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Self-consistent domain theory in soft-ferromagnetic media. Ut Composite 
domain structures in thin-fUm objects 

H. A. M. van den Berg and A. H. J. van den Brandt 
Siemens Forschung Centrum, Postfach 3240,8520 Erlangen, Federal Republic o/Germany 

(Received 10 September 1986; accepted for publication 10 April 1987) 

The self-consistent domain theory, based on micromagnetic principles, is further developed in 
order to incorporate all possible solenoidal two-dimensional magnetization distributions in 
plane-parallel thin-film objects with arbitrary lateral shape. A decomposition of the object into 
a number of disjunct plane-parallel subregions that completely cover the object's area is put 
forward. In each subregion, a solenoidal M distribution is defined with the M vector parallel to 
the subregion's boundary, so that the M distributions in adjacent subregions properly link 
either via a continuous transition, or via a 1800 wall at the intermediate boundary. Two types of 
subregions are distinguished; namely, the simple connected regions and the so-called parallel 
regions, being a special type of multiple connected region. In the first category, the basic 
structures as defined in the preceding paper on this subject are present. The parallel regions are 
closed ringlike configurations that are built of simpler units-the parallel segments. A parallel 
segment is a region bounded by two orthogonal trajectories of the same set of straight lines, 
while two of these straight Jines close the segment at either end. No points of intersection of 
members of this family of lines are found inside the segment. In a specific parallel region, the 
distance between the orthogonal trajectories is the same for all. segments. Adjacent segments in 
a parallel region are separated by a domain waH which is the locus of centers inside the cross 
section of the segments of circles that touch at corresponding orthogonal edges of both of the 
segments involved. A systematic procedure is developed for constructing the parallel 
subregions, and it is shown that, with this, all possible two-dimensional solenoidal M 
distributions can be recovered. 

I. INTRODUCTION 

The nonuniqueness in the domain structure in soft-fer
romagnetic objects is a well-known phenomenon having al
ready been recognized in the early childhood of domain the
ory; it has caused a lot of trouble for practical applications of 
these media. In this paper, we present a self-consistent the
ory based on micromagnetic principles, by which this multi
plicity in the domain structure is predicted and from which 
all domain geometries possible can be extracted. We will not 
cover the general situation. First, we will deal with thin-film 
objects which are rectangular cylinders with plane parallel 
top and bottom surfaces and, second, with solenoidal two
dimensional dipole configurations in which the dipoles do 
not vary along the cylinder axis. The latter restriction im
plies that the external fiel.d and conduction currents are zero 
and that the medium possesses not a single bit of anisotropy. 

Our approach is a further development of previous 
work 1.2 by van den Berg, in which the so-called basic domain 
structure, generalJ.y the simplest domain structure possible, 
was derived for thin-film objects with arbitrary lateral shape. 
In this paper, we shall lean heavily on the principles unfold
ed in the papers cited above, and therefore, only a brief reca
pitulation of the relevant basic ideas is in order. 

It was shown] that the characteristic base curves of the 
partial differential equation governing the dipole distribu
tion are straight lines in a one-to-one projection of the dipote 
distribution along the cyJ.inder axis onto the bottom surface. 
Moreover, the magnetization is always perpendicular to 
these base curves, which, therefore, are perpendicular to the 

object edge. Ambiguities in the dipole direction arise at the 
intersections of the base curves with different orientations. 
The simplest domain configuration in a given object that 
prevents these ambiguities from occurring is the so-called 
basic structure. The extremities of the domain walls in the 
basic structure are either situated at free cluster knots (see 
Ref. 3, Chap. 4) or at the centers of curvature of convex parts 
of the edge where the radius of curvature is locally minimal. 
It was proven that the basic structure is the locus of the 
centers of all circles that, first, touch the object edge at at 
least, two points and, second, are completely situated within 
the object. This definition determines the basic structure 
uniquely in arbitrary objects; however, it is afflicted with 
some degree of arbitrariness in the case of multiple connect
ed objects. 2 

In mUltiply connected objects, a decomposition of the 
object's area into so-call.ed parallel subregions and concave 
simply connected subregions was put forward. 2 In each of 
these subregions, solenoidal distributions are defined, in 
which the dipoles are parallel to each subregion's edge, so 
that the various distributions do not mutually interfere. The 
edges of the parallel subregions are orthogonal trajectories of 
the same set of characteristic base curves (or two invol.utes 
of the same evolute) and are parallel to each other in the 
geodesic sense. It was shown that such a parallel region need 
not contain a single fragment of domain walls, so that, in 
general, these paralIe! dipole configurations are even simpler 
than the basic structures. In this paper, we shaH hark back to 
this category of regions and shall generalize the concept of a 
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parallel region. Moreover, we shall further explore the idea 
of the object's decomposition into subregions in a systematic 
fashion. 

