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Self-consistent domain theory in soft-ferromagnetic media. H. Basic domain 
structures in thin-film objects 

H. A. M. van den Berg 
Delft University a/Technology, Department 0/ Electrical Engineering, Delft, The Netherlands 

(Received 17 January 1986; accepted for publjcation 31 March 1986) 

A construction method for determining the domain structure in ideally soft-ferromagnetic 
cylindrical objects with plane-parallel top and bottom surfaces of arbitrary shape is presented. 
The self-consistent theory is confined to two-dimensional solenoidal dipole distributions in which 
the dipoles are parallel to the top and bottom surfaces. It is proved that the basic domain structure 
is uniquely defined in ~imply connected objects, while an extra criterion has to be added in order to 
guarantee the uniqueness in the multiply connected ones. The treatment is based on differential 
geometrical principles. The object edge is partitioned into segments, in which each segment is 
situated in between two adjacent edge points where the radii of curvature of convex edge segments 
are locally minimal. To each edge segment, a region is attributed, in which M is uniquely specified 
by the course ofM along that edge segment. In the cross section of regions corresponding to 
different edge segments, domain walls provide an adequate separation of the dipole distribution 
imposed by these segments. The extremities of these domain walls are found in the singular points 
of the evolute corresponding to the extremities of the ed.ge segments and in the points where a 
number of walls meet. It is proved that the basic domain structure is the locus of centers of ail 
circles inside the object that touch the object edge at at least two points. A number of 
experimentally observed basic structures are given, and the relevance of the definition of basic 
structures in mUltiply connected objects is examined. 

I. INTRODUCTION 

In paper I, I we considered the magnetization distribu­
tion at a zero external field in an ideally soft-magnetic plane­
parallel object with an elliptical cross section. In this paper, 
we shall generalize our theoretical approach in order to cov­
er the so-called basic domain structures in thin-film objects 
with arbitrary shapes. The basic domain structure is, in gen­
eral, the simplest two-dimensional domain configuration in 
a given object, while its counterpart-the composite struc­
ture-exhibits a much greater compJ.exity and variety. The 
latter category wiU come up for discussion in a forthcoming 
paper. 

Let us recapitulate the key ideas and equations of paper 
II: In ideally soft-magnetic thin-film objects,the dipole dis­
tribution is solenoidal at a zero external field and is governed 
by the following equations: 

_ ~ as + as = 0 f:" = My 
!:> ax ay '!:> Mx' 

and 

Mz==O in V, (la) 

where Mx and My are the lateral magnetization components 
along the axis of a Cartesian-coordinate system. The bound­
ary condition at the object edge S is given by 

M-o = 0 on S, (lb) 

where 0 is the outwardly directed unit vector perpendicular 
to the edge. The characteristic base curves r' (t,s) of Eq. (1) 
are straight lines perpendicular to the edge and satisfy I 

r'(t,s) = r(s) + T(S)t, (2) 

where r(s) is the parametric vector representation of the 

edge, T(S) is the inwardly directed unit vector perpendicular 
to the edge at r(s), while t is a position parameter along the 
base curve. Moreover, it was proved I that M-T(S) = 0 at the 
base curve, so that an ambiguity in the M direction occurs at 
the intersection of two base curves that originate in two edge 
points whose unit vectors D are not parallel. Hence, the range 
of definition of the characteristics will inevitably be confined 
to a limited range adjacent to the edge point in which they 
originate. Bear in mind that the characteristics of edge points 
with infinitesimal mutual distance intersect each other in the 
center of the local radius of curvature of the corresponding 
edge segment. Therefore, the truncation of the characteris­
tics should, in any case, be within the region in between the 
locus of centers of the radii of curvature of a specific edge 
segment and this segment itself. This locus r" is called the 
evolute of the edge segment and is given by 

r N (s) = r(s) + Rc (s)oe (s) , (3a) 

where Oc (s) is the unit vector perpendicular to the edge at 
point res) that points towards the concave side of the edge, 
while the radius of curvature Re (s) is given by 

R- I = ~ = dT(S)/(dr . dr)1/2, 
Rc ds ds ds 

(3b) 

where 

T(s) = dr(S)/(dr . dr)1I2 , 
ds ds ds 

(3c) 

in which R - I is caIled the vector of curvature. From the 
above concepts of differential geometry, we shall extract a 
general methodology for determining domain structures in 
arbitrary thin-film objects. In this connection, the points of 
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the evolute where Rc of convex parts of the edge has a local 
minimum will play an essential part, as we shall see. These 
points of the evolute are the closest to the object edge and 
each such point constitutes one of the extremities of two 
different branches of the evolute. 

Ii. BASIC DOMAIN STRUCTURES IN SIMPLY 
CONNECTED OBJECTS 

In this section, we shall confine ourselves to simply con­
nected thin-film objects. These are objects having the prop­
erty that any closed curve within the object encloses a region 
that completely belongs to the object. Within this category, 
we shall distinguish the so-called convex objects and objects 
with concave edge segments. To start with, we shaH treat the 
convex objects, while the procedure developed there will be 
set forth in Sec. n B on objects with concave edge segments. 

A. Convex objects 

Convex objects are defined by the foHowing require­
ment: Any straight line in between any pair of points of the 
object is completely situated within the object. Clearly, a 
convex object is always simply connected. For these convex 
objects, we shall present a construction method by which the 
basis domain structures can be derived. Ultimately, this 
method will be united into one single criterion governing the 
positions of the domain walls. 

