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Interplay of dipolar interactions and grain-size distribution in the giant magnetoresistance
of granular metals

D. Kechrakos and K. N. Trohidou
Institute of Materials Science, NCSR ‘‘Demokritos,’’ 15310 Athens, Greece

~Received 22 February 2000!

The giant magnetoresistance~GMR! of a granular metal containing interacting magnetic particles with
disperse sizes and shapes is studied numerically using a tight binding Hamiltonian with spin-dependent poten-
tials. Dipolar interactions between the magnetic particles are assumed and the equilibrium configuration of the
system is obtained by a classical Monte Carlo simulation. The conductance of the system is calculated using
the Kubo-Greenwood formula and real space Green function techniques. Due to the dipolar interactions acting
between the grains the maximum GMR value is reduced and the saturation field is increased. When the
coalescence between particles is introduced the concentration dependence of the GMR develops an optimum
value close to the percolation threshold, where the effect of dipolar interactions is mostly pronounced, causing
serious deviations from the predictions for noninteracting grains. Both dipolar interactions and grain size
distribution are responsible for the deviations from the parabolic dependence of the GMR on the reduced
magnetization at low fields. The relative importance of these two factors is investigated. Our numerical results
are compared with experimental findings in CoxCu12x granular alloys.
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I. INTRODUCTION

Magnetic granular metals consist of magnetic partic
~e.g., Fe, Ni, Co! with a diameter typically of a few nanom
eters embedded in a nonmagnetic metallic matrix~e.g., Au,
Cu, Cr!. The first observation of a giant magnetoresistanc
granular films1,2 motivated a great deal of experimental a
theoretical effort with two main purposes. First, to reveal
underlying physical mechanisms that gives rise to the G
effect and second, to achieve control over the physical
tors that determine the size of the observed magnetore
tance. This effort is driven by the immense technologi
potentials of magnetic granular metals in construction
magnetic read heads combined with their relatively e
growth process~sputtering, mechanical alloying, melt spin
ning!.

The GMR effect was first observed in magnetic Fe/
multilayers.3 In particular, the multilayer exhibits high resis
tivity when the magnetizations of successive magnetic lay
are aligned antiferromagnetically, while the resistivity dro
to nearly half its value when a ferromagnetic alignment
the layers is achieved by application of an externally app
magnetic field. This effect is attributed to spin-depend
scattering of the charge carriers. Intrinsic effects~spin-
polarized band structure! and extrinsic effects~magnetic or
nonmagnetic impurities, lattice imperfections! both give rise
to spin-dependent scattering and their relative importance
mains an open question.4 Furthermore, the direction of cur
rent, either in the magnetic planes~CIP! or perpendicular to
them~CPP!, produces different values for the effect. In ge
eral, the CPP arrangement produces higher GMR values
the CIP.5

The GMR effect in granular metals is attributed to t
same physical mechanisms as in the case of magnetic m
layers, namely spin-dependent scattering of the conduc
electrons off the magnetic particles.1,2 It occurs when the size
PRB 620163-1829/2000/62~6!/3941~11!/$15.00
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of the particles is comparable to the electronic mean f
path.2 Due to their small size, which does not exceed t
correlation length for the exchange interactions, the partic
consist of a single magnetic domain. When the thermal
ergy exceeds the magnetic anisotropy barrier the parti
become superparamagnetic and in the absence of ext
field their magnetization vectors point in random direction
In the random configuration the system has the maxim
resistivity. Application of a magnetic field aligns the ma
netic moments and the resistivity of the sample drops lead
to the GMR effect.