II. DECOMPOSITION AND COMPLETENESS 

In this paper, we aim at developing a procedure from 
which any domain structure possible in an arbitrary thin
film object can be derived. We pursue this completeness by 
decomposing the object into disjunct regions that cover the 
object completely, regions in which either basic structures or 
parallel configurations are defined. For this purpose, we 
shaH examine in more detail the dipole distributions in do
mains. 

A domain is a region which, first, is enclosed by either 
domain walls, or the object edge, or by domain walls and 
segments ofthe object edge, and second, in which any pair of 
points within the domain can be interconnected by a line that 
intersects neither domain walls nor the object edge. Note 
that, in general, the basic structure of an object is single do
main in the above sense, although domain walls are present 
within the domain area. In the two-dimensional images, one 
single domain wall is a line either in between two centers of 
curvature with locally minimal radii of curvature corre
sponding to convex parts of the edge of subregions or the 
object, or in between one such center and a cluster knot or, 
finally, in between two cluster knots. Except at its extremity, 
no cluster knots are found on a wall. 

In Fig. 1 (a), such a domain with a continuous dipole 
distribution is given, so that the characteristic base curves, 
indicated by the thin straight lines, have no points of inter
section. Moreover, the orthogonal trajectories of the base 
curves passing through the cluster knots A-E are given by 

Q b 

~ 
C 

c 

FIG. 1. (a) Decomposition of domain ABCDE into regions 1-5 bounded 
by orthogonal trajectories passing through the cluster knots A, C, D, and E. 
(b) Continuation of the regions 3 across domain-wall CD. (c) Further de
composition of region 3 by cluster knot H. 
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the dashed curves. These trajectories divide the domain into 
disjunct regions 1 to 5, which completely cover the domain 
area. The distance between every pair of trajectories does not 
vary, because the magnetization is parallel to these lines and 
the M distribution is solenoidal. Thus, a specific width, de
noted by the symbols b l to b5 , can be attributed to the regions 
I-S [see Fig. 1 (a)]. Note that the width of region 1 is deter
mined by the longest segment of the characteristics between 
the orthogonal trajectory through E and domain wall ED. A 
similar remark applies to region S. 

We examine the continuation of the orthogonal trajec
tories across a domain wall, i.e., the wall CD in Fig. 1 (a) 
[see Fig. 1 (b) ]. At the domain walls the characteristics are 
subjected to the bisector relation, so that the width of the 
continuation of region 3 into the adjacent domain remains 
unchanged. Observe that the produced part of region 3 con
tains cluster knot H and, therefore, will be further split into 
regions 3/ and 3" in order to avoid cluster knots within the 
regions. This division of region 3 is not confined to domain 
CDFGH; however, it also involves domain ABCDE and all 
other domains through which regions 3/ and 3", or their 
subsequent decompositions, are crossing. Apart from the 
subdivision of 3, three extra regions 6, 7, and 8 are added in 
order to cover domain CDFGH's area. Region 6 is bounded 
by the trajectory through D and the trajectory touching at 
wall FG in order to keep the effective width constant, i.e., to 
prevent bifurcation of the M flux of subregions. Note that 
the decomposition is uniquely specified by the magnetiza
tion distribution in the domains and the geometry of the 
domain walls. By systematically incorporating aU domains, 
we arrive at a unique decomposition of the object's area into 
subregions for the given magnetization distribution. 