In the introduction, we have emphasized the necessity 
for defining regions adjacent to the edge or certain segments 
of the edge in which M is uniquely specified. This implies 
that the sphere of influence of each characteristic has to be 
limited to a finite distance adjacent to the edge point in 
which it originates. For that purpose, the evolute is a natural 
boundary, so that the distance parameter I(S) in Eq. (2c) is 
limited to 

(4) 

Let us have a closer look at the evolute. The radius of 
curvature Rc (s) exhibits an alternating course with local 
maxima and minima as a function of s. In between each local 
minimum and one of its adjacent maxima, one branch of the 
evolute with a continuous directional derivative extends it­
self. A discontinuity in the derivative is present at the ex­
tremities of these branches where two neig.hboring branches 
link. 

Let us introduce a partitioning of the edge based on the 
edge points r(s;) with a local minimum in the radius of cur­
vature. The subscript i of the position parameter s is an index 
that successively increases by one when tracing the perim­
eter in a counterclockwise direction. When there are n of 
these points at a specific edge, it applies that 
res" + I) = r(sl)' Now, we replace the parameter s by a set 
of n new parameters SI, ~, ... , s", where s' defines the edge 
points between points r(si ) and r(sl + 1 ). 

The evolute of edge segment (i) consists of two 
branches, being separated by r N (s') corresponding to the 
local maximum of Rc between r" (s;) and r

N 

(s; + 1 ). The 
characteristics touch the evolute and are its generators (see 
Ref. 2, p. 314). It can be seen that characteristics of a specific 
segment do not intersect each other when they are truncated 
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in accordance with Eq. (4). In other words, M is uniquely 
specified, apart from an angle of 180°, by the characteristics 
of segment (i) in the region ill, located between segment 
(i), its evolute and the radii between r(s;) and r" (Sl ) and 
between r(s; + 1 ) and r" (SI + 1 ). However, a different situa­
tion presents itself as soon as we consider a truncated charac­
teristic from another edge segment, let us say (s; _ 1 ). This 
situation is the subject of the next section. 

1. Dipole distribution near edge points with a local 
minimum in Rc 

The shape of the edge near such a local minimum at 
x = 0 can be expanded in the following Taylor series: 

y = f (x) = ax2 + bx3 + ... , a> 0 (5) 

in which, for convenience, the y axis of the Cartesian-coordi­
nate system has been chosen along T (s) at an edge point with 
a local minimum in Rc . For sufficiently small x, Eq. (5) may 
be approximated by 

y=ax2
• (6) 

Instead of Eq. (3), it is more convenient to employ the fol­
lowing representation of the evolute of the curve y = f (x) 
(see Ref. 3, p. 415): 

x" =x{! [1 + (!r]/~;~, 

y" =y + [1 + (ix)j ~;~ , 

from which we obtain for the parabola (6): 

(7a) 

(7b) 

(7c) 

This evolute is depicted in Fig. 1 and forms the boundary 
between a shaded and an unshaded region within the parabo­
la. In the unshaded region each point is located at one char­
acteristic only, while the remaining points are situated on 
two base curves, when these are truncated according to (4), 
and, if not, on three base curves. As a consequence, the 

2 -x 

FIG. I. The evolute of a parabola and the number of nontruncated charac­
teristic base curves that intersect in the various regions. 
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sphere of influence of the characteristics has to be reduced 
still further in order to prevent ambiguities in the dipole di­
rection from occurring in the shaded area. These ambiguities 
occur as soon as we consider the continuation of the dipole 
distribution from the segments at both sides from x = O. As 
discussed previously, I we have to drop the requirement of 
continuity to the dipole distribution and have to allow do­
main walls to separate the dipole distributions imposed by 
the edge segments on both sides of x = O. It is self-evident 
that such a domain wall has an extremity at the singularity in 
the evolute r" (S2)' The above image has to be quantitatively 
corrected in the case of the general curve (5), implying that 
the shape of the evolute has to be modified; however, the 
general conclusion that a domain wall has one of its extrem­
ities in the singular point of the evolute still holds. In the next 
section, we shall prove another property of domain walls, 
which greatly simplifies the prediction of the domain struc­
ture. 

2. The position of domain walls 

Let us consider the domain wall that separates two dis­
tributions imposed by two arbitrary edge segments at which 
two position parameters SI and? are defined and at which M 
is as indicated in Fig. 2. The characteristics of two edge 
points r (si) and r(~) intersect at point P in which 
r' (t l,sj ) = r' (t 2"s ). At a possible domain waH in this point, 
the bisector relation4 has to be satisfied, so that this domain 
wall in P is parallel to the bisector of both tangents to the 
edge at points r(~) and r (s~) (see the lines indicated by C 
and D in Fig. 2. Let us define a function d to determine the 
difference in the distance between a point at the domain waH 
and the corresponding points on both edge segments. It fol­
lows from Eq. (2) that 

d(sj"s) = t(~) - tCsj) . 

