | = 2 | a , - a j + «2 + l, '- | (141) 

11̂ 21 = 2 l a a - t t j + a,+12-S-I (Mg) 

l^sl = 2 l a ^ - a ^ + cf, t l j ^ l (14h) 

| t ^ 4 l = 2 | a 3 - a 2 + a , + i , i | (I4i) 

560 
The reason for this can easily be understood. A domain lateral component (M) parallel to the film plane—across 
wall is characterized by a inite jump in M—the average the wall surface. It can easily be seen (Figure 24) that the 
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M directions at opposite sides of the wall are related by 

02 = T ~ 01 + 2ai + fc-TT. (15) 

The M component normal to the edge must be 
continuous across the knot; i.e., cos 0, = cos 02 in order 
to prevent a surface-charge discontinuity. From Equation 
(15), it follows that this condition is satisfied only when 
0, = a, ± ir/2, i.e., when the wall angle reduces to zero at 
the edge, or when the wall touches at the edge. Thus, an 
isolated distinctive domain wall with extremities at the 
edges points to an acute edge deformation or to a lack in 
the resolution power, so that satellite walls remain 
undetected, or to a relatively large domain-wall core 
width, so that the discontinuous character vanishes, and, 
finally, to a three-dimensional domain configuration. 

In practice, edge doublets such as those shown in 
Figure 25(a) are frequently encountered. Note that the 
clock senses of the walls are opposite in the Lorentz 
image. This should be expected, since the edge clusters 
consist merely of uniform domains. At low external 
fields, the magnetization tends to be parallel to the edge 
0, = 0 or T, so that the angle between the walls should be 
about ir/2 [see Equation (12a)], which is in compliance 
with the images discussed above. Observe that, apart 
from the uncertainty of TT, only the angle (a, — a^) 
determines the M directions in the outermost domains of 
the edge doublet [see Figures 25(b) and 25(c)]. Consider 
a degenerated doublet of which one wall, e.g., wall (1), 
touches the edge at 0. From Equation (12e), it is seen 
that the wall angle reduces to zero; i.e., the doublet has 
been converted into the only possible singlet. This 
degenerated doublet state is of great significance for the 
doublet creation, as we shall see. 

The edge triplets in the Lorentz image of Figure 21 
also exhibit the alternating pattern of black and white 
domain walls. Note that the middlemost domain walls 
are most visible; this has also been observed in numerous 
images of the edge triplet by means of the ferrofluid 
technique. Equation (13) provides an explanation. In the 
next section, we demonstrate that all of the walls of the 
edge triplets tend to develop themselves along the same 
line—the so-called creation line—and the angle (a, — Oj) 
is relatively small, so that 1,, l^, and I3 are zero in 
Equations (13e-g). It is obvious that the wall angle 11̂ 21 > 
being 2(a^ - a,), is equal to the sum of | ̂ , | and | ^31. 
Therefore, under the assumption that all walls possess the 
same type of structure, the visibility of this middlemost 
wall is the best. Again, from Equations (13e-g), it is 
readily understood that deviations from this trend are 
expected when the domain-wall angles become large. 
Consider the degenerated triplet in which two, e.g., walls 
(1) and (2), of the three walls coincide. From Equation 
(13g), it follows that the angle of wall (3) is zero and that 
the M distribution resembles a continuous configuration 

\nedjc sinj 

(a) Several edge doublets in a 600-A-thick Peimalloj la>er [62] 
(h, L) The angle «| - Q, between the doublet wall as a function of the 
field H|| peipendicular to the long edge, i.e., as a function of 0,. 
Peimalkn (60 \ 20/im. thickness 2.'500 A). 
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17 = 90' 

(2) 

Tl = 270° 

H<." 

(1) 

< ' 

(a) (b) 

7) = 90° 
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The M distributions near corners: (a) An acute corner; -q = 90°. 
(b) An obtuse corner; T) = 270°. (c) The acute corner of (a) with Hp 
rotated 45°. 

when the infinitesimally small sector between walls (1) 
and (2) is ignored. Consider the triplet of which all the 
walls coincide. All wall angles reduce to zero [see 
Equations (13e-g)], and a continuous M state results. 
This extreme situation will turn out to be of great 
significance to the creation of the edge triplets. 

The main characteristics of the edge clusters can be 
condensed into the following statements: 

1. The edge clusters are completely uniform clusters, in 
which the clock senses of the walls alternate 
consecutively when tracing the cluster in a clockwise 
or counterclockwise direction. 

2. Apart from an uncertainty of 180° in the M 
directions, a one-to-one correspondence exists 
between the mutual wall positions and the M 
distribution of the cluster. 

3. The M components tangential to the edge in the 
outermost domains are parallel in an odd edge cluster 
and are opposite in an even edge cluster. 

The comer clusters 
In corner clusters, the cluster knot is situated at an object 
comer, at which, in principle, the normal to the edge 
performs a discontinuous direction change. The acuity of 

the actual comer is of decisive significance to the 
properties of the M distribution. When the comers are 
rounded off", the "comer" cluster behaves as a hybrid of a 
comer, edge, and/or free clusters [25]. For that reason, 
the general relations for the comer clusters have a smaller 
practical scope than that of the previously discussed 
cluster relations. 

One of the peculiarities in the M distribution near the 
comers is the occurrence of persistent magnetized states. 
Because this subject was discussed extensively in [25], we 
confine ourselves to a brief outline only. Let us consider 
an acute comer, say with comer angle T? = 90° [see Figure 
26(a)]. An extemal field H^ is applied, which forces M to 
have a component normal to edge (1) near the comer. 
However, at the comer, the surface-charge density due to 
this normal M component diminishes and a singularity 
in the field component parallel to the edge under 
discussion arises. At first glance, the enormous strength of 
this field should force M to orient itself parallel to edge 
(1); however, a normal M component at the other comer 
edge (2) will develop itself in that case. Note that the 
signs of the charges at both edges that tend to arise are 
equal, so that the total field is oriented as indicated in 
Figure 26(a). In the stable configuration, the 
magnetization near the far comer is directed parallel to 
the bisector of both edges (1) and (2). Note that the role 
of the demagnetizing fields has been converted from a 
force that tends to a situation with zero mean object 
magnetization into a force that, at least locally, creates a 
magnetized state which appears to be rather persistent. 
These "locked" regions, in which the demagnetizing fields 
are magnetizing, have a significant impact on the 
hysteresis of the soft-magnetic objects. In such a region, 
only the domain walls that coincide with one or both 
edges can occur in the ideally soft-magnetic media [24]. 

The situation in an obtuse comer is slightly different 
[see Figure 26(b)]. Again, the extemal field HQ forces M 
to create a positive charge at edge (1). However, this 
time, the charge at edge (2) has the opposite sign, and the 
ultimate M direction near the far comer is perpendicular 
to the bisector of both edges. In light of the above 
discussion, the significance of the acuity of the comer is 
obvious and needs no further comment. It should be 
discerned that the charge collected at the top and bottom 
surfaces of the film near the comers may have a 
significant contribution to the field distribution in the 
comer region when the rounding radius is too large 
compared to the film thickness. In this situation 
deviations, particularly in the acute comer, occur with 
respect to the M directions predicted above. 

The foregoing arguments tend to lead to the conclusion 
that the comer clusters in perfect objects should only be 
present when the extemal field is zero. This is not always 
tme, as can be deduced from Figure 26(c), in which the 
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external field Hg is rotated over 45° with respect to Figure 
26(a). In this case, a vanishingly small magnetic surface-
charge density suffices in the corner to compensate Hg. 
Away from the vertex, a finite surface charge takes care 
of this compensation. As a consequence, domain walls, 
i.e., corner clusters, can be located in such a corner 
region. 