We consider more closely one such subregion, i.e., 3". 
Assume that this region is not further subdivided by cluster 
knots; and, if not, we shall consider region 3/// that satisfies 
this condition. In Fig. 1 (c), we consider the segment abdc of 
3". At the characteristic through a and b, the dipole direc
tion is as indicated in Fig. 1 (c). Bearing in mind the Gaus
sian law, the condition V·M = 0 and the parallelism ofM to 
the orthogonal edges of 3 ", it is obvious that the magnetiza
tion at the line cd is as indicated in Fig. 1 (c). Evidently, line 
cd cannot coincide with the object edge, so there must exist 
another segment cdef of 3" that meets segment abed at line 
cd. Thus, line cd is replaced by ef; however, the above argu
ment can be repeated for line ef, so that line efis replaced by 
characteristic-base-line segment gh. An impeding expansion 
of the number of segments of 3 ", and, along with this, an 
unbridled growth of 3"'s area can only be warded off by 
allowing line gh to coincide with line abo In other words, 3" 
and, thus, all subregions are bounded by two closed curves, 
being orthogonal trajectories of the characteristic base lines. 
We shall refer to these multiply connected regions with "par
allel" edges as parallel (sub) regions. 

Up to now, we have neglected the domains in which an 
isolated domain-wall configuration is present. Two situa
tions have to be distinguished. In the first place, a completely 
isolated wall configuration is present within the domain [see 
Fig. 2 (a) ]. In this case, this wall configuration can be en
closed by an orthogonal trajectory of the characteristic base 
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FIG. 2. Decomposition of domain ABCDEF with internal domain-wall 
structure. (a) Completely isolated wall configuration. (b) Internal wall 
configuration connected to the external one. 

lines determining the magnetization distribution within the 
domain. In the second place, the interior wall configuration 
has one connection [knot E in Fig. 2(b)] with the exterior 
walls of the domain [AB, BC, CD, DE, EF, and FA in Fig. 
2 (b) J. (It can easily be seen that only one such interior wall 
structure is possible in each domain.) The decomposition 
proceeds as follows. Construct the orthogonal trajectory of 
the characteristic base curves that touches at the exterior 
walls of the domain without intersecting one of them [Fig. 
2 (a) J and, if this is not possible, the trajectory through the 
cluster knot that interconnects the internal waH structure 
with its external counterpart [Fig. 2 (b)]. The trajectories 
obtained by this enclose region 1 in Figs. 2(a) and 2(b). 
Subsequently, a second trajectory is constructed within the 
domain that touches at the exterior wall next to the nearest 
of the above trajectory, and if this is not possible, the trajec
tory with its extremity at one of the cluster knots at that 
exterior wall is detennined. This last step is repeated until 
the domain area is completely covered by subregions. Note 
that the basic structures of subregion ! coincide with the 
internal wall configuration, or part of it, in Figs. 2(a) and 
2(b), respectively. The other rebrion, 2 to II, fonn pans of 
parallel subregions for which a general procedure for the 
determination of the domain-waH positions win be devel
oped in the course of this paper. 

In concl.usion, we may state that any object can be de-
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composed in a unique fashion for any possible domain con
figuration into disjunct subregions that completely cover the 
object area. These subregions are either simply connected 
and contain a basic domain configuration, or are parallel 
regions, which are multiply connected. The opposite should 
also hold. Any decomposition of the object into disjunct sim
ply connected regions and paranel regions defines a valid 
domain structure. The definition of the domain configura
tion in simpIy connected subregions with arbitrary shapes 
was extensively discussed in the previous paper2 and is 
unique. In this paper, we have to delve deeper into the paral
lel regions, in which two essential questions inflict them
selves. First, the general procedure for generating an valid 
parallel regions must be outlined, and second, the dipole dis
tribution in these regions must be determined. These ques
tions will be the subject of Sec. III. 

iii. THE PARALLEL (SUB)REGIONS 

In Sec. II, it has been demonstrated that the tangents to 
both edges of a parallel region are discontinuous at the do
main wall that runs between these edge points of discontin
uity. It appears that, in general, a parallel region is a combi
nation of a number of segments. The definition of these basic 
segments-the parallel segments-will. be the subject of Sec. 
III A. 

A. Parallel segments and their coupling 

A parallel segment is a region with a continuous magne
tization distribution that is enclosed by two orthogonal tra
jectories of a family of straight characteristic base lines and 
two of these base curves at both ends [see Fig. 3 (a) J. The 

a 

b 

c 

FIG. 3. (a) A pl!.nltlld segment and the edge definition with respect to the 
orientation of th~ .M flow, indicated by the arrow. (b) The domain wall 
between the Pl1wl(i:! f,egments (i) and (i + I). (c) Two parallel segments 
with two pairs of points of intersection. 
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continuity of the M distribution implies that the radius of 
curvature of the convex parts of the orthogonal trajectories 
is always larger than or equal to the segment's width, i.e., the 
distance between the trajectories. By definition, we shan as
sume that a radius of curvature equal to the width can only 
occur at the extremities of the segments. It is self-evident 
that no restrictions result from this definition, because one 
can always put together two parallel segments whose exteri
or characteristic base lines coincide. To each segment, one of 
the two possible orientations of the M flow is attached. The 
bounding orthogonal trajectory to the right of an arbitrary 
M vector inside segment (i) is indicated by (i)s' and its 
pendant by (i)p [see Fig. 3(a)]. Along the edges (i) p and 
(i) s' a position parameter Si is defined, such that comple
mentary points P(Si = u) and SCSI = u) on edges (i) p and 
(i)" respectively, are situated at the same characteristic. 