Subsequently, we define a position parameter u along the 
domain wall through P, which is zero at P. The distance 
between point Q at a distance liu from P along the waH and 
point Q ' at the same distance along the straight line B is of the 
order (liu) 2 for infinitesimal liu. It is obvious that the differ­
ence in the distance between points on the line B to both 
tangents C and D is constant. Moreover, it can be seen from 
Fig. 2 that the difference in the distance from Q to the edge 
segment with parameter? and from Q ' to the line D is of the 
order C8U)2, so that 

d(Q) - d(P) = 0 (8U)2J , 
which implies that 

d d(u)/du = O. (8) 

In other words, the distance function d (u) is constant along 
a domain wall. 

c 

1106 

FIG. 2. The course of the 
distance function d(sLI,) 
along a domain wall which 
separates the magnetiza­
tion distributions imposed 
by two edge segments de· 
noted by the parameters s' 
andr. 
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Let us return to the domain wall of the previous section 
which has one of its extremities in the singular point of the 
evolute. The characteristics from the segments at both sides 
ofr(S2) through this point rn (S2) in Fig. 1 coincide so that 
the distance function d (u) is zero here. Therefore, it can be 
conduded that each point at a domain wall with one extrem­
ity in point r" (Si ) has equal distances to the edge segments 
with the position parameters Si _ I and Sj. 

3. Construction of basic domain structures 

After having established two properties of the domain­
wall positions, we shall pass onto the construction of the 
basic domain structures in convex objects and onto a de­
scription of domain structures in terms of the I.ocus of 
centers of circles that touch the edge. The absence of edge 
dustersM is a prerequisite for the occurrence of the basic 
domain configurations. A sharp corner in the edge will be 
considered as a degenerated rounded corner, in which the 
singularity in the evolute coincides with the corner itself. 
The following steps in the construction of a basic structure 
can be distinguished. 

( 1) Our starting point is the decomposition of the edge 
into} segments with position parameters t (i = I, ... ,}), as 
discussed in Section n A. The segment (i) is bounded by the 
adjacent points r(sj) and r(sj + I ) at which the radius of 
curvature is locally minimal. To each segment (i), a region 
Oi is attributed in which M is, apart from an angle of 180°, 
uniquely specified by the characteristics originating in that 
segment, so that one unique value of Si corresponds to each 
point Pin Oi. 

(2) In the cross section OknOk + I of each pair of adja­
cent segments (k) and (k + 1), a vector field W can be de­
fined [see Ref. 1, Eq. (20)} from which a domain wall can be 
derived by means of the equation 

dy Wy 
dx =W-' 

x 

which starts at the point r" (Sk + I ), which, for convenience, 
shan be denoted by Q k,k + I' We shaH refer to these points 
Q ~k + I as points of the first order. This domain wall can 
easily be constructed since it is the locus of the centers of all 
circles that touch both segments (k) and (k + 1). In the 
appendix, it is shown that circles that touch both segments 
(k) and (k + 1) do not intersect these two segments at any 
point. The above procedure is repeated for all combinations 
of adjacent segments, so that we arrive at at most} domain 
walls. 

(3) Subsequently, we consider the points of intersection 
of adjacent domain walls that are located within the object. 
The point of intersection of the domain walls with extrem­

ities in Q k.k + I and Q k + I.k + 2 is denoted by Qk.k + 2' in 
which the subscripts (k) and (k + 2) refer to both exterior 
edge segments of the segments involved, namely, (k), 
(k + I.), and (k + 2). Note that the circle with center 
Qk.k + 2 that touches the segments (k) and (k + 2) also 
touches the interior segment (k + 1), so that Qk.k+ 2 is at 
equal distances to three segments. The intersection of two 
adjacent domain walls with extremities in points of the first 
order win be called a point of the second order. Bear in mind 
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that (k + 2) is not always smaller than (j + 1), so that the 
subscripts of the intersections Qk,f of the second order obey 
the following scheme: 

l-k=2 when l<.k<i<j, 

and 

l-k=2-j when 1= 1,2. (9) 

It should be noted that the lengths of the domain walls are 
confined to the area of intersection of adjacent O's. There­
fore, adjacent domain walls do not always intersect, so that 
the number of second-order points may be smaller than 
j [see Fig. 3 ( a) ] . 

( 4 ) In the next step, we select the second-order point, let 
us say Qk,/ (I = k + 2), [Q3,5 in Fig. 3(a)], that has the 
shortest distance to the edge. We constitute a new collection 
of first-order points. Point Qk,l is added to this collection, 
and is now denoted by Q k./, while the points Q k,k + 1 and 
Q ; _ 1,1 are removed from the original first-order collection. 
Note that thecirc1es touching at segments (k), (k + 1), and 
(k + 2), whose centers constitute the domain walls connect­
ing the points Q k.k + 1 and Q k + l,k + 2 with the new first­
order point Q k,k + 2 , do not intersect any edge segment of the 
object. Moreover, these domain wans are constituted by the 
centers of all circles that touch simultaneously at segment 
(k + 1) and either segment (k) or (k + 2), 

(5) Next, we construct a domain wall with an extremity 
at the new first-order point Q k,/ [in which I is given by (9) ] , 
Thus, the domain walls with extremities at Q k,k + 1 and 
Q;_ 1,/ are replaced by one domain wall, whose course is 
determined by segments (k) and (/). Effectively, we have 

b 

6~ ______ _ 

5" 
4 

a 

c 

FIG. 3. The construction of the basic domain structure in a simply convex 
object. 
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reduced the number of edge segments by one because the 
segment (k + 1) is hidden by the domain walls with extrem­
ities at Q k,k + 1 and Q k + l,k + 2 • Note that the domain waH is 
the locus of centers of all circles that touch at both segments 
(k) and (I) and that none of these circles intersects the edge 
segment (k + 1) (see the Appendix), 