The above discussion indicates that the magnetization 
in the outermost uniform sectors of a corner cluster is 
parallel to the comer edges. It has been proved elsewhere 
[25] that the clusters in the acute corners (i.e., with 
comer angle r; < ir) are always completely uniform and 
satisfy 

1 

r 
(16) 

where «is the number of domain walls and 7" is given 
by Equation (7b). In an obtuse corner with 77 > TT, 
rotation segments may occur in the corner sector that is 
90° apart from both edges. The completely uniform 
clusters in these obtuse corners satisfy Equation (16). 
Moreover, it can be shown that any completely uniform 
comer cluster in which the M vectors in the exterior 
domains are either both pointing toward the cluster knot 
or both away from the knot contains an even number of 
domain walls. A completely uniform corner cluster with 
an odd number of domain walls has an M vector 
pointing toward 0 and one pointing away from 0 in both 
exterior domains. A number of examples of completely 
uniform corner clusters in Permalloy elements are 
presented in Figure 27. A reasonable agreement with 
Equation (16) is found. Figure 28 shows Lorentz images 
due to Gondo et al. [67], where the comers are 
magnetically saturated. 

• Domain-wall clusters: Reversible transformations 
In the previous section, we have covered the correlation 
between the mutual positions of the domain walls in the 
clusters and the M distribution near the cluster knot in 
the domains. Two M modes, namely the uniform sector 
and the rotation segment, can be distinguished. The 
location of the cluster knot with respect to the edges of a 
thin-film element determines the combination of uniform 
sectors and rotation segments that can occur in a specific 
cluster. This connection emerges very distinctly in the 
edge clusters, which lack the rotation segments. 

Domain structures can be considered as concatenations 
of domain-wall clusters. Clusters are added to and/or 
removed from the domain structure during its 
development phase. How the various clusters can 
transform and join an already existing domain 
configuration is discussed in this section. 

The conversions in the M distribution are known to 
bear a reversible character within finite ranges of the 

(,a) A completely uniform doublet; H,, = 260 A/m (= 3.3 Oe). 
77 = 124°; y^ = « , - « ! = 67°. (b) A completelv uniform doublet at 
P, H|| = 1280 A/m (= 16 Oe). rj equals 270°; y\ = a, - a^ = 
139°. (c) A completely unifbrm doublet at P: H,, = 2400 A/m ( = 30 
Oe). 77 = 270°; 77 = 130°. (d) A completely uniform triplet; H,, = 
2500 A/m(= 31 Oe). P,, T? = 266°, y] = 137°;/',, 77 = 266°, y] = 
132°. 

Lorentz micrographs of a Permalloy thin film (92 X 92 /um, 500 A 
thick) |67| lAternal field la) 400 A m ( 5 Oe); (b) 1200 A'ln 
I = 15 Oe) 

external field as long as its time rate of change is 
sufficiently small. This only applies when the impact of 
stmctural defects, which may particularly hinder the 
motion of the domain walls and the cluster knots, is 
negligible. The subordinate role of the imperfections is 
one of the prerequisites that must be m^ by the soft-
magnetic media which are the subject of this paper. At 
the boundaries of the above reversible ranges, an 563 
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instability in the magnetization structure heralds a short 
period of agitated spin motion, during which energy is 
dissipated. In contradiction to this, the conversions in the 
reversible ranges take place via a continuous sequence of 
equilibrium states, in which the dipoles in the entire 
object are in stable equihbrium in each intermediate 
stage. In this section, we confine ourselves to such 
reversible transformations. 

In general, the magnetization conversions take place by 
a coherent movement of domain walls and by a 
simultaneous rotation of the dipoles in the domains. The 
domain structure develops by concatenating domain-wall 
clusters. One possible reversible manner of adding 
clusters can be summarized as foDows. Those clusters 
that do not have all of their domain walls connected to 
other clusters may initiate the creation of new clusters 
which are then annexed to the domain structure. The 
addition of a novel cluster requires the formation of new 
domain walls of finite length. The dipoles within and 
adjacent to this domain wall must suddenly rotate over a 
finite angle, when the wall angle of such a novel domain 
wall is finite in the eariiest phase of its existence. This 
process must be attended by energy losses in order for the 
precession of the dipoles to die out. Therefore, the wall 

angle(s) of a domain wall(s) with a finite length(s) should 
be zero during the incipient phase of a reversible process. 
Of course, its pendant—the vanishing of a domain 
wall—should take place by a gradual decline to zero of 
the domain-wall angle. We refer to the former reversible 
process, in which domain walls are added, as (sub)cluster 
creation, and to the latter as cluster fading. Their 
irreversible counterparts are called (sub)cluster nucleation 
and annihilation, respectively. 

Apart from (sub)clmter creation, one other reversible 
process—so-caUed cluster furcation—exists by which the 
number of clusters can be increased. In principle, the wall 
angle(s) of the newly created domain wall(s) are finite 
from the very beginning, while the wall length(s) grow(s) 
from zero in the incipient phase to a finite value, so that 
a jumpwise alteration in the M distribution only takes 
place in an infinitesimally small volume. As a 
consequence, no energy barricade is raised against this 
process. Upon cluster furcation, the cluster knot of an 
already existing cluster is split up into two or more knots. 
These knots are generally interconnected by one or more 
intermediate domain walls. The length(s) of these newly 
formed intermediate domain wall(s) increase(s) from zero 
in the beginning to a finite value. The above cluster 
furcation has its pendant in the cluster fusion, at which 
two or more cluster knots amalgamate in a reversible 
fashion. 

Both categories of reversible cluster processes are 
closely examined in the two following sections. An 
exhaustive treatment is not pursued; rather, the various 
possibilities are elucidated by means of a restricted 
number of frequently occurring conversions. 

(Sub)cluster creation ami fading 
As discussed, the wall angle(s) of the newly added 
domain walls are zero during the incipient phase of 
(sub)cluster creation. The gradual growth of these wall 
angles during their development from zero implies that 
each domain wall should initially coincide vrith an 
orthogonal trajectory of the original continuous M vector 
field through the (prospective) cluster knot. A strong 
coherence between the domain walls has to be expected 
when the domain walls of the new (sub)cluster coincide 
with the same trajectory, which we call the creation line 
of the (sub)cluster. It is obvious that the wall angle of 
each domain wall along this creation is zero at the 
beginning. Further discussion is focused completely on 
the creation process, because the cluster fading is a 
duplicate of the cluster creation which progresses in just 
the opposite direction. 

Consider the creation of a free cluster with a 
prospective cluster knot 0 in a region of continuous local 
uniform magnetization (see Figure 29). Two creation 
fines at either side of 0, indicated by K, and K^, offer the 
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possil^ility of subcluster creation. First, we assume that 
the creation process confines itself to one side, say along 
«,. Note that (!>, and <̂ +̂, remain parallel, so that the 
subcluster along K, bears close resemblance to the odd 
edge cluster; i.e., it merely consists of uniform domains 
between an odd number of domain walls. It can be 
shown [25] that at least one of the two subclusters is of 
the uniform type, containing an odd number of domain 
walls, while a rotation segment may be present in its 
counterpart. A rotation segment contains an infinite 
number of potential creation lines along which new 
subclusters can develop themselves. No such creation 
lines are found in the uniform domains and, as a 
consequence, a completely uniform cluster should be 
transformed into a cluster with a rotating subcluster 
before the number of walls can be changed. Let us 
proceed to the edge clusters. 