Now consider the coupling of two segments, i.e., (i) and 
(i + 1). Of course, these two segments form parts of a paral
lel (sub)region, in which the M flow is either clockwise or 
anticlockwise. The segments are consecutively numbered 
from (i) to (n) in compliance with the circulation direction 
of the M flow. We require that the pair of segment edges (i) p 

and (i + l)p and the pair (i)s and (i + 1), both have at 
least one point of intersection. Obviously, the distances 
between the edges (i) s and (i) p and between (i + 1) sand 
(i + l)p are equal. We shall consider the situation in which 
each edge pair, to wit, (i) p and (i + 1) p and the pair (i), 
and (i + 1)." has one point of intersection, marked by Pi •i + 1 

and Si.1 + I , respectively. 
Again, a domain waD must take care of matching the 

dipole configurations in segments (i) and (i + 1). Of 
course, one of the extremities of this wall has to be situated at 
the point of intersection of the segment edges where the cen
ter of curvature is on the inside of the para1lel subregion 
[Pi•i + I in Fig. 3 (b) ], because characteristic base curves that 
originate at the segment edges on either side of the above 
point of intersection [edges (i)p and (i + 1)p in Fig. 3(b)) 
intersect inside the paraDel subregion. From the theory de
veloped in the preceding paper, 2 it can easily be seen that this 
domain waH is the locus of centers, inside the para1Jel region, 
of circles that touch at both edges (i) p and (i + 1) p in our 
example. Note that point Si.i + I = Si (Si = u) = Si + I (Si + 1 

= v) is the center of the circle that touches at 
Pi + I (Si + I = v) and Pi (Si = u) and, therefore, constitutes 
the other extremity of the domain wall. It is obvious that this 
domain wall is governed only by the segments p,., + I Pi 

(Si = u) and Pi.i + IPi+ I (Si + I = v) of edges (i)p and 
(i + Op' respectively. 

The complementary points of Pi,l + I = Pi (Si = w) 
=Pi+I(S'+1 =0) at edges (i)s and U+1)s are Sf 

(Si = w) and Si+ I (Si+ I = 0), respectively. The locus of 
centers of circles that touch at both segments Su + lSi 
(Si = w) and at Si.i+ ISi+ I (Si+ I = 0) coincides with the 
already-established domain wall. 

Note that a special situation presents itself when the pair 
of edges (i), and (i + l)s are touching atSi,i + I' In this case, 
edges (i) p and (i + 1) p will touch in the complementary 
point of Si" + I' and a continuous transition between both 
parallel segments exist. 
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We have confined ourselves to two parallel segments of 
which corresponding edges have only one point in common. 
An example of the opposite situation is provided in Fig. 
3 (c). Pairs of points of intersection of corresponding edges 
can be distinguished, namely Si,i + I and P i.i + 1 and the pair 
S :,i + I and P :,i + 1 • Si,i + I and Pi,i + I can be recognized as a 
pair, because the complementary points of Pi,i + I at edges 
(i) sand (i + I) s are situated on both sides of Si,i + I and vice 
versa. Observe that the points of intersection need not arise 
in pairs for the exterior points of intersection. The question 
that arises is whether the domain walls that can be construct
ed between all these pairs are of any significance. Bear in 
mind the previously defined consecutive numbering of the 
parallel segments. By definition, the domain wall between 
the following pair is selected to serve as boundary between 
segments (i) and (i + 1): the complete pair of points of in
tersection that is first met when, starting from the domain 
wall between segments (i - 1) and (i), segments (i) and 
(i + 1) are traced along the circulation direction of M. Of 
course, two successive parallel segments are only properly 
defined when such a pair of points of intersection exists. 