(6) Subsequently, we recompose the collection of sec­
ond-order points by removing Qk,/ (/ = k + 2) and adding 
the points of intersections of the domain walls with extrem­
ities in Q k,/, Q k _ I,k' and Q ;,/ + 1 of the new collection of 
first-order points [see Fig. 3 (b) ]. Of course, these points, 
denoted by Qk _ 1,/ and Qk,f + l' need not always exist be­
cause of the finite length of the segments (k - 1), (k), (/), 
and (I + 1). The aforementioned transformations are sum­
marized in Table I. 

(7) We repeat the procedure given in steps (4)-(6) by 
searching for the second-order point of the new collection, 
let us say Q/,n' having the shortest distance to the corre­
sponding edge segments. In general, n is not equal to (/ + 2) 
while the subscript m of the first-order points involved Q I,m 
and Q ;",n is within the set [ (l + 1), 
(I + 2), ... (n - 2),(n - 1)] (for simplicity, we have as­
sumed that 1 <.1 < n <j). In previous steps, the segments 
(I + 1) to (m - 1) and (m + 1) to (n - 1) have effica­
ciously been screened by domain walls. Note that the circle 
with center Q/.n that touches segments (/), (m), and (n) is 
completely situated within the object [see the above step 
(5) ]. Subsequently, Q/,n is added to and Q I,m and Q ;",n are 
removed from the collection of first-order points. A domain 
wall starting in the new Q ;,n is constructed by determining 
the locus of centers of aU circles that touch at both segments 
(l) and (n). Note again that none of these circles intersects 
any segment (l + 1) to (n - 1) (see the Appendix). 

(8) By repeating the above procedure, the number of 
effective edge segments governing the magnetization in the 
region where the course of the domain walls is not yet deter­
mined is systematically reduced. Ultimately, we arrive at 
two first-order points. The ultimate domain wall is simply 
the locus of centers of circles that touch at both segments. 
Again, these circles do not intersect any edge segment. 
Therefore, finally, we can conclude that the basic domain 
configuration is the locus of all circles that touch the edge at 
at least two points and which do not intersect the object's 
edge at any point. 

Remark: Sometimes, adjacent domain walls do not in­
tersect because the locally minimal radius of curvature, let us 
say of the point r (S3) [see Fig. 3 (b) ], is larger than the 
distance of its adjacent domain wall to r(s3)' In this case, a 

TABLE I. Transfonnation of points offtrst and second order when reduc­
ing the number of effective edge segments by one. 

Segments 
Points of the 
first order 

Points of the 
second order 

Original Replaced by 

(k), (k + I), (k + 2) (k) and (k + 2) 

Qk- I.k+ I' Qk.k+2' 

and Qk+ 1.'+3 

Qk-l.k+2 

and Qk,k+ 3 
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domain wall originating in another first-order point will 
smoothly connect with the latter domain wall [see Fig. 
3(c)]. 

Remark: In principle, we can also end up with three 
first-order points and with three segments that are usually 
not next to each other. It can easily be seen that the three 
domain walls departing from these first-order points inter­
sect at one point. 

8. Objects with concave edge segments 

Up to now, we have confined ourselves to the domain 
structure in convex specimens, e.g., objects in which the edge 
observed from the outside is convex at all points. In order to 
cover the domain structure in general simply connected geo­
metries, we have to pay attention to the general characteris­
tics of the concave segments. 

In Fig. 4, we have depicted such a concave segment to­
gether with the adjacent convex segments at both sides up to 
the points r(s;) and res; + 1 ) where the radii of curvature 
have local minima. As we did previously, we shan define a 
region 0; in which each point P is intersected by only one 
member of the characteristic base lines that originate in the 
segment between r(s;) and res; + 1 ) when these are truncat­
ed in accordance with Eq. (4). The evolute of the segment 
wiU be our starting point. Four branches can be recognized 
[see Fig. 4 ( a)]. The radii of curvature are infinite at two 
points r(t;) and r(s~ ), being those points on the smooth 
edge with a continous derivative d ~ /dx2 [see Eq. 7(a»), 
where the concave part twins into its convex neighbors. The 
branches approach asymptotically to the characteristics 
through these points r(il ) and r(s'z). The region 0; is 
bounded by the edge segment between r(s;) and r(sj+ I), 
the radii between the pair of points res; ) and Q ; _ I.; and the 
pair res; + I ) and Q :.; + I and both outermost branches of the 
evolute. The area of Oi is infinite; however, it can easily be 
seen that one characteristic can be attached to each point P 
in 0;, when constraint (4) truncates the characteristics of 
the convex parts. A straight edge segment [see Fig. 4(b) ] is 
an intermediate form of a convex and concave segment for 
which the above definition for OJ or the one of Sec. II A are 
equivalent. 

Let us subsequently consider the real. objects whose 
edges contain these concave sections. Again, we start by de­
termining the positions along the convex parts oftbe edge in 
which the radii of curvature possess local minima. These 
points demarcate the segments of the subdivision of the edge. 
The basic domain configuration follows from the same pro­
cedures as developed in Sec. II A 3. for the convex objects. 
An illustration of this method is provided by Fig. 5. 