It has been discussed in the subsection on edge clusters 
that the edge clusters merely consist of uniform domains, 
and as a consequence no subcluster can be added or 
removed in a reversible fashion. With this, the subject of 
the modification of the edge cluster seems to be 
terminated. However, do not forget the creation of a 
complete edge cluster. In Figure 30(a), the creation Une 
with prospective cluster knot 0 is depicted in a region 
adjacent to the edge with continuous magnetization. In 
principle, an edge cluster can be created. Note that the M 
in both prospective exterior domains has to be parallel. 
According to the subsection on edge clusters, an edge 
cluster can only have an odd number of domain walls. 
An edge singlet is impossible because the creation line is 
not parallel to the edge in Figures 30(a) and 30(b). 
Consider the creation of an edge triplet in detail. A slight 
change in the external field forces the triplet to unfold, at 
which the domain walls start to rotate about the cluster 
knot 0. Simultaneously, the wall angles gradually increase 
from zero to a finite value. According to Equations 
(13e-g), the wall angle of the middlemost wall is always 
the largest in this phase, and, in general, its visibiUty is 
the best. Depending on the observation technique, it 
might occur that only the middlemost wall can be 
resolved in the incipient phase of the creation, so that the 
impression of an edge singlet might develop. How about 
the even edge clusters? 

Because of the uniformity of the domains in the odd 
edge cluster, the even edge clusters cannot develop 
themselves from the normal odd edge clusters by a 
subcluster creation process. The degenerated 
configuration with one single domain wall that touches 
the edge at the prospective doublet knot 0 constitutes the 
only alternative [see the subsection on edge clusters and 
Figures 30(c) and 30(d)]. Note that a creation line is 
present along which uniform subclusters can develop. In 
view of the original continuity of the M distribution near 

J- \ 
0 

(a) 

The creation of (a, b) an odd edge cluster; (c, d) an even edge cluster. 

the creation line, the number of domain walls in the 
subcluster is odd [compare Equations (13d) and (14e) or 
(12c)]. In other words, an even edge cluster can be 
created. This time, the uniform subcluster may consist of 
one single domain wall. In order to enforce this wall, the 
touching domain wall must rotate around knot 0, and 
the wall angle of wall (1) increases in compliance with 
Equation (12d) [see Figure 30(d)]. 

Both of the edge cluster creation processes discussed 
above are very frequently observed, and a number of 
examples are reviewed in the course of this paper. 

Cluster furcation and fusion 
In the previous section, it was emphasized that the 
creation of (sub)clusters is often impossible because of 
the absence of adequate creation lines, as for example in 
the edge and the comer clusters. The cluster furcation 
constitutes an alternative by which the required domain-
structure transformations can yet take place. 

During cluster furcation, a cluster knot is split into two 
or more knots, which are connected by (an) intermediate 
domain wall(s) which have zero length during the 
incipient phase. The directions of these early walls are 
determined by the M distribution near the original knot 
just prior to its furcation. Of course, the actual cluster 
knot possesses finite dimensions, so that a finite field 
change is required to separate the knots and to let the 
intermediate domain walls arise. As a result, the course of 
these walls will deviate slightly from that derived from 
the somewhat simplified view of the M distribution in 
this study. 565 
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(a) (b) 
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(<i) A completely rotating free quartet, (b, c) The furcation of the 
completely rotating quartet into two free triplets. 

Another feature of cluster furcation is closely 
interwoven with the internal structure of the cluster 
knots. The dipole configuration in the knot is closely 
bound up with the number of interconnected domain 
walls and their structures, the M distribution in the 
continuous regions near the knot, the film thickness, the 
magnetic history, etc. Therefore, it may happen that the 
knot structures have to bear a completely different 
character before and after the furcation. It is certainly not 
evident that the transformations of the original cluster 
knots can take place without overcoming energy 
thresholds. Such transformations, when not blocked, are 
attended by energy losses and are irreversible. Here, we 
ignore these aspects of the internal structure 
transformation of knots and focus on the global 
relationship between the mutual orientation of the walls 
and the M distribution near the knots. Again, we confine 
ourselves to the presentation of a few illustrative 
examples. Further information can be found in [25). 

As already stated, the orientation of the newly formed 
intermediate domain wall is determined by the M 
distribution just prior to the furcation. We make this 

statement explicit by considering the furcation of a 
completely rotating free quartet [see Figure 31(a)] into 
two free triplets. One of the two possible realizations is 
presented in Figure 31(b). The intermediate domain wall 
between 0̂  and O4 cannot carry a net charge, so it is 
directed along the normal to the bisector of both 
magnetization directions M, and M,. This wall direction 
is uniquely determined when the domains separated by 
the intermediate wall are uniformly magnetized. (Note 
that a uniform domain is always uniformly magnetized; 
however, a uniformly magnetized domain might also be 
of the rotating type.) A greater flexibility exists for the 
furcation mode of Figure 31(c), because each 
combination of a magnetization direction from the 
rotation segment in domain 2 with a corresponding one 
from the rotation segment in domain 4 yields a potential 
direction of the intermediate wall. Figure 32 provides an 
example of such a cluster furcation in a Permalloy 
element. 

i 
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a> A completely uniform quartet, (b) A possible furcation of the 
quartet of (a). 

(a) 

Let us focus on a completely uniform free quartet. A 
possible furcation is presented in Figures 33(a) and 33(b). 
More frequently, the transition of the quartet knot into 
four knots is observed. Such a transformation in a 
Permalloy element is presented in Figure 34. The 
complexity of this furcation likely originates in a 
conversion in the internal wall structure when the wall 
angles of two of the quartet walls grow beyond a certain 
critical angle at which a Bloch-type structure has a lower 
energy than the original Neel wall. 

Another frequently observed cluster conversion is 
illustrated in Figure 35, which shows a rare example of a 
sequence of Lorentz images of a cluster conversion. This 
cross-tie wall can be regarded as a periodic pattern of the 
combination of a completely uniform free quartet and of 
a free doublet with two rotation segments [69]. As far as 
we can see, the direction of the intermediate domain wall 
is defined by the zero wall charge principle. The "wings" 
of the quartet gradually decrease in length upon the 
approach of the knots. Note that the wings become 
bowed when the symmetry of the locations of the doublet 
knots with respect to the quartet knot is removed. These 
curved wings separate the rotation segments from the 
uniform environments, so that the area occupied by the 
rotation segments gradually reduces to zero. Ultimately, 
the free quartet and doublet transform into a degenerated 
free doublet with two degenerated rotation segments, i.e., 
a continuous Neel wall. The inverse advance is 
demonstrated in Figure 36. A 180° Neel wall in a 
Permalloy element is moved through a defect, which 
reveals itself by a little ferrofluid cloud [see arrow in 
Figure 36(a)]. Upon passing, a pair of clusters is 
generated. The one at the left must be the completely 

(c) (d) 

The furcation of a quartet into two quartets and two triplets: (a, c) the 
quartet and its M distribution near the knot; (b, d) the situation after 
the furcation. 

uniform quartet, while its counterpart is a free doublet, 
i.e., a Bloch Une. Note that the quartet's domain wall at 
the object-edge side betrays itself by a broadened cloud of 
ferrofluid, which is apparently a consequence of the 567 
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The generation of a completely uniform quartet and free doublet pair 
by passing through a defect; Permalloy (60 x 30 yiim, thickness 
700 A). 

Lorentz pictures of the fusion of a free doublet and a completely 
uniform free quartet into a degenerate doublet, i.e., a Neel wall 
(courtesy of S. Middelhoek [68]). 
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mismatch of a stepwise-changing M pattern near a wall 
and the requirement of the continuity of the surface 
charge at the edge. 

The above examples of free quartet conversions 
provide an impression of the enormous variety in the 
furcations. Let us treat one final example of a frequently 
occurring process, namely an edge-triplet furcation into 
two edge doublets (see Figure 37). The change in the 
orientations of the old domain walls of Figure 37(a) is 
negligible during the furcation, so that the angles a^,aj, 
and ttj in Figures 37(a) and 37(b) may be considered 
equal. From Equations (12a) and (13a), it follows that a^ 
= a^- a2 + 2a^. Even so, the doublet-wall orientation a^ 

in Figure 37(b) is equal to 2a^ - a2 + a^- irhy virtue 
of Equations (12c) and (13d). In other words, this 
furcation process can be completely described in terms of 
the cluster relations. An example of this edge-triplet 
splitting is presented in Figures 37(c) and 37(d). Note 
that the exterior walls of the triplet are difficult to see in 
the ferrofluid image, a fact that has been previously 
noted. 