Experiments have revealed various factors that determ
the size of the GMR effect. In particular, the value of GM
increases initially with increasing grain diameter and it d
creases above a certain grain size. The maximum value
curs for particle diameters around the electron mean
path.2 Varying the particle concentration, an optimum val
is obtained around the percolation threshold.6,7 Spin-
dependent scattering in granular metals occurs predo
nantly at the magnetic-nonmagnetic interfaces of the p
ticles with the matrix and therefore the important role of t
surface structure of the particles has been underlined.8 Fi-
nally, the choice of magnetic and nonmagnetic material
maximum GMR values remains an open issue.9

It was demonstrated by Xiaoet al.2 that the magnetoresis
tance data at various magnetic fields when represented
function of the reduced sample magnetizationM /Ms lie on a
single curve that is very close to an inverted parabola. T
dependence of the GMR on the square of the total magn
zation is an indication that long range correlations betwe
the particle moments determine the size of the effect. Ho
ever, many experimental groups have observed deviat
from the parabolic dependence that have been attribute
interparticle interactions,10 to particle size distribution,2,8 and
to the coexistence of blocked and superparamagn
particles11 or collectively rotating and superparamagne
particles12 in the sample. The relative importance of the
3941 ©2000 The American Physical Society
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factors in producing the deviations from the inverted p
rabola, is currently an open question.

The theoretical works, on the other hand, that describe
GMR effect in granular metals, include classic
treatments,13–15 semiclassical treatments based on Bol
mann’s equation,16–18and quantum approaches based on
Kubo-Greenwood theory of conductivity.19,20

Two common approximations adopted in previous th
retical treatments are the following. First, that a single s
quantization axis exists in the system.16,20 Consequently,
spin-flip processes are inhibited and the two spin chan
contribute to the electronic conduction in parallel. Seco
that the particles are superparamagnetic and therefore, a
dom configuration of the magnetic moments exists at z
field. The maximum GMR effect is then obtained by com
paring the conductivities of the random and the fully align
configurations.16,19For superparamagnetic systems, the pa
bolic dependence of the GMR on the total magnetization16,19

was proved.
Zhang and Levy16 assumed further that a distribution o

the particle sizes exists and they showed that this is res
sible for the deviations from the parabolic dependence
high fields (M /Ms;1) in agreement with previou
experiments.2 The situation with the deviations at low field
(M /Ms;0) appears more complicated. The reason be
that both grain-size distribution and interparticle interactio
are responsible for these deviations.8

At room temperature, which for most granular films
greater than the blocking temperature of the isolated p
ticles, the magnetic configuration of the system is mai
ruled by the action of the magnetostatic interactions am
the particles, while the effective anisotropy energy is of s
ondary importance.21 The magnetostatic interactions tend
align the magnetic moments to form flux-closure loops a
thus introduce short range ferromagnetic correlations in
ensemble of particles. In magnetic multilayers, the ferrom
netic alignment of the layers produces higher conductiv
values than the antiferromagnetic one. Similarly, in granu
metals, the presence of ferromagnetic correlations in the
semble leads to higher conductivity values than the fu
random case. Thus the GMR effect is degraded due to
presence of magnetostatic interactions.

The resistivity of a granular metal was postulated to
proportional to the moment-moment correlation function22

Following this idea, certain phenomenological studies of
GMR appeared that focused on the calculation of
moment-moment correlation function10,23,24 and demon-
strated a flattening of the GMR-versus-magnetization
rabola in agreement with experiments. However, in th
treatments of the GMR effect, the variation of the mean f
path with the particles concentration is either neglected23,24

or treated as a fitting parameter.10 Also a set of parameter
determining the value of the resistivity are phenomenolog
with no clear microscopic origin.

Recently, Pogorelovet al.18 extended the transport mod
of Zhang and Levy16 by allowing for coherent scattering o
the carriers by neighboring magnetic particles. They show
that, short range magnetic correlations enter the final exp
sion for the magnetoresistance and cause mixing of the
jority and minority transport channels. However, no nume
cal predictions are made in this work, because an expres
-
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for the moment-moment correlation function is lacking. Fu
thermore, this model18 is developed in the dilute limit and its
applicability to dense systems is debatable. Dense syst
are desirable as the GMR effect appears to grow with part
concentration and maximum values appear around the pe
lation limit.6,7

We believe that a theoretical transport study of the GM
in granular metals that includes a realistic description of
magnetic structure is currently missing from the literatu
This study is important in order to understand the obser
deviations of the experimental results from the predictions
the existing theoretical models.