We have currently confined ourselves to the coupling of 
two adjacent parallel segments. However, in general, a com
plete parallel subregion consists of many segments. The de
finition of these segments is subjected to limits as we shall 
see, Consider the three adjacent segments (1) to (3) (see 
Fig. 4). As stated previously, the sequence in the numbers 
refers to the sequence of segments that is consecutively met 
when tracing the parallel subregions along the M direction. 
Of course, the same order has to exist in the domain walls 
that separate the various parallel segments. This implies that 
the edge points S 2,3 and P 2,3 must exist and lie on the proper 
side of S 1,2 and P 1.2 , respectively (on the left side in Fig. 4). 
Moreover, the domain wall between S 1.2 and P 1,2 and the 
one between S 2.3 and P 2,3 are not allowed to intersect. In the 
Appendix, it is shown that this requirement is satisfied when 
the edge segment between S 2.3 and S3 (S3 = w) (see Fig. 4), 
the waH shape codefining part of edge (3), does not intersect 
the edge segment between SI (SI = v) and S 1,2' which code
termines the shape of the waH in between segments (1) and 
(2). Note that the above limitation to edge (3), implies that 
the edge segment between P 2,3 and P3 (S3 = x) does not in
tersect the edge segment between P 1.2 and PI (SI = y). This 
relationship should, of course, also be expected for symme
try reasons. Bearing in mind the above restriction, we can 
extend the number of elements at will, 

A last aspect, however, should be kept in mind. We de
note that part of the paranel segment (i) in between the 
domain wall between Si_ I,iand Pi _ I,i,and the one between 
Si,i+ I and Pi,i+ I' by Tri . The following should apply: 

FIG. 4. Three successive 
parallel segments and a 
number of significant edge 
points. 
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17" In 17"2 n ... n 17" n = 0, in which n is the total number of seg
ments in the parallel subregion. 

B. Special couplings between parallel segments 

In Sec. III A, we have encountered two different types 
of couplings; first, the continuous mode in the event that the 
corresponding pairs of edges of adjacent paraHel segments 
are touching, and second, the mode in which one single do
main wall interconnects both points of intersection of corre
sponding edges of the adjacent segments. One may wonder 
whether the combination of one point of intersection and one 
point of contact is possible. In principle, the answer is affir
mative; however, in this case, we shall decompose the subre
gion into two parallel subregions, one with a coupling of the 
first type and the other one with an intermediate wall. Of 
course, this procedure does not give rise to any loss in gener
ality. 

We return to Fig. 1 (a) and, in particular, to the cluster 
knot C. In point C, three domain walls of the parallel subre
gion 3 meet. This situation, in which domain walls of a num
ber of paranel regions share one of their extremities, will be 
systematically explored. 

In Fig. 5, the p edges of a number of parallel segments 
have point P in common. We present a systematic recon
struction of this configuration. First, we combine the seg
ments (1) and (2) whose edges intersect at P and S 1.2' To 
trace the course ofM at P, the M direction along edge (i) p at 
P will be denoted by /3;, where 0 <./3; < 21T. This angle may 
vary between 0 and 217". Again, as shown in the Appendix, 
segment S 2.3 S3 (S3 = w) does not intersect segment 

a 

FIG. 5. Special types of segment coupling. 
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S 1.2SI (s = u) for a feasible coupling of the segments. Note 
that the angle {31.3 = /33 - {31 + 1T is always larger than 1T 

[watch the mutual positions ofS, (SI = u) andS3(s3 = w) in 
Fig. 5 (b) ]. For a proper course of the domain wall in 
between segments (3) and (4), segment S 3,4 S4 (S4 = X) does 
not intersect its counterpart S 1.2S2(S2 = v). Note that/31.4 
varies in between {3 1,2 and 21T and might be smaller than 1T. 

These observations indicate that the angle (31m is always 
larger than 1T when m is odd, and between zero and 21T when 
m is even. The correctness of this expectation is confirmed 
by the so-called corner cluster relations.4 

The situation in which /3 1m = 1T, i.e., when edge (1) p 

produces (M) p' deserves special attention. The edge-cluster 
relations5 yield m's which must be even because M must be 
parallel in the exterior parallel segments (exterior domains 
in the cluster terminology). An example with /31,m = 1T is 
given in Fig. 5 (c). Observe that we are restricted in the 
choice of the parallel segments because of the assumption 
{3'.m = 1T. (Observe that the basic structures in simply con
nected regions can also be derived by combining paranel seg
ments, so that these segments can be conceived of as the basic 
elements in solenoidal magnetization distributions. On the 
other hand, the basic structure is a concept that can more 
easily be handled, so that it will be maintained for practical 
reasons.) 