The question remains of whether the basic structure in 
any simply connected object, thus also those with concave 
segments, is the locus of the centers of all circles inside the 
object that touch the edge at at least two points. The answer 
is affirmative because the construction of the basic structure 
in this section proceeds along the same lines as for convex 
objects, while the conclusions of the Appendix remain valid. 
On the other hand, this theorem is hardly a law of the Medes 
and Persians, as we shall discover in the next section on the 
multiply connected objects. 
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" 

Q 
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FIG. 4(a) The definition of a' of an edge segment with a concave pan. 
(b) The region a' ofan edge segment with a straight pan. 

m. BASIC DOMAIN STRUCTURES IN MULTIPLY 
CONNECTED MEDIA 

In the previous sections, we have confined ourselves to 
simply connected media. For every dosed curve that is com­
pletely situated within a simply connected object, it applies 
that every point of the region enclosed by this perimeter also 
belongs to the object, The present category of objects, in 
which "holes" are present, can be treated analogously to the 
simply connected ones; however, as we shan see, a few addi­
tional steps are required to incorporate them into our frame­
work. As the starting point of our discussion, let us have a 
closer look at the very simple exam pIe provided by Fig. 6 (a) . 

The object contains one hole with edge (2), in which no 

Q 

b 

FIG. 5. The different phases 
in the construction of the ba­
sic domain configuration in a 
specimen with three concave 
segments. 
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magnetic dipoles are present. From the exterior edge (1), 
the dipole distribution extends itself into the interior of the 
object, while a different dipole configuration is imposed by 
the interior edge (2). In general, both configurations are 
incompatible and, therefore, should be separated by an ade­
quate domain-wall configuration. In contradistinction to 
simply connected objects, it is not self-evident where the ex­
tremities of the separating walls are situated, because, in 
principle, the interior edge (2) need not contain a single 
convex segment. In order to construct the separating do­
main-wall structure between edges (1) and (2), we shall 
employ the concept of the involute (Ref. 3, pp. 417-8). 
These involutes of edge (1) are lines perpendicular to the 
family of characteristics that corresponds to the specific 
edge. The distance, measured along the characteristics, 
between each corresponding pair of points on the edge and a 
specific involute is a constant quantity for that involute. In 
some respect, each involute is "parallel" to the original edge; 
however, a distinctly visible alteration in the shape of the 
auxilary edge with respect to edge ( 1) occurs when the mu­
tual distance between edge ( 1 ) and the auxiliary edge is larg­
er than the smallest radius of curvature of a convex part of 
edge (1). In this case, a discontinuity in the outwardly di­
rected unit vector n normal to this auxiliary edge occurs 
[compare edges (l) and (1") in Fig. 6(b) ]. Note that this 
point of discontinuity of the auxilary edge is situated on the 
domain waH that has its extremity in the corresponding cen­
ter of the local minimum of the radius of curvature of edge 
( 1). 

Even so, we construct a family of auxiliary edges "paral­
lel" to edge (2) by drawing closed curves in between edges 
( I) and (2) that intersect aU characteristics corresponding 
to edge (2) at right angles [see Fig. 6 (c) :I. It should be 
observed that a comer at edge (2) is replaced by a circular 
segment [see Fig. 6 (c) ], so that this second family of auxil­
iary edges does not exhibit discontinuities in the direction of 
the unit vector D. 

Now, the construction of the adequate domain-wall 
configuration proceeeds as follows. Take from each family of 
auxiliary edges one member such that these members touch 
each other, and thus have no point of intersection, while, in 
addition, the member corresponding to edge (1) encloses 
the one of the second family. It is obvious that an infinite 
number of these pairs can be selected. Subsequently, we con­
struct a basic domain configuration in the region bounded by 
a given pair (1/) and (2/) of these auxiliary edges that corre· 
sponds to edges (1) and (2), respectively. Note that these 
auxiliary edges enclose a concave simply connected subre­
gion of the object. Next, we construct the fragments of the 
basic domain structure imposed by edge ( I ), while the pres­
ence of the hole is neglected, in between edges ( I ) and ( 1/ ). 
Note that the latter fragments link up smoothly with the 
basic structure in between edges (1/) and (2/). Finally, note 
that a continuous dipole configuration is possible between 
edges (2) and (2'), because edge (2) has no convex seg­
ments. Thus the whole domain structure is made up of the 
configuration between edges (2') and (1/) and the frag­
ments between edges (1) and (1'), 

It is obvious that infinitely many of these configurations 
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a 

b 

c 

d 

(1) 

(1) 

(1) 

FIG. 6.(a) The object with in­
ner edge (2) and outer edge 
(I). (b), (c) A few members 
of the family of auxiliary edges 
corresponding to edge ( 1 ) and 
edge (2). respectively. (d) The 
basic domain structure. 

are possible for each multiply connected object, so that the 
basic configuration is not yet uniquely specified. For this, we 
hark back to a general property of basic configurations in 
simply connected objects, derived in the previous section. By 
definition, the basic domain configuration of a multiply con­
nected object is the one in which each point at the part of the 
domain structure separating edges (1) and (2) is at equal 
distance from both edges. The basic structure can be found 
as follows. Determine the location where the distance 
between edges ( 1 ) and (2) is the smallest [the distance U\ U2 

in Fig. 6( d)]. Note that the straight line between U\ U2 coin­
cides with characteristics through U\ and U2• Construct the 
auxiliary edges corresponding to edges ( 1) and (2) passing 
through the middle of the line U\ U2 and determine the do­
main structure as discussed above. It is obvious that, again, 
the basic configuration is the locus of centers of circles that 
touch the object edge at at least two points and that do not 
intersect this edge at any point. 