We have recently presented preliminary results of a
merical study of the GMR in a granular metal, where t
magnetic correlations, arising from magnetostatic inter
tions between the particles, were included in the calculat
of the conductivity.25 Our method is a combination of th
real space Kubo-Greenwood formula for the conductivity
a system described by a tight binding Hamiltonian with t
Monte Carlo simulation technique. The implementation
the Kubo-Greenwood formula for a tight-binding Ham
tonian constitutes a very efficient and reliable meth
to study spin-dependent transport in nanoscale magn
structures. It has been previously used to study
magnetoresistance26 and the thermopower27 in magnetic
multilayers and the magnetoresistance in granular alloys.19,28

The Monte Carlo simulation is a well established techniqu32

that reproduces the micromagnetic configuration of intera
ing magnetic systems at finite temperatures. Our appro
has, on one hand, the advantage of the phenomenolo
models in providing a realistic description of the microma
netic state10,23,24and, on the other hand, the advantage of
quantum-mechanical treatment of electronic transport in
cluding multiple scattering effects. The latter are of partic
lar importance in dense samples.

As the concentration of magnetic particles in a granu
alloy increases, the coalescence between neighboring
ticles is an inevitable phenomenon. Coalescence causes
mation of clusters of particles with a distribution of sizes a
shapes. It also manifests itself in the concentration dep
dence of various macroscopic quantities. For example,
coercive field and the magnetoresistance6,7 of the sample de-
velop a characteristic peak at concentrations around the
colation threshold. To our knowledge, the role of coale
cence has been neglected in all previous models of the G
in granular alloys, a fact that limits their applicability to ver
dilute systems. In the present work, we study the GMR eff
in the whole concentration range and include the effect
particle coalescence by a percolation model,29 which is valid
when the thermally driven diffusion of magnetic particles
negligible. According to the percolation model the particl
occupy random sites in space and the various cluster s
are generated by a cluster counting algorithm performed
this random system.29 There are two reasons for choosin
this model to describe the morphology of the granular s
tem.

First, with the recently developed technique of low
energy cluster beam epitaxy,6,30 magnetic clusters are forme
in flight and are mass selected before they are co-depos
on a substrate with the atoms of the nonmagnetic mat
With this technique extremely narrow size distributions
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particles are produced and particle coalescence after de
tion is the major mechanism that leads to formation of lar
clusters. Our percolation model describes satisfactorily
situation and predicts, at least qualitatively, the correct c
centration dependence of the magnetoresistance.

Second, the magnetic properties and GMR of granu
alloys, that are prepared by thermal annealing, are comm
analyzed by fitting the grain-size distribution function to
log-normal function.8 The cluster size distribution generate
by the percolation algorithm29 for concentrations below the
percolation threshold shares the same essential features
the log-normal distribution, as for example, the long tail a
the dependence of standard deviation on the mean value
therefore anticipate that this model can reveal the interp
of size distribution and interaction effects that occur in dilu
granular systems.

This work is organized as follows. In Sec. II we introdu
the spin-dependent tight binding Hamiltonian that descri
the electronic structure of the granular metal and gives
corresponding Kubo-Greenwood expression for the cond
tivity. The use of a localized spin-dependent potential is j
tified as long as the electronic mean-free path (l;102 Å) in
granular metals is larger than the size of the granulesD
;10 Å) and therefore the magnetic particle scatters a
whole.18,19The Monte Carlo method used to obtain the ma
netic structure and the thermal average of the conductivit
also presented in the same section. In Sec. III we present
discuss the numerical results for systems containing w
separated particles~monodisperse! and systems containin
clusters of coalesced particles~polydisperse!. Finally, in Sec.
IV we summarize the main conclusions.