IV. DISCUSSION 

We now recapitulate the main findings of this paper. We 
have introduced a decomposition of the object's area into a 
number of disjunct subregions that completely cover the ob
ject. Two different types of subregions have been distin
guished; first, simply connected subregions in which the ba
sic domain structures are present, and second, the multiply 
connected parallel regions with their associated dipole dis
tributions. It has been shown that any solenoidal two-dimen
sional M distribution possible in thin-film objects can be de
scribed in terms of united subregions with either basic or 
parallel. configurations. Therefore, a general. procedure by 
which any parallel subregions can be constructed suffices to 
cover aU dipole configurations possible. 

The starting point in this construction is the paranel 
segment. A paranel segment is bounded by two orthogonal 
trajectories to the M-vector field, and, at each end, by one 
characteristic base line. The trajectories have continuous di
rectional derivatives, and measured along the characteristic 
base curves, the edges have constant distance-the segment 
width. A paranel subregion is a combination of overlapping 
parallel segments with equal width that constitute a ring
shaped closed configuration. Two adjacent segments are ei
ther coupled by one domain wall that interconnects the 
points of intersection of corresponding trajectories, or a con
tinuous transition exists in case trajectories of both segments 
touch pair wise. The various segment-separating domain 
wans cannot intersect each other and can only have their 
eXJremities in common. In the latter case, regions arise that, 
at first glance, can hardly be recognized as paraUel. regions 
(sec Fig. 6). 

During the construction of the paraneJ: configurations, 
we have assumed a specific circulation sense of M. It is ob-
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FIG. 6. (a) Exampleofa parallel subregion and the required domain walls. d 
(b) Decomposition of the object into subregions. (c) and (d) Two of the 
domain structures that correspond with decomposition (b). 

vious that the ultimate shape ofthe parallel subregion and its 
domain-wall configuration are equally valid when the circu
lation sense is the opposite. Similarly, the basic wall configu
ration in simply connected subregions does not depend on 
the circulation sense. On the other hand, a 1800 wall has to 
arise at the intermediate boundary between adjacent subre
gions with opposite M on both sides of the intermediate 
boundary, so that the domain-wall conftguration is positive
ly affected by the circulation senses in the various subre
gions. Given only the shapes of the n subregions in which the 
object is decomposed, 2n 

- I different domain-wall configu
rations are possible. A few examples are provided in Figs. 
6(b)-6(d), where two of the 16 possible configurations are 
shown. 

As mentioned in Sec. 1, composite domain structures 
are frequently met in practice, not only in thin-film ob
jects3.1>-13 but also in soft-magnetic whiskers. 14-19 In Fig. 7, 
simple examples of composite structures in permalloy ele
ments and their corresponding decompositions into merely 
simply connected subregions are given. Note that the speci
men in Fig. 7 (c), with a thickness of 700 A, contains two 
cross ties and that the :'VI distribution is not perfectly solenoi
daL Similar crosses can be observed in the domain structure 
of Fig. 8(a); however, this time, edge triplets are present to 
match the continuation of the M distribution near the cross 
with the boundary condition at the edge. Observe that two 
parallel subregions turn up [see Fig. 8 (b) ]. Detaj1Js of very 
complex structures were presented by DeBlois. 10-13 An in
terpretation of Fig. 11 of Ref. 11 and of Fig. 32 of Ref. 10 is 
given in Figs. 8(c) and 8(d), respectively, in order to dem
onstrate the validity of the procedure presented for speci
mens in which the impact of the anisotropy is distinctly visi
ble. 

A brief discussion of DeBlois' 10 broad view of the order 
in the domain structure is necessary. He defined topological 
diagrams involving a number of closed loops in the domain 
structure along which there is flux closure. It is self-evident 
that these closed loops bear resemblance to the parallel sub-

1957 J. App!. Phys., Vol. 62, NO.5, 1 September 1987 

e 

FIG. 7. Domain structures in permalloy elements and their interpretation 
in terms of a decomposition into disjunct subregions with basic domain 
structures. (a) Rectangular bar (60X 20 f./:m). (b) Object bounded by cir· 
cle segments (length: 60 pm). (c) Object bounded by circle segment and 
straight line (length: 60 pm). 

regions. On the other hand, in general, each DeBlois loop 
contains a number of parallel and simply connected subre
gions. Moreover, DeBlois' approach is meant as a schematic 
analytic tool and is not an attempt to predict the possible 
domain-wall configurations in his rectangular thin-film ob
jects. 