At first sight, confinement to the basic domain struc­
tures implies overlooking a large number of alternative real­
izations with equal validity. However, in a forthcoming pa­
per on composite domain structures, we shall discover that 
none of these possibilities is left out of consideration. More­
over, the above definition of basic domain structures in mul­
tiply connected objects allows the development of a systema­
tic methodology to handle the composite domain structures. 

Let us proceed to a more complex object with three 
holes (see Fig. 7), in order to develop the procedure for 
arbitrary multiply connected objects. In the first step, we 
determine the shortest distance between two of the four 
edges [U3 U4 in Fig. 7(c)]. Subsequently, we construct aux· 
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c 

---- --- -- - - ... - ~ = ~ ~ --

FIG. 7. The various phases in the construction of the basic structure in the 
object in (al. 

iliary edges (1'), (2'), (3'), and (4') at a distance ~U3U4 
from edges (1), (2), (3), and (4), respectively. In the next 
step, we construct the fragments of the domain structure 
between edges (1) and (1'). These fragments have their ex­
tremities in the centers of curvature of the convex parts of 
edge (1) with a local minimum in the radius. These wall 
fragments are the loci of the centers of all circles in between 
edges (1) and (1') that touch edge (1) at the least two 
points. In the same way, the wan fragments between edges 
(2) and (2'), edges (3) and (3') and edges (4) and (4') 
have to be determined. Note that edges (3') and (4') consti­
tute one single closed curve which we shall denote by (5') in 
Fig.7(c). 

In Fig. 7 (c), the shortest distance is determined 
between (2'), (1'), and (5') [US U6 in Fig. 7(c) J. Next, we 
determine the auxiliary edges (5"), (2"), and (1 ") at a dis­
tance !USU6 from edges (5'), (2'), and (1'), respectively. 
Again, we determine the loci of centers of circles between 
edges (5') and (5") that touch at least two points at edge 
(5'). The same procedure is repeated for the regions between 
(1') and (l") and between (2') and (2~). This time, edges 
( 1") and (5") constitute a closed curve, which we shall de­
note by (6") in Fig. 7 (d). I t is self-evident that this proce­
dure can by systematically repeated, so that we ultimately 
arrive at the domain structure of Fig. 7 (d). 

Finally, it should be mentioned that the circulation 
senses ofM along the inner edges are always opposite to the 
circul.ation sense along the outermost edge. 

IV. DISCUSSION 

The starting point of our theory is an idealization of the 
material properties in which, on the micromagnetic level, 
the intrinsic anisotropy and the exchange energy7 have been 
neglected. The latter assumption is only justified when the 
spatial rate in the variation of the dipole direction is suffi­
ciently low. In general, this condition is satisfied in the do­
mains when the lateral dimensions of the object exceed a 
critical value, below which the object tends to behave like a 
single domain particle. Even when the object is large enough, 
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satisfaction of this requirement remains questionable inside 
the domain walls. However, the theory unfolded is, in the 
first place, based on the requirements to t~e micromagn~tic 
equilibrium of the dipoles inside the domaIns and, as an me­
vitable consequence of this, domain walls, discontinuities in 
M, have to arise. No opinion is given upon the torque equi­
librium within the waIls; however, this subject was exten­
sively elucidated by Hubert. 8.

9 He showed that, even in these 
regions, magnetostatics dominates in thin-film objects. 

The second requirement, the small anisotropy, is a mat­
ter of material choice and is satisfied when the ratio of the 
anisotropy energy constant and J.lo M; is small. A large 
number of materials, such as Ni, Fe, and their composites, 
are good representatives of this category. 

A well-known basic domain structure5,6,10-12 is the Lan­
dau-Lifshitz structure, shown in Fig. 8(a) in a Permalloy 
bar with a thickness of 2500 A. It is well known that, apart 
from this simple configuration, a large number of alternative 
structures can come into being in the same object 10, II [see 
Fig. 8 (b) ]. These type of configurations win come up for 
discussion in the forthcoming paper on composite domain 
structures. Note that the singularities in the evolute of the 
rectangular bar coincide with the corners. Figure 8 (c) gives 
the basic domain structure in a bar with circular tips, in 
which the extremities of the central wall coincide with the 
centers of both circular tips. In Fig. 8 (d), a simple composite 
structure is shown in the same object. Additional examples 
of basic domain structures in convex objects are provided by 
Fig. 9. Figure 9(a) shows a degenerated basic confi.guration, 
in which the domains structure has shrunk to one smgle spot 
in the center of the circle. 