4. Reversible and irreversible domain 
transformations viewed from the perspective of 
wall clusters 
In Section 3, we were occupied with the local coherence 
between the mutual domain-wall positions and its 
repercussions on the M distribution near the cluster 
knots. We have unveiled a high degree of order in these 
clusters and have shown that the number of domains in 
such clusters can be adapted by only two kinds of 
reversible processes, to wit (sub)cluster creation (fading) 
and cluster furcation (fusion). During this discussion we 
have dealt only with the geometrical aspects of the wall 
clusters and their transformations. No attention was paid 
to the question of how or why a particular cluster comes 
into being. This omission is considered in this section. 

It has already been emphasized several times that any 
domain structure can be conceived as a concatenation of 
domain-wall clusters. During the development of a 
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• The furcation of an edge triplet into two edge doublets and a free 
; triplet: (a, b) edge-triplet splitting; (c) H^ = 640 A/m (= 8.0 Oe): (d) 
\ Hfl = 460A/m(= 5.8 0e). 

Jomain couversions in a rectangular Permalloy specimen due to a 
uniform in-plane external field H,, parallel to the longitudinal (long) 
sample axis which increases from zero in (a) to Hj,'"' in (d). Permalloy 
(60 X 20/im, thickness 25(X) A). 

domain structure, domain-wall clusters are added to and 
removed from tlie domain structure. These alterations 
may take place in either a reversible or irreversible 
fashion, so that wall clusters, being a static concept, seem 
only to be relevant to part of the domain conversions, 
i.e., to the reversible ones. However, this will appear not 
to be the case. Indeed, the meaning of the wall-cluster 
concept is most apparent when the conversions at the 
reversible branches of the hysteresis loop are investigated. 
A high degree of order appears to characterize the 
domain-structure progression at the reversible branches. 

which can easily be comprehended in terms of cluster-
creation processes. On the other hand, this concept also 
provides a tool for the anal>^is of the M distribution just 
before and just after an irreversible transformation, and 
allows us to trace the wall constellations that initiate such 
a conversion. 

When an external field is applied along the 
longitudinal axis (Figure 38), the 180° wall moves toward 
the edge of the sample, while small jumpwise 
displacements due to the interference of defects can be 
detected. However, notwithstanding these defects, this 569 
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The position B ui the center of the 180" ilomain wall with respect to 
the central Ipiigituilinul symmetry axis of the sample as a function of 
H„; H„ is parallel to this symmetry axis. B = 0 corresponds to the 
position of the longitudinal symmetry axis at H„ = 0, i.e., at the 
midpoint of the sample width; B = I indicates that the wall is at the 
long edge of the specimen. Sputtered samples (sp) 2500 A thick; lift-
off samples (lo) 700 A thick. Lateral dimensions; (1) 60 x 10 /iim, 
(11)60 X 20/urn, and (HI) 60 x 30/xm. 

T a b l e 2 The fleW strengths H f and H f as a function of the 
lateral dimensions and the thickness of the Permalloy specimens. 

Sputtered samples 
(2500 A) 

Size 

6 0 x 3 0 
6 0 x 2 0 
60 X 10 

Ho 
(A/m) 

3050 
2360 
1370 

(A/m) 

2590 
1675 
380 

Lift-off samples 
(700 A) 

Size 

60x30 
60x20 
60X10 

Hi" 
(A/m) 

835 
685 
535 
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movement is basically reversible, as can be concluded 
from Figure 39, where the relative position B of the 180° 
domain wall's midpoint with respect to the longitudinal 
sample axis is displayed as a function of Ho for Permalloy 
samples (83 Ni 17 Fe) with various lateral dimensions 
and thicknesses and manufactured by both sputter 
etching and the lift-off technique. For both categories, the 
wall displacement can be understood in terms of 
magnetostatic fields, which dominate the torque 
equilibrium of the dipoles. 

We descend a little deeper into the magnetostatic 
aspects of the above domain-wall displacement which 
terminates at the field H^' when the center of the wall 
touches the edge. First of aU, we want to explain the 
dependence of the Hj ' on the sample's width and 
thickness. In order to satisfy Equation (1), charge is 
required in each half of the sample for the compensation 

of the external field in the regions where the dipole 
direction strongly deviates from H .̂ The total amount of 
charge in each half can be derived from the 
magnetization at the cross section in the middle of the 
sample by employing Gauss's theorem. The position of 
the center of the Bloch wall can be used as a measure for 
the charge stored in each half, which is predominantly 
located at the object's boundaries. Since a sample having 
a smaller width needs, at the same H^, a greater amount 
of the charge per unit of the width of the cross section in 
each half to cancel the same H,,, it follows that the wall 
reaches the edge at a lower field Hj,'' in the samples of 
smaller width. 

This is confirmed by the experiments (see Table 2). 
Since in all cases the film thickness is very small in 
comparison to its vddth and length and H^ is a uniform 
field, the surface-chaife pattern required is, in a first-
order approximation, independent of the thickness of the 
sample. As a consequence, the Hf of thicker samples is 
laiger than the field required for thinner samples (see 
Table 2). It can be seen in Table 2 that Hj,'' for the 
700-A-thick lift-off layers divided by Hj,'̂ ' for the 
sputtered layers with equal dimensions is 0.274,0.290, 
and 0.390 for the samples with widths of 30, 20, and 10 
^m, respectively. The thickness ratio of the lift-off to 
sputtered samples is 0.28, so there is good quantitative 
agreement, in particular for the samples with widths of 
30 and 20 ^m. 

Furthermore, note that the curves of the Bloch wall 
position in Figure 39 belonging to increasing and 
decreasing fields of the sputtered sample almost coincide, 
which shows that the wall friction inside the specimens is 
rather small. This might be anticipated because of the 
low value of the wall-friction field H, in comparison with 
Ĥ "̂ '. In addition, note that most of the change in M 
consists of a rotation of about 180° of the dipoles in the 
region covered by the movement of the Bloch wall. As a 
consequence, the anisotropy eneiiy of the samples is 
hardly affected. 

As stated, the Bloch wall midpoint touches the edge at 
field H^". A further slight increment in H^ lets this wall 
be torn apart into two pieces. The subsequent sudden 
shrinkage in its length causes a large portion of the 180° 
wall to collapse; no doubt an irreversible transition is 
involved. Judging from the area of the triangular tip 
domains just before and after the transition, this 
irreversible event is accompanied by a rotation of M in 
the direction of Ug. 

As soon as H^ has exceeded this critical value, we can 
be assured that the field penetrates into the sample, 
because no extra charge is available for compensating 
Hg - HJĴ '. It is often observed that the ferrofluid is 
asymmetrically distributed with respect to the 
longitudinal axis of the sample. More ferrofluid is found 
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at the sides of the triangular domains that contain the 
edge doublets. Consequently, the field penetrates at these 
values of H„ into the opposite side in the middle portion 
of the sample. This indicates that an asymmetric 
distribution may already be present when HQ < H^\ 
implying that the field penetration has already taken 
place in an earlier stage. 

A surviving part of the Bloch wall reveals itself near 
each sample tip [see Figure 38(d)]. Note that this wall 
does not touch the edge any longer and is at an angle. In 
the subsections on edge clusters and (sub)cluster creation 
and fading, we concluded that a second wall, i.e., an edge 
doublet, must reveal itself This second wall is very 
visible near one of the doublet knots in Figure 38(d). It 
must have developed along a creation line and, 
subsequently, must have increased its angle, so that it 
possibly has a Neel structure. This opinion is supported 
by an estimation of the wall angles based on Equations 
(12d) and (12e), with a, = 20° and a^ = 106°. We 
estimate that | ^ | =40° for the new wall and 144° for the 
Bloch wall. The better visibility of the small-angle wall 
can only be traced back to a difference in the internal 
structure. Note that M near the doublet knot is still at a 
small angle [4°; see Equation (12a)] to the edge. 