Up to now, no attention has been paid to the impact of 
the wall and the anisotropy energy. These energies will cer
tainly be different for the various domain structures in a 
given sample. In an dement with small lateral dimensions, 
there is a tendency towards domain structures with a mini
mal wall length, i.e., towards basic structures in simply con-

H. A. M. van den Berg and A. H. J. van den Brandt 1957 
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d 

FIG. 8. A composite domain structure with parallel subregions. (a) Per
malloy bar (60X 30 /lm). (b) Interpretation of configuration in (a). (e) 
Interpretation of domain structure of Fig. ( II) of General Electric Report, 
no. 65-C-082 (1965), by R. W. DeBlois. (d) Interpretation of domain 
structure of Fig. (32) of General Electric Report, no. AFCRL-68-0414 
(1968), by R. W. DeBlois. 

nected objects, This can be explained as follows, Given a 
certain lateral shape, the wall and the anisotropy energy are 
a linear and a quadratic function of the linear scaling factor 
of the lateral dimensions, respectively. Therefore, the anisot-

1958 

(e) 

FIG. 9. The domain slrue
t ure as a function of the later
al dimensions in a square 
with cubic anisotropy with 
easy axis along the square's 
diagonals. 

J. Appl. Phys., Vol. 62, No.5, 1 September 1987 

ropy energy will dominate in objects with large lateral di
mensions, and thus, tends to enforce complex structures in 
order to reduce the area of domains with an unsuitable M 
distribution. An example is given in Fig. 9, in which a cubic 
anisotropy with an easy axis along the diagonals of the 
square is assumed. For small lateral dimensions, the basic 
structure of Fig. 9 (c) will have the minimal energy. When 
the lateral dimensions grow, the domain structures of Figs. 
9(a) and 9(b) are more likely. 

It should be emphasized that whether or not these mini
mal energy configurations will arise depends strongly on the 
prehistory of the M distrbution and the presence of defects. 
It has been experimentally observed2o

•
z1 that relatively small 

defects can enforce the domain structure to develop itself 
towards deviating higher-energy states. However, these con
figurations are again composite structures and can be de
rived from the theory presented. 
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APPENDIX 

We consider three successive parallel segments (1 )-( 3) 
and investigate whether there are restrictions on their shapes 
and mutual positions. In Sec. III A, the only requirement 
from the mutual positions of two adjacent segments (1) and 
(2) is the existence of two points of intersections 5 1•2 and 
P 1.2 • The course of the separating domain wall between ( 1 ) 
and (2) is governed by the edge segments 5 1.25,(SI = u2 ) 

and 5 1.2 52(S2 = v2 ) at edges (1) sand (2) s' respectively, or, 
equivalently, by edge segments P1.ZPI(SI = u l ) and 
PI,2P2(SZ = VI) [see Fig. A 1 (a)]. Even so, the domain wall 
between the paral.lel segments (2) and (3) is governed by the 

a 

b Y 

(J :;(S1 ~U,l 

Sp:). = ~) (3)5 

X 

FIG. AI. (a) Three successive parallel segments (1)-(3), and the waIl
shape-determining edge segments. (b) Construction when edge (3), is on 
the wrong side of edge ( I),. (c) Construction when edge (3), is on the right 
side of edge (1 ), . 
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edgesegmentsS2,3S2(s2 = V3 ) andS2,3S3(s3 = WI)' The po
sition of P 2,3 at edge (2) p with respect to P 1,2 has to comply 
with the course of M along the edge and the numbering of 
the segments. The same applies to the position of S 2.3 . The 
fulfillment of these requirements is considered to be a pre
requisite. 

However, in addition, the domain wall between P 2.3 and 
S 2,3 must not intersect the one between P 1,2 and S 1.2' We 
shall prove that this requirement is satisfied when the do
main-wall codetermining part of edge (3) s' S 2.3 S3 (S3 = WI) 

does not intersect the domain-wall codetermining part of 
edge (1.), S I,2S](s] = u2 ). 