Let us proceed to objects with concave segments. Figure 
lO(a) shows an object bounded by two circular segments, in 
which the circular magnetization distributions imposed by 
both segments are separated by an elliptical waU, as proved 
previously. 13 Another example is provided by Fig. lO(b): in 
which the Permalloy element contains one corner covermg 
an arc 7] = 270· within the magnetic medium. Note that no 
domain wall arises at this corner, while both domain walls 
originating in the adjacent comers exhibit a parabolic course 
inside the sector with angle 7] - I. 80· and center in the corner 
with angle 7]. Again, Fig. lO(b) demonstrates that the basic 
domain structures arise in a natural way in simply connected 

II 

FIG. 8. Simple domain structures 
in Permalloy bars with a thickness 
of 2500 A and a length of 50 p.m. 
(a), (c) Basic configurations, (b), 
(d) simple composite structures. 
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a b 

FIG. 9. Basic domain configurations in a number of convex objects (diame· 
ter circle 50 pm). 

objects. Let us now have a look at multiply connected ob-
jects. . 

In Fig. 11 (a) domain structure deviating from the basic 
configuration, depicted in Fig. 11 (b), is shown in a circular 
speci~en ,,:,ith two holes inside. The reason for this discrep­
ancy IS obViously the domain-wall energy because the actual 
domain structure has a smaller wall length. Moreover, ob­
serve that the actual structure is connected to the object 
edge, while the basic structure is a more or less floating con­
figuration. The structure of Fig. 11 (a) can easily be derived 
because, in Sec. III, we have established that whole family of 
domain structures is possible in multiply connected objects. 
In order to select the one with the shortest wall length, we 
proceed as follows [see Fig. 11 (c) J. 

Determine the shortest distance between the outermost 
edge (l) and one of the inner edges [edge (2) Fig. 11 (c) ]. 
Construct the auxiliary edge ( 1/) "parallel" to edge ( 1 ) that 
touches at edge (2). Consequently, edges (1/) and (2) con­
stitute one closed curve which we shall label (2'). Subse­
quently, the shortest distance between edges (2/) and (3) is 
determined and, again. auxiliary edge (2") "parallel" to 
(2/) that touches edge (3) is constructed. Next, the frag­
m~ts of the domain walls in between edges (2/) and (2"). 
bemg the locus of centers in that region of all circles touching 
edge (2/) at at least two points. is determined. Finally, the 
basic domain structure of the region bounded by edges (2") 

and (3) is added. ultimating in the configuration depicted in 
the photographs. although two extra edge doublets reveal 

a 

b 

1111 

FIG. 10. Two Permalloy ele· 
ments with concave segments, 
namely. (a) segment of a circle 
(diameter outer circle 50 Ilm) 
and (b) a comer with an angle 
inside the medium larger than 
180". 
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o 

FIG. II. (a) A multiply connected Permalloy specimen with an outer diam· 
eter of 50 Ilm. (b) The basic domain configuration. (c) Construction of 
domain structure with a configuration comparable to (b) but having a 
shorter wall length. 

themselves at edge (3). which are symmetrically positioned 
with respect to the symmetry line through the centers of 
edges (2) and (3). One of the walls of each edge doublet 
belongs to the basic structure. while its counterpart extends 
itself into the region between edges ( 1) and (3). The reason 
for these extra walls is presumably the high-energy density. 
because of its high wall angle, of the domain-wall segment of 
the basic structure between edges (1) and (3) that touches 
at edges (3). This segment, having a wall angle of about 180". 
is replaced by two doublet walls with greater lengths but 
much smaller wall angles. so that wall energy is gained. 
Again, the domain-wall energy is a hill joy, although it can­
not affect fundamental deviations from the basic structure in 
this object. 

The question forcing itself to the fore is whether we have 
made the right choice by our definition of the basic domain 
configurations, because it is obvious that the discrepancy 
observed above will always present itself in multiply con­
nected objects. There are three reasons which justify our 
choice. In the first place. the description of the basic struc­
ture in terms of the locus of centers of circles within the 
object that touch the edge at at least two points gains general 
validity by this definition. In the second place. this definition 
of basic domain structures allows a very systematic ap­
proach to the composite domain structures. as will be shown 
in a forthcoming paper. Finally, it win be shown in the latter 
paper that the domain structure derived in the previous 
paragraph is just a specific example of a composite structure. 

When constructing the basic configurations in multiply 
connected objects. we have concluded that the circulation 
sense ofM along each inner edge is always opposite the sense 
al~ng the outermost edge. However, there is one exception to 
thIS rule. namely, an object that consists of one inner edge 
running perpendicular to characteristics stretching out from 
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FIG. 12. The parallel configuration (a) and the basic structure (b) in a 
Permalloy ring with an outer diameter of 50 p.m. 

the outermost edge, so that no conflicting dipole distribu­
tions are imposed by inner and outer edge. An exampJ.e is 
given in Fig. 12(a) ofa Permalloy ring in which no traces of 
domain walls can be observed. This magnetization distribu­
tion is not a basic structure [see Fig. 12 (b)] and will be 
caned the parallel configuration. Note that we previously 
have met parallel configurations in Sec. III, where fragments 
of a wall configuration have been determined between auxil­
iary edges having a constant mutual distance. 