Upon a further increment in H ,̂ these doublet knots 
are pushed along the edge toward the sample ends. 
During this movement the knots sometimes temporarily 
hold at some points and subsequently catch up by fast 
displacements. When Hg reaches the maximum, H™", 
both doublet knots are at the shortest distance from the 
tip. When HQ is increased to higher values, a second 
irreversible jump takes place at which the triangular 
domain with the doublet knot as a vertex collapses. In 
this case, the continuous M distribution arises with the 
dipoles pointing toward the object comer [discussed 
extensively in the subsection on comer clusters; see also 
Figures 26(a) and 28]. For this experiment, the extemal 
field is kept below the critical value at which this second 
irreversible transformation takes place. 

• Transformations on the descending flank of the B-H 
loop 
As yet we have reported no significant impact of the 
influence of the manufacturing technique and the 
magnetic anisotropy on domain behavior in thin films. 
These effects are revealed, and are much more 
pronounced, on the descending flank of the B-H loop. 
Our discussion is based mainly on the very soft 
Permalloy (83 Ni 17 Fe) composition, in which the role 
of defects dominates, while the influence of the 
anisotropy is mentioned briefly. A remarkable 
incongmence between the domain-stmcture development 
of the sputtered and lift-off" samples comes to light. The 
simpler of the two, the sputtered sample, is discussed first. 
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Domain conversions in a sputtered sample measuring 60 x 10 fj.m 
and 2500 A thick, as a function of Hj,, which increases from 0 in part 
(a) to 2740 A/m (= ^4 4 Oe) in (d) and as H„ decreases uniformly 
staiting in (e) and teaching 0 in (i) 

Sputtered sample 
Figure 40 shows a long rectangular specimen (60 x 10 x 
0.25 fim) in which the uniform extemal field parallel to 
the longitudinal axis increases from zero in Figure 40(a), 
via Hg' in 40(c), to the maximum H^^" = 2740 A/m in 
40(d). Upon a subsequent reduction in H ,̂ both doublet 
knots can be seen to have been shoved toward the 
middle. Note that these knots in Figure 40(g), a 
photograph taken just before the second irreversible jump 
at Hg ,̂ are much closer to the center of the sample than 
at H^'"; the knot displacements are mainly reversible, 
although, as on the ascending flank, some interference of 
defects can be observed. At Hg , a jumpwise 
transformation takes place from the configuration of 
Figure 40(g) toward the one in 40(h). A rough estimation 
of the object's mean (M) component along H^ in Figures 
40(g) and 40(h) reveals a significant alteration (A (M) = 
0.4MJ, so that, just as at H^', the irreversible jump at 
H^ is accompanied by magnetic hysteresis. A further 
reduction in H^ causes the 180° wall to retum to the 
specimen's central (long) axis at H^ = 0 [Figure 40(i)], so 
that the object's hysteresis curve exhibits the course of 
Figure 41. Note that defects are not essential in this 
hysteresis effect. Moreover, it should be mentioned that 
the above evolution is advanced by a longitudinal 
uniaxial anisotropy, as is elucidated in the next section. 

Lift-off sample 
As in the sputtered sample, both edge doublets in the lift-
off" sample initially tend to move toward the longitudinal 
center upon a reduction of the longitudinal field HQ. 
However, this time the doublet knot is held up during the 
reduction phase of H .̂ 

At the ends of the sample, the M direction deviates 
strongly from the direction of H ,̂ while it is parallel to 
Hg in the central portion of the sample. Obviously, the 
total charge available for each half of the sample is 
collected in the ends, where it tends to cancel H .̂ In the 571 
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I A typical hysteresis curve of a sputtered film sample where < M > i 
I the object's mean M component in the direction of H^. 
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(a) (b) (c) 

(a) Knot I just before fixation, (b) Rotation of the doublet walls and 
the M rotation caused by a charge spreading upon further reduction in 
H„ after the fixation of knot 1. (c) The edge-triplet creation with a 
knot at the opposite edge. 
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hypothetical case in which this charge pattern does not 
vary after the doublet's stagnation, the resulting 
microm^netic h = H^ + H, + H^ (in which H^ is caused 
by the intrinsic anisotropy) arises in these end domains as 
H(, is further reduced. The net field h cannot be parallel 
to M here, so that the charge near each end, whose 
amount is fixed as long as M is parallel to H^ in the 
midplane perpendicular to the sample longitudinal axis, 
has to be distributed over a large area near the end. 

This enlargement is accomplished by rotating the 
doublet walls about its knot and by increasing the length 
of wall (1) in Figure 42. The angle enclosed by both 

doublet walls remains about 90° during the rotation, 
since M remains almost parallel to the edge on both sides 
of the doublet knot. Therefore, given the fixed doublet 
knot, the rotation of the doublet walls is closely related to 
the displacement of free-triplet knot 2 relative to doublet 
knot 1. This rotation causes M between the doublet walls 
to rotate in the direction perpendicular to the 
longitudinal sample axis. This tendency is enhanced 
when the easy uniaxial anisotropy axis is normal to the 
sample length; the doublet knot is inclined to proceed 
along the edge when the anisotropy axis is in the 
direction of the sample length. 

In the case that the doublet knot keeps its position, the 
decreasing external field causes domain wall (1) to 
increase in length in order to spread the tip charge over a 
large area. As a consequence, the extremity of wall (1) 
threatens to coincide with the opposite sample edge. 

As discussed in the subsection on (sub)cluster creation 
and fading, an edge cluster comes into being with a knot 
at the left edge and at the extremity of the orthogonal 
trajectory that extends domain wall (1) in the originally 
continuous M region between the tip of wall (1) and the 
left edge. Wall (1) serves as the »ed wall of the edge 
triplet. Of course, this cluster will be an odd edge cluster, 
since the M directions in the outennost domains are 
parallel. Usually, the simplest configuration possible—the 
edge triplet—will develop. Observe the rotation sense of 
the M jump across wall (1) near knot (1). It is obvious 
that only the chirality of the middlemost wall of the 
newly formed edge cluster fits that of seed wall (1). 
Initially, all triplet domain walls coincide with the 
creation line, while all three wall angles are then zero. A 
subsequent decline in Hg causes the triplet to unfold by 
both outermost walls rotating around their knot [see 
Figure 42(c)] in the opposite direction with respect to the 
middlemost one, i.e., seed wall (1). Simultaneously, the 
wall angles of all three walls must grow from zero to 
some finite value. 

These walls are all of the symmetric Neel type because 
of the growth of the wall angles of all three walls from 
zero [70], This wall structure is pre^rved during their 
further development. To balance the exchange torques in 
the cores of these walls, a change distribution with dipole 
character—called the wall dipole—is induced in each 
core, in which the dipole vector is perpendicular to the 
wall surface. The ultimate direction of this wall dipole is 
parallel to the M direction in the middle of the Neel wall, 
as we shall see. As stated above, the field of the wall 
dipole balances the exchange torques L^, in the wall core; 
the directions of L ,̂ depend on the chirality of the wall 
[see Figure 43(a)]. In general, these exchange torques 
tend to rotate the dipoles in the core parallel to the dipole 
direction in the middle of the core. In Figure 43, in 
which the triplet walls are schematically depicted as being 
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(a) (b) 

•'Mm 
(a, b) 'I he torque equilibrium in the domain-wall cores of a triplet. Ĥ ^ 
lb the wall-dipole field and L is the exchange torque. 

parallel, these exchange torques are indicated. Note that 
the wall-dipole field H^, which balances L̂ ,̂ always has a 
component opposite to the core magnetization, and that 
all wall dipoles point approximately in the direction of M 
at the creation just prior to the creation of the triplet, and 
are thus about parallel to the external H, at that instant. 
The fringing fields of the wall dipoles inside the domains 
H„ are parallel to one another and to HJJ'"' [see Figure 
43(b)]. In other words, H„ forces the magnetic dipoles in 
the domains to rotate in the direction of H"**, and this is 
the origin of the wall hysteresis. A quantitative estimation 
of its impact is given later in this section. 