II. MICROSCOPIC MODEL OF MAGNETORESISTANCE

We consider a finite sample of a granular system with t
semi-infinite electrodes attached to opposite sides, as sh
in Fig. 1. We describe the electronic structure of the co
posite system by the following single band tight bindi
Hamiltonian on a simple cubic lattice:19

FIG. 1. Sketch of the geometry used to calculate the conduc
ity of the granular alloy.
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1 ~m̂i•ŝ !abcib .

~1!

Here i,j are the site labels,cia
1 (cia) is the creation~annihila-

tion! operator of an electron with spina at site i ,« i is the
atomic potential on sitei and it takes the values«LW in the
electrodes,«NM in the nonmagnetic matrix, and«MG on the
magnetic sites.t is the hopping integral between neare
neighborŝ i,j& and is fixed throughout the whole structure.J
is the exchange potential on the magnetic sites
sx ,sy ,sz are the Pauli matrices. The third term in Eq.~1! is
the spin-dependent scattering potential that causes the G
effect. The energy parameters in Eq.~1! are measured in
units of the hopping integral. The strength of the sp
dependent potential, in Eq.~1!, is proportional to the cosine
of the angle between the electronic spinŝ and the local
magnetization axism̂i . When the applied magnetic field i
not strong enough to saturate the sample, there is no un
magnetization axis in the system and therefore the s
dependent term in Eq.~1! causes mixing of the spin-up an
spin-down states and introduces an elastic spin-flip scatte
mechanism in the electronic transport.

We mention that the internal magnetic structure of t
particles is neglected within our model. This approximati
is justified, because even room temperature, at which m
measurements are taken, is well below the Curie tempera
of Fe or Co or Ni, and the magnetic particles are, to a go
approximation, saturated.

Notice also that in Eq.~1! we use a single band to de
scribe the electronic structure of the system. Thus thes-d
hybridization for the transition metal is neglected. As pre
ous studies have demonstrated,28 inclusion of thes-dhybrid-
ization in the calculation leads to slightly different GM
values but it does not change the essential features of
GMR effect, as, for example, the variation with the size
magnetic particles or the concentration. We therefore exp
that this simplification serves the purpose of the pres
work, which is to demonstrate the interplay of grain si
distribution and dipolar interaction effects.

We describe the composite system electrode-sam
electrode as a sequence of layers containingLxLy sites~at-
oms! each. The corresponding Green function is defined

Gab
~6 !~k,k8!5 K k,aU 1

EF2H6ihUk8,b L , ~2!

wherek is the layer index,EF is the Fermi energy andh is an
infinitesimally small positive number. Notice that in gener
the Green function is nondiagonal in the spin indicesa,b.
The zero-temperature conductance in the Kubo-Greenw
formalism and for the Hamiltonian in Eq.~1! reads19

v-
G5
2e2t2

h
TrS G̃~k,k!G̃~k21,k21!1G̃~k21,k21!G̃~k,k!2

G̃~k,k21!G̃~k21,k!2G̃~k21,k!G̃~k,k21!
D ~3!
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with

G̃~k,k8!5
1

2i
@G~2 !~k,k8!2G~1 !~k,k8!#. ~4!

We compute the Green function for the composite sys
electrode-sample-electrode using a real space recur
method.19 First, the Green function at the surface layer o
semi-infinite cubic lattice with aLx3Ly surface supercel
Gs(0,0), that describes the~left! electrode, is obtained by
means of a transfer matrix scheme.31 Next, the successive
layers of the granular film are attached to the free surfac
the left electrode and the corresponding Green function
the outermost layerk is obtained using Dyson’s equation

G~k,k!5@P~k,k!212U~k,k21!