A discussion of the work of Williams,14 who confined 
himself to domain structures in ideally soft-ferromagnetic 
thin-film elements with polygonal lateral geometry, is timely 
here. His domain configurations exhibit a great deal of re­
semblance to the basic domain structures presented in this 
paper; however, differences reveal themselves in the case of 
objects with concave edge segments. In the polygonal speci­
mens, this situation presents itself as soon as vertices are 
present that cover an arc larger than 180· inside the speci­
men. In this situation, the basic structures have shorter wall 
lengths and thus lower waH energy and are, therefore, more 
likely. This assertion is supported by Fig. (11 b). It is self­
evident that, because of these deviations, Williams's struc­
tures do not fit into our unifying description, in terms ofloci 
of centers of circles. The advantage of this universal criterion 
will become particularly evident when the composite struc­
tures will come up for discussion in a forthcoming paper. 
Thus, the present approach not only covers a wider range of 
object geometries but, potentially, also a larger variety in the 
composite structures. An additional difference between the 
present approach and that of Williams is the uniqueness of 
the present construction method, while the William's in­
volves aspects of trial and error. 
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APPENDIX 

In this Appendix, we shall' establish two properties of 
the circles that touch at the edge whose centers constitute the 
position of a domain wall of a basic domain structure. In the 
first place, we shall prove that both edge segments at which a 
particular family of circles touch constitute the mathemat-
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ica1 envelope of this family. We have d.ecomposed the edge 
into a number of segments, which are bounded by two 
successive points at which the radius of curvature posseses a 
local minimum. In the second place, we shall. demonstrate 
that none of the circles that touch at two of these edge seg­
ments intersect these segments at any point. 

Let us consider a two-parameter family of circles 

(x - a)2 + (y - bf = r(a,b) (AI) 

and let us investigate the intersections of two circles whose 
centers are separated by a smaU distance (8a, 8b). When the 
center of the first circle is given by (a,b) the second circle 
satisfies 

[x - (a + 8a) F + [y - (b + 8b) J2 
= r[(a + 8a),(b + 8b)] . 

For the intersections, we obtain by substracting both equa­
tions: 

- (x - a)8a - (y - b)6b 
ar ar 2 

= r-6a + r-6b + O(6a2,8b ). 
aa ab 

In a first-order approximation, we obtain 

- ((X - a) + r !:) 6a = ( (y - b) + r !~) 6b. 

(A2) 

Let us consider two subsequent circles that touch the edge 
and whose centers are separated by a distance 6b, while the 
coordinate system is chosen such that 8a is zero in a first­
order approximation. 

The distance of the domain wall to both edge segments is 
always smaller than the radii of curvature of the correspond­
ing points because the domain waH is inside the intersection 
of both n regions. The circle whose center is in (0, b + 8b) 
also touches the edge and it can easily be seen that ind.epen­
dently of the exact course of the edge segments, the first­
order change in the radius (or the distance to the edge) is 
equal to cos(tP12)6b, where tP is the angle enclosed by the 
characteristics. In the limit for 8b W, we get from Eq. (A2), 
for the intersections of these circles, y - b + rcos(tP/ 
2) = 0, which implies that the points of intersection coincide 
with the points of contact of the circle with both edge seg­
ments. In other words, the object edge is the envelope of the 
family of circles whose centers constitute the domain wall.. 

Let us pay attention to another property of these circles, 
which is strongly interwoven with the above observutions. 
We distinguish between two segments on each circl.e, both of 
which are bounded by both points of contact of the circle 
with the edge. The smallest one, which is situated at the side 
of point P in Fig. 13, wiJ.! be indicated by the symbol of the 
circle to which a prime is added, whil.e its counterpart is 
indicated by a double prime. Above, we have observed that 
two segments, let us say l' and 2', which are at an infinitesi­
mally small mutual distance intersect each other in their 
points of contact with the edge, while the rest of these seg­
ments have, of course, no point of intersection (two circles 
possess at most two points of intersection). The same obser­
vation applies to the circle segments 1" and 2". Let us con-
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FIG. 13. (a) The partitioning into two segments l' and 1· of the circle with 
center 1 that touches the edge at A and B. (b) The correlation between the 
order in the centers of the circles and the segments into which these circles 
have been partitioned. 

sider a set of circles that touch at both edge segments whose 
centers on the domain wall are numbered consecutively. It is 
obvious that the circle segments that are at a finite mutual 
distance, let us say l' and 3', or 1 wand 3", do not intersect. 
Moreover, it should be observed that the circle segments of 
both categories exhibit the same order as the corresponding 
centers [see Fig. 13 (b) ]. 

This order is not disturbed as long as the smaner circle 
segments remain on the same side of their corresponding 
centers. Both categories change parts as soon as the tangents 
to the edge are parallel and point P in Fig. 14(a) shifts 
towards infinity. Let's have a closer look at this situation. In 
alI cases, the edge segments are located outside the circle that 
touches at both edge segments, for, its radius is always 
smaller than the radius of curvature of one of these convex 
segments. It can be seen from Fig. 14(a) that the above­
distinguished categories of circle segments interchange parts 
at the circle marked by 5, whose corresponding tangents to 
the edge are parallel. It is obvious from the above established 
correlation between the order in the centers of the circles and 
both categories of circle segments that segments 6" have no 
intersection with segments 1', 2', 3', and 4', and the same 
holds for the circle segments 5",6", 7",3',2', and I' in Fig. 
14. Therefore, we can draw the conclusion that when both 
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a b 

FIG. 14. The course of the two categories of circle segments on both sides of 
the circle whose corresponding tangents to the edge are parallel: (a) two 
convex edge segments and (b) two concave edge segments. 

outermost circles that touch at the extremities of two edge 
segments are located within an object, all other circles that 
touch at both segments are also entirely situated within the 
object. 
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