As an intermezzo, focus again on the anisotropy. It is 
obvious that a strong longitudinal easy-anisotropy axis 
tends to prevent the unfolding of the triplet in order to 
avoid large domains on both sides of the middlemost wall 
of the triplet, where M deviates strongly from the easy 
direction. The opposite occurs when a strong easy axis is 
perpendicular to the longitudinal axis of the si»cimen. 
Triplet wall (3) [see Figure 42(c)] rotates strongly and 
increases simultaneously in length in order to optimize 
the region where M turns toward the easy axis; however, 
this is all subjected to the requirement of the stability of 
M, in which the magnetostatic torques still play the 
dominant role. 

A further reduction in Hg causes wall (3) to approach 
the opposite specimen edge, so that the game of edge-

^ I M * 

(b) 

I . 1 

^ 

9i^ugft_ 
\.M 

(c) 

i ' 

M i L 
(d) 

I The development of the concertina structure (CS) as H,, decreases 
j from (a) to (e). Permalloy (60 x 20 fim, thickness 2500 A). 

triplet creation has to be repeated. This time, wall (3) in 
Figure 42(c) constitutes the innermost wall of the new 
edge triplet with a knot at the right edge. This coherence 
can be comprehended by comparing the chiralities of the 
newly created edge-triplet walls with one of the seed wall 
(3). Again, the wall dipoles of these newly added walls are 
parallel to H^" and thus increase the magnetic hysteresis. 
This triplet creation process repeats itself upon further 
reduction in H^ (see Figure 44). These triplets can be 573 
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removed again in a continuous fashion by an 
intermediate period of increasing H ,̂ which indicates that 
the edge-cluster additions are reversible, notwithstanding 
their contribution to the hysteresis. 

It often occurs that the doublet knot performs a 
jumpwise displacement to a subsequent stagnation point. 
This unstable character of the doublet-knot position 
shows that pinning must be involved. Along with the 
doublet-knot displacement, a fraction or all of the already 
created edge triplets disappear, so that the wall hysteresis 
is reduced. It should be emph^ized that the edge-triplet 
knots jump less frequently, while, in addition, such a 
jump has less impact on the rest of the domain structure. 
This distinction can be understood because M near and 
in the doublet knot deviates strongly from the continuous 
nearly uniform M distribution in the domains, while, 
contrary to this, an edge-triplet knot resembles very 
closely a uniform M state, in particular when the 
unfolding of the edge triplets is impeded by a strong 
longitudinal easy-anisotropy axis. Therefore, the edge-

doublet knots get pinned more easily and strongly. 
Judging from the difference in behavior between the 
sputtered and the lift-off samples, it is likely that the 
latter possess stronger pinning points at their edges. 

Ultimately, the middle portion of the sample is filled 
with edge triplets that constitute a bellows-like 
configuration, the so-called concertina structure (CS). At 
a given Ho, the number of walls in and the space 
occupied by the bellows generally increase proportionaDy 
with increasing Hj""; as a consequence, the wall 
hysteresis is a semipositive definite function of I^^". To 
estimate the wall hysteresis, it is necessary to know the 
dipole distribution in the wall core which in thin layers 
can be derived firom the one-dimensional micromagnetic 
calculations of Riedel et al. [71 ]. Figure 45(a) gives a 
quantitative image of the mean {H^) across the sample 
thickness for the domain structure of Figure 44(e), where 
X is along the sample length and x = 25 MHI in the middle 
of the sample. (H^), which exhibits strong peaks much 
larger than H^ near the wall cores, must be almost 
completely canceled by the stray-field H^ in this soft-
magnetic element. For this compensation, there must be 
a net magnetic charge in each sample half, which is 
supplied through a net M component normal to the 
sample's midplane that is perpendicular to the sample 
length. The wall hysteresis [Figure 45(b)] for this 
particular situation was previously estimated [49, 51] and 
the mean M component of the object along the x-
direction amounted theoretically to 0.25M,, whUe the 
exiKrimental hysteresis was almost twiM as laiie. This 
difference may be due to other hysteretic effects and/or to 
the simplifications in the theoretical model. However, the 
significance of wall hysteresis in these thin elements is 
beyond dispute. A similar result for simpler but similar 
domain configurations was reported by N. Smith [72]. 

Demolishment of the concertina structure 
It is obvious that the concertina structure (CS) constitutes 
a metastable high-energy state and that energy may be 
gained by removing periods of the bellows-like structure. 

Figure 46 provides an example of a very simple CS, in 
which the central walls of three adjacent edge triplets in 
the sample are replaced by the central wall of one edge 
triplet. Note that the wall angles of the three central walls 
in Figure 46(a) deviate significantly firom 180° (=160° 
according to the cluster relation), so that the mean 
magnetization along the longitudinal sample axis in the 
middle of the sample is still of significance. 

The period reduction can be briefly summarized as 
follows. An edge quintet is formed after the fusions of the 
two triplet knots at the bottom edge. This conversion is 
followed by a furcation of the quintet into an edge-triplet 
knot and a free-triplet knot. The latter moves upward 
along the central wall of the quintet and thus removes the 
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I lie soquciUiLiI Iraiiics of a \itleo display of a period reduction in a 
MiipleCS. PCTniallo) (W) x .W;um,700A). 

Period reduction in a CS. Tlie central walls of three adjacent edge 
triplets in (a) are replaced by one central wall in (c). All images are at 
approximately the same H,,. Permalloy (60 X 30 /xm. 700 A). 

two outermost central walls of the original three edge 
clusters. The details of this fusion and subsequent 
furcation can be better discerned in Figure 47, which 
shows the sequential frames of a video display. 

After the reduction, the mean H^ of the sample has 
reduced and a charge redistribution takes place. This 
charge displacement can also be deduced from the wall 
angle of the remaining central triplet wall in Figure 46, 
which increases to about 180°. A similar increase in the 

S3123 
(c) 

The period reduction by a coherent movement of a uniform quartet 
and a free cluster at the adjacent central walls of two edge triplets. 
Permalloy (60 x 30 /xm, 700 A) 
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The inversion of the polarity of the Neel walls in a 14()-^m-thick 
Permalloy layer (60 x 20/itm). 

wall angle can also be noted in Figure 47. Both 
observations confirm our previous conclusion that the 
impact of the waD-hysteresis mechanism is significant. 

The details of the same type of period reduction are 
strongly dependent on film thickness. In very thin layers 
(25 nm), the Neel walls are very persistent and the CS is 
also sustained when H, is inverted. Domain walls with 
angles up to 360° are developed before they are 
demolished. In 70-nm-thick layers, the period reductions 
are often attended by the propagation of free uniform 
quartets (crosses) and free doublets with two rotation 
segments (Bloch hues), demarcating Neel-wall segments 
with opposite chiralities. Thus the wall field <H^) of the 
original Neel walls is reduced. Figure 48 demonstrates 
this principle in a very simple CS. In the middle of the 
sample, two central walls of edge triplets with an angle of 
about 160° reveal themselves. This time, the conversions 
cannot be heralded by the fusion of two edge-triplet 
knots. Instead, a uniform free quartet arises at the tip of 
the left central edge-triplet wall, while, simultaneously, a 
uniform free quartet and free doublet develop at the right 
central wall. The latter doublet, together with the free 
quartet at the left wall, moves downward, while the 
polarity of the Neel wall segments above this pair is 
inverted. In a second phase, the moving quartet knot and 

doublet knot, at which the latter presumably has been 
converted into a free-triplet knot by incorporating one of 
the walls of the quartet, come together and fuse. 
Subsequently, the Nfel wall segments at both sides of this 
fused-knot pair shrink and disappear. 