3G~k21,k21!•U~k21,k!#21 ~5!

with U(k,k8) the interlayer coupling matrix andP(k,k)
5@EF2H(k,k)1 in#21 the intralayer Green function of th
kth granular layer. In the final step, after theLz-th layer is
added, the surface of the right electrode is attached, u
Eq. ~5! but with P(k,k) replaced by the surface Green fun
tion of the cubic lattice on the free surface layerGs(0,0).
The Green functions in Eqs.~3!–~5! are 2LxLy32LxLy ma-
trices and the trace in Eq.~3! is over the spin indicesa,b and
all sites in the two planesk,k8.

It is evident from Eq.~1! that a particular configuration o
the magnetic moments introduces a distribution of local
tentials into the sample that in turn determines the sam
resistance. The positions of the magnetic particles in a gra
lar metal are random. We, therefore assume that the s
dependent potentials in Eq.~1!, are located at random site
on the lattice. However, the strengths of the local potent
are determined by the orientation of the local magnetic m
ments, which are correlated due to interparticle interactio
In thermodynamic equilibrium, the magnetic configuration
such that the total energy of the assembly is at a glo
minimum. To obtain the energy minimum we proceed
follows. We describe the magnetic granular system by
assembly of identical three dimensional classical spins~mag-
netic moments! located at random on the sites of a simp
cubic lattice. The spins interact via dipolar magnetosta
forces. The total energy of the system reads

E5(
i

Fg(
j

m̂i•m̂j23~m̂i•R̂i j !~m̂j•R̂i j !

Ri j
3 2h~m̂i•Ĥ !G ,

~6!

wheremi is the magnetic moment~spin! of i th particle,g is
the dipolar strength,h is the Zeeman energy, andRi j is the
distance between particlesi and j. Hats indicate unit vectors
The energy parameters in Eq.~6! are measured in arbitrar
units, while distances are measured in units of the part
diameterD. In a previous study,21 we have shown that fo
temperatures above the blocking temperature of the isol
particles and for a wide range of particle concentrations~up
to ;0.8! the interparticle dipolar interactions have a ferr
magnetic character. In this regime, the single-particle ani
ropy is immaterial, to a first approximation, so we have om
ted the corresponding terms in Eq.~5!.
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The equilibrium spin configuration is obtained from min
mization of the total energy of the system using the Mo
Carlo technique and the Metropolis algorithm.32 According
to this algorithm a particle is chosen at random, a move o
spin is considered and the change in the energy of the sys
(DE) is calculated. IfDE<0, the transition to the new stat
is made and the new configuration is accepted. IfDE.0, the
transition to the new state and the acceptance of the con
ration are made with probability equal to exp(2DE/kBT). The
step of change of the spin direction is adjusted so that
proximately 50% of the attempted moves are successfu32

Thermal averages of the macroscopic quantities of inte
are obtained from simple arithmetic averages over the
cepted configurations. In particular, the conductivity for ea
accepted configuration is calculated using Eqs.~1!–~5!, and
the ~reduced! magnetizationM /Ms is equal to the average
value of the component of the spin along the field axis.

Dipolar interactions introduce an extra anisotropy to t
system and consequently the assembly of dipolar interac
particle develops hysteretic behavior. One should there
distinguish between the anhysteretic and the hysteretic
pendence of the magnetization or the conductivity on
external field. To model the anhysteretic behavior of the s
tem, the simulation starts with a random initial magne
configuration that describes a demagnetized sample an
external positive~or negative! field is applied. For the hys-
teretic behavior, the simulation starts with a fully saturat
assembly along the negative~or positive! z axis and a nega-
tive ~or positive! external field is applied along the sam
axis. During the simulation, the required long range part
the dipolar interaction energy is calculated using the Ew
summation technique.

For a given sample, the field-dependent magnetore
tance ~MR! is defined with respect to the minimum resi
tance as MR(H)5@R(H)2Rs#/Rs3100, where the field-
dependent resistance is defined asR(H)51/G(H) andRs is
the resistance of a fully saturated sample.33 We adopt this
definition of the magnetoresistance, because in the satur
state the micromagnetic configuration of the system
unique and so the minimum resistance of the sample h
well defined value. Also, from the computational point
view, the value ofRs is obtained without implementing th
Monte Carlo simulation, because the micromagnetic confi
ration at saturation is known. Therefore, our results for M
do not depend on the maximum applied field used.