First, investigate the situation in which (1). and (3) s 

intersect atthe points S] (s] = u 4 ) andSl (Sl = u 3 ). By virtue 
of the continuity of the tangents to edges of the segments, it 
can be concluded that there exists a point at (1) .. i.e., 
SI (s] = us), where the characteristic base curves of the par
allel segments ( 1 ) and (3) coincide. This base line intersects 
the domain wall between segments (1) and (2) at Q, where 
the distance IS] (s\ = u5 )Q I = IS2(s2 = vs)Q I. It is obvious 
that IS3(s3 = ws)Q 1< IS](s] = u5 )Q I· Look for the position 
of the points of the domain wall between segments (2) and 
(3) at the base line through S2 (S2 = V5)' The points of inter
section of the latter base line with the characteristics of ( 3 ) 
will be called Q'. We erect a Cartesian coordinate system 
with its origin at S3(S3 = w5 ) and a y axis along the base 
curve through S] (Sl = u5 ) [see Fig. Al (b)], while the posi
tive x axis is on the side where the angle 'Ii between the char
acteristics at Q is smaller than 1T. At a sufficiently small x, the 
edge (3). can be approximated by the quadratic relation 
y = ax2 with la I < 1/ (2b), where b is the segment width. In a 
first-order approximation, the difference in distance of Q' 
from edges (1) sand (3) s as a function of x decreases by 

[( 1 - cos 'IJ)/sin \1'] [1 + 2aIS3 (s3 = w5 )Q I ]x. 

Observe that (1 - cos 'IJ)/sin 'Ii is larger than zero because 
O";'Ii<>;;1T, and that 

[1 + 2aIS3(s3 = ws)Q I] >0 

since 

12a1 < lib and IS3(s3 = w5 )Q I <b. 

As a result, the absolute value of the mutual difference in the 
distance of Q ' from edges (1). and (3). decreases for posi
tive x. It is obvious that Q' moves towards edge (2. ). This 
tendency is also preserved at large x, because the base lines of 
parallel segment (3) do not intersect each other inside (3). 

Therefore, the ultimate Q' at the domain wall between seg
ments (2) and (3) is on the wrong side of the domain wall 
between segments (1) and (2). 

Subsequently, we attempt to prove that aU points of the 
wall between segments (2) and (3) are correctly situated 
with respect to the waH between points S1,2 and P1,2 when 
edge segments S 2,3S3(S3 = w]) and S ].2S1 (SI = u 2 ) do not 
intersect. In Fig. Al (c), the domain-wall point Q at the 
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characteristic base lines through SI (SI = u6 ) and 
S2 (S2 = v6 ) is indicated. The circle (A) with radius b, where 
b is the segment width, touches at segment edge (1) s at 
SI (s 1 = u6 ). Observed from Q, the base curve corresponding 
to S3(S3 = w6 ) wiU consecutively intersect circle A, edge 
( I )., and finally, (3) s' Bearing in mind that the distance 
lSI (Sl = u6 ) Q I < b, it follows from simple geometrical con
siderations that IQK I> lSI (SI = u6 )Q I, so that 
IS 3(s3 = w6 )Q I > IQK I> IS 2(s2 = VI) [see Fig. Al (c)]. 

After having established this fact, we erect a Cartesian 
coordinate system with its center at S3 (S3 = w6 ), with the y 
axis along the base line through S3(S3 = w6 ) and with its 
positive x axis pointing towards the side where the angle 'Ii 
between the characteristics through S3(S3 = w6 ) and 
S2(S2 = V6) is smaller than 1T. We can now repeat the argu
ments employed in the previous case. It can be seen for very 
small x that the distance IQ 'S2(S2 = v6 ) I becomes closer to 
the distance between Q' and edge (3), when moving toward 
the negative x direction. As a consequence, Q' moves apart 
from S2(S2 = v6 ) when x becomes more negative. This ten
dency is continued at large negative x values because the 
characteristic base lines of segment (3) do not intersect in
side this segment. Thus, if present, the point of the domain 
wall between the segments (2) and (3) on the base curve 
through S2(S2 = v6 ) is found and is at the correct side of the 
wall in between P 1,2 and S 1,2' Note that when edge segment 
S2,3S3(S3=W1) does not intersect edge segment 
S 1.2 SI (SI = uz), their counterparts at edges (3) p and (1)p. 

respectively, will likewise not intersect. We have also as
sumed that P 1.2 and P 2,3 are different points. It is obvious 
that the same conclusions apply when P 1,2 and P 2,3 coincide. 
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