A final example of a transformation in a 140-/»m-thick 
Permalloy layer is shown in Figure 49. Again, the 
conversions start at the domain walls with the largest wall 
angle, i.e., the central triplet wall at the right (11̂  I = 
150°). Again, a uniform quartet develops itself at the free 
triplet bounding the central wall in question [Figure 
49(a)]. Simultaneously, a furcation takes place and the 
quartet moves upward. This time, the quartet does not 
separate into two Neel wall segments with opposite 
polarity; instead, it transforms the original Neel wall into 
a Bloch wall [Figure 49(b)]. Upon a further reduction in 
Hp, a new uniform quartet develops itself at the same free 
triplet and moves upward. The Kctor angle of the 
rotation segments of the free triplet in question increases 
and causes the outermost wall of the ec%e triplet to 
become curved parabolically [Figure 49(c)]. Both knots of 
the above quartets and the knots of two extra free-triplet 
knots, which arise at the intersection of the "wings" of 
both quartets, ftise and a uniform quartet results. Thus, 
the polarity of the Neel wall has been inverted between 
the knots of the free triplet and the uniform [Figures 
49(d-f)] quartet. Note that the same process takes place 
almost simultaneously at the other central walls of the 
edge triplets, so that nearly the entire domain structure is 
converted in one coherent transformation. 

It is self-evident that the above period reductions and 
coherent conversions cause the stepwise course of the 
object's M - Hj, hysteresis loop, as is schematically 
presented by Figure 45(b). The CS endures much longer 
in the case of a strong easy axis perpendicular to the 
sample length. In this case, the reversal of the polarity of 
the wall dipoles is accomplished by free-quartet and free-
doublet generations and displacements, so that the CS 
can survive when H^ is reversed. 

• Discussion 
The central themes of Section 4 are the conditions and 
the modes for reversible and irreversible changes in the 
domain structure in soft-magnetic thin-film elements. We 
have confined ourselves to the rectangular sample; 
however, it should be emphasized that the above order 
presents itself in thin-film elements with arbitrary 
geometry. Whether or not a CS develops depends on the 
orientation and strength of the uniaxial anisotropy and 
on the presence and nature of defects. In particular, the 
lift-off sample tends to pos^ss edge defects to which 
doublet knots, in particular, adhere, thus giving rise to CS 
development in very soft media. On the other hand, the 
CS creation is also facilitated when the relatively strong 
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easy axis is perpendicular to both H^ and the object 
length, while an only slightly hindered movement of both 
doublets toward the middle takes place when the easy 
axis is parallel to Hg. 

Much emphasis has been put on the orientation of the 
walls with respect to HQ, their internal structures, their 
stray fields H„, and on the resulting wall hysteresis of the 
CS. Note that, in principle, there is no correlation 
between the energy stored in the domain walls and their 
contribution to hysteresis. This is convincingly 
demonstrated by the single and double Landau-Lifshitz 
structures illustrated in Figure 50, where the 180° walls 
are assumed to be of the Bloch type which induce no net 
H„ [70]. It is obvious from the symmetry of the dipole 
charge distributions in the various wall cores in Figure 
50(a) that the net effect is zero, so that the wall hysteresis 
is zero. The same argument applies to the double 
Landau-Lifshitz structures of Figure 50(b); we have two 
configurations with diiferent wall energies and the same 
zero hysteresis. 

The CS is reminiscent of the ripple structure in thin 
films, which encourages us to draw a parallel. It is well 
known that the ripple structure originates in the 
dispersion of the anisotropy, which causes M to spht up 
into a great number of domains separated by parallel 
walls normal to the mean M. This wall splitting becomes 
particularly manifest when H^ is perpendicular to the 
easy axis [73-76]. 

In the previous section, we stated that the development 
of the CS in thin-film objects with small lateral 
dimensions originates in the spreading of the magnetic 
charge in the sample tips upon decreasing H ,̂ which 
requires discontinuities in M, e.g., wall surfaces, between 
the longitudinal edges. As in the solenoidal situation, the 
domain-wall pattern is predominantly governed by 
magnetostatic laws; however, these allow a great variety 
of solutions at each HQ value. The ultimate selection 
from the possible domain-structure developments is 
controlled by a large number of second-order parameters 
such as defects and the magnitude, symmetry, and 
direction of the anisotropy and also, no doubt, by 
stochastic variations in the latter parameters. Though the 
stochastic variations may play a role, they are not a 
prerequisite for CS development, as evidenced by the 
occurrence of CSs in perfect crystallites [36]. 

We can make the argument concerning the dominance 
of magnetostatics a little more explicit. During the 
discussion of Figure 42, we emphasized that doublet wall 
(1) must grow in order to distribute the positive charge in 
that sample end over a larger area during the reduction 
phase of Hg. Note that M values near the opposite edges 
at the height of the doublet knot are about parallel and 
are inclined to bend outward a little bit in the particular 
end. Charge of the wrong sign threatens to arise. In order 

(b) 

A ^ 
^ 

H.xX 

a) Landau-Lifshitz structure in a rectangular sample in which the 
inly 90° walls are Neel walls. (The field H^ and magnetic charges of 
hese walls are indicated.) (b) The double Landau-Lifshitz structure. 

to get the desired positive charge density, a domain wall 
must be present between the above edges, so that an 
additional jumpwise M direction change, which is 
accompanied by a net charge generation, is introduced. 

Consider another striking manifestation of 
magnetostatics; in the CS, the edge-cluster walls 
constitute a periodic pattern of clearly visible walls 
normal to the longitudinal sample edge, where both 
patterns with knots on the opposite edge have a phase 
shift of 180°. This order is certainly not characteristic of 
ripple. Note that M rotates over a finite angle between 
two adjacent clearly visible walls at the same longitudinal 
sample edge. As a consequence, one extra wall must arise 
from each of these edge-cluster knots between the 
corresponding clearly visible walls. We have already 
concluded that both edge clusters have to be triplets, 
although their exterior walls are often hardly visible. 
Thus, along a specific edge, we see alternately an M-
direction jump at a clearly visible wall and about the 
same rotation in M divided over the walls. This order 
cannot be explained in terms of ripple theory and reflects 
the magnetostatic couphng of two adjacent clearly visible 
walls. 

We return to the sample with a longitudinal weak easy 
axis, in which H^ is smaller than H .̂ The CS is frequently 577 
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The recovery of the CS periods by increasing H„ toward H,, . (b, c) 
I Transformations when Hj, is decreased from H,)' in (a), (d, e) 
I Recovery of the periods upon an increment in H„ in its original 
J diiection H„ is parallel to the long a\is of the specimen m each case 

578 
observed in such samples, notwithstanding the 
noninverted character of the medium [73]. When 

discussing the Hft-off sample, we emphasized the impact 
of the doublet pinning at edge defects. One might state 
that this pinning prevents the sample from "switching" 
its magnetization pattern by the wall (doublet-knot) 
displacement, and that the edge defects play the role of 
the "object invertor." A prolonged reduction in H^ causes 
the effective micromagnetic field in the region in front of 
doublet wall (1) (see Figure 42) to become zero, so that 
the discontinuity in M at wall (1) is allowed to extend 
into the interior of the sample; e.g., wall (1) elongates. 
This growth in which the newly formed walls are initiated 
by and connected to the walls already present in the CS 
has often been observed. In this process, stochastic 
anisotropy variations affect the path along which wall (1) 
grows; however, these possible trajectories are confined to 
a small band defined by the local spatial steepness of the 
demagnetizing field due to the charge pattern in the 
sample tip, while directional variations of the walls which 
are too abrupt are staved off by the well-known 
transverse magnetostatic coupling [73, 75]. Bear in mind 
that, in general, the M environment which suppresses the 
inclination of the dipole to follow the local anisotropy 
direction is not uniform, and that it is embedded in the 
overall M distribution of the sample, to which it is 
magnetostatically coupled. Again, the dominance of 
magnetostatics is evident. 

One final observation concerns the dissolution of a 
number of the periods of the CS when the edge-doublet 
knot performs a jumpwise movement. In ripple 
terminology, one might say that the sample inversion is 
aboUshed, so that switching takes place by wall 
movement, and, of course, ripple no longer appears. 
However, the above consequence of doublet 
displacements applies to samples with both a longitudinal 
and a transverse weak easy axis, so the above explanation 
is too innocent. In this context, the progress of the 
configuration in Figure 51 is of interest. From the 
saturated state, the domain structure develops via the 
configuration of Figure 51(a) into the CS of Figure 51(b). 
Upon a further reduction in H ,̂ period reductions take 
place, so that we end up with Figure 51(c). Subsequently, 
the field is increased again, and the domains with M 
direction deviating from Hg shrink. Note that the 
magnetization in the small domains in the middle of the 
sample is at an angle of about 30° to H^. A small further 
increment in H^ causes the reappearance of two of the 
periods of CS, when the original edge-triplet knots in the 
middle of the sample move apart. Apparently, the 
recovery of these periods is required in order to obtain a 
stable M distribution in the middle of the sample that 
matches the given M configurations in both tips. Again, 
these periods of the CS seem to have a deterministic 
origin rather than a stochastic one, and the ripple theory 
leaves us in the lurch. 
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(a) Three successive parallel segments (O-O), and the wall-shape determining edge segments, (b) Construction when edge (3)̂  is on the wrong 
side of edge (1)̂ . (c) Construction when edge (3), is on the right side of edge (1)̂ .. 

Appendix A 
Let us consider three successive parallel segments (1) to 
(3) and investi^te whether there are restrictions on their 
shapes and mutual positions. In the subsection on 
parallel subregions, the only requirement from the 
mutual positions of two adjacent segments (1) and (2) is 
the existence of two inteireection points S, ̂  and /*, j . The 
coui« of the sepamting domain wall between (1) and (2) 
is governed by the edge segments S, ^SICJ, = u^) and 
S, 25,(5, = v^) at edges (1)̂  and (2),, respectively, or 
equivalently, by edge segments P^2P,is^ = «,) and 
Pia^i^h = V,) [see Figure 52(a)]. Even so, the domain 
wall between the parallel segments (2) and (3) is governed 
by the edge segments •SJJ '̂JC.JJ ~ ^3) ^^'^ '̂ a.s'̂ sC'̂ a ~ **'i)-
The position ofPjj at edge (2)^ with respect to P, 2 must 
comply with the course of M along the edge and the 
numbering of the segments. The same applies to the 
position of 5j3. The fulfillment of these requirements is 
considered to be a prerequisite. 

However, in addition we require that the domain wall 
between F^, and 5*2 3 not intersect the one between F, ^ 
and S, 2. We shall prove that this requirement is satisfied 
when the domain wall codetermining part of edge (3),, 
S2353(53 = w,), does not intersect the domain wall 
codetermining part of edge (1 \ , 5,25,(5, = M2). 

We first investigate the situation in which (1)̂  and (3), 
intersect at the points S^is^ = M )̂ and 5,(5, = M3). By 
virtue of the continuity of the tangents to the edges of the 
segments, it can be concluded that there exists a point at 
(l)j, say 5,(5, = M5), where the characteristic base curves 
of the parallel segments (1) and (3) coincide. This base 

Une intersects the domain wall between segments (I) and 
(2) at Q, where the distance j 5,(5, = Ug)Q | = 
152(52 = v^)Q\. It is obvious that 15,(53 = w^)Q | < 
15,(5, = Uf)Q\. Now look for the position of the points 
of the domain wall between segments (2) and (3) at the 
base line through 52(52 = Vj), and call the points of 
intersection of the latter base line with the characteristics 
of (3) Q'. We erect a Cartesian coordinate system with its 
origin at 53(53 = w,) and a y-axis along the base curve 
through 5,(5, = M5) [see Figure 52(b)], while the positive 
.X-axis is on the side where the angle 4' between the 
characteristics at Q is smaller than ir. At a sufficiently 
small X, the edge (3), can be approximated by the 
quadratic relation y = ax^ with | a | < 1/(2A), where b is 
the segment width. In a first-order approximation, the 
difference in distance of Q' from edges (1 )^ and (3)̂  as a 
function otx decreases by 

(1 - cos i^)/sin #( 1 -I- 2a 15,(53 = ^5)01). 

Observe that (1 - cos ̂ )/sin 4' is larger than zero 
because OSip^w and that (1 + 2a 15,(53 "= ̂ 5)QI) > 0' 
since 12a| < 1/Aand 15,(53 = ^siQl<b. Asa.result, the 
absolute value of the mutual difference in the distance of 
Q' from edges (l) .̂ and (3)̂  decreases for positive x It is 
obvious that Q' moves toward edge (2_,). This tendency is 
also preserved at large x, because the base lines of parallel 
segment (3) do not intersect each other inside (3). 
Therefore, the ultimate Q' at the domain wall between 
segments (2) and (3) is on the wrong side of the domain 
wall between segments (1) and (2). 579 
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Now we attempt to prove that all points of the wall 
between segments (2) and (3) are correctly situated with 
respect to the wall between points S, 2 and P^ ^ when the 
edge segments Ŝ̂  jS'jCi, = w,) and S; 2'S',(5i = MJ) do not 
intersect. 

In Figure 52(c), the domain-wall point Q at the 
characteristic base lines through 5',(5, = u^) and 
SjC ĵ ~ "̂ e) is indicated. The circle (A) with radius b, 
where b is the segment width, touches at segment edge 
(l)j at S^is^ = Ug). Observed from Q, the base curve 
corresponding to 53(̂ 3 = w^) will consecutively intersect 
circle A, edge (1)̂ , and finally (3)̂ . Bearing in mind that 
the distance 15,(5, = u^)Q \ < b,it follows from simple 
geometrical considerations that | QK \ > \ S,(5, = u^)Q \, 
so that 153(̂ 3 = w,)Q\>\QK\^\ S,(s, = v,)Q\ [see 
Figure 52(c)]. 

Having estabhshed this fact, we erect a Cartesian 
coordinate system with its center at S^{Sj = w^), with the 
y-axis along the base line through Sj,{s^ = w^ and with its 
positive X-axis pointing toward the side where the angle \j/ 
between the characteristics through S^{s^ = w^ and 
5'2(.S2 ~ '̂ e) is smaller than ir. From now on, we can repeat 
the arguments employed in the previous case. It can be 
seen for very small x that the distance | Q'S2{s2 = v^ | 
becomes closer to the distance between Q' and edge (3)̂  
when moving toward the negative x direction. As a 
consequence, Q' moves apart from S^iSj = v^ when x 
becomes more negative. This tendency is continued at 
large negative x values because the characteristic base 
Unes of segment (3) do not intersect inside this segment. 
Thus, if present, the point of the domain wall between 
the segments (2) and (3) on the base curve through 
S^((S2 = v^ is found and is at the correct side of the wall 
in P, 2 and S, 2. 

Remark 
When edge segment ^2 3(.?3 = w,) does not intersect edge 
segment S^^S^is^ = u^, their counterparts at edges (3)̂  
and (l)p, respectively, will likewise not intersect. 

Remark 
We have assumed that /", 2 and Pj 3 are different points. It 
is obvious that the same conclusions apply when P^ ^ and 
P^^ coincide. 
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