The calculation of the thermodynamic quantities~magne-
tization, conductivity, and magnetoresistance! is repeated for
a set of different samples with random positions of magne
particles and eventually the configurational average is
tained by taking the arithmetic average of the results for
samples.

III. NUMERICAL RESULTS AND DISCUSSION

In order to proceed with the numerical results we ma
the following choice for the parameters of our model. A
mentioned earlier the hopping integral is constant through
the electrodes and the granular sample and it defines
energy unit (t51.0). Therefore the bandwidth in all mater
als ~electrode, matrix, magnetic grain! is W512. The on-site
potentials in the electrodes («LW) and in the nonmagnetic
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PRB 62 3945INTERPLAY OF DIPOLAR INTERACTIONS AND . . .
matrix («NM) are equal,«LW5«NM50, so that the electrode
sample contact does not introduce any contact resistance
the magnetic sites we choose«MG512 and J512.0, so
that the electrons in the majority spin band are less scatt
at the magnetic grains than those in the minority band, w
the magnetic moments of the grains are aligned ferrom
netically. This choice of parameters introduces in our mo
the essential aspect of asymmetry in spin-dependent sca
ing that has been observed in Co/Cu magnetic multilay
and that is expected to be valid for granular CoCu alloy28

The Fermi level is at the band center (EF50) and conse-
quently the conduction electrons have a wavelength com
rable to the grain size (lF5D). An infinitesimal broadening
parametern50.1 is used for the calculation of the Gree
function transfer matrices, that leads to convergence aft
small number of iterations (N'7) and zero broadening i
used in the recursion scheme of Eq.~5!.

The energy parameters that determine the micromagn
configuration are related to the actual grain parametersg
5m2/D3 andh5mH, wherem5MsV is the magnetic mo-
ment of the grains. For Co particles with mean diameterD
560 Å and saturation magnetizationMs51400 emu/cm3,
we obtain g51.14310213erg and therefore the rati
kBT/g50.36, at room temperature (T5300 K), andkBT/g
50.01, at low temperature (T58.2 K). Also the ratioh/g
51 corresponds to a field ofH50.73 kOe. These result
indicate the appropriate range of values for the energy
rameters (kBT,g,h) that enter the Monte Carlo simulations

In our simulations, a finite granular sample with dime
sionsLx5Ly5Lz510 and periodic boundary conditions
considered. This contains approximately 100 up to 700 sp
depending on the concentration value. Equilibrium
reached after 104 Monte Carlo steps per spin~MCSS!. Fur-
ther increase of the number of MCSS by an order of mag
tude does not modify substantially our results for the m
netization and the conductivity. At every field value, the fi
103 MCSS are not included in the statistical averages in
der to allow for relaxation towards the equilibrium sta
Configurational averages are performed over 10–15 ran
samples. In what follows, first we discuss the results
monodisperse systems containing identical Co particles
second the results for polydisperse systems arising from
lescence of Co monomers.

A. Monodisperse samples

We show in Fig. 2 the hysteresis loop curves for a gra
lar system with concentrationp530% of Co particles and in
Fig. 3 the anhysteretic magnetization curve for the same
tem. This value of the concentration corresponds to a m
volume fraction of xv;16%, because in a rigid spher
model on a cubic lattice one has the relationxv5(p/6)p.
Thus the results in Figs. 2 and 3 correspond approximate
the system Co16Cu84. The magnetization data for the nonin
teracting assembly follow the well known Langevin depe
dence on the applied field. The presence of dipolar in
granular interactions introduces anisotropy in the system
the assembly of dipolar particles develops hysteresis wi
remanence magnetizationMR;20% andHc;0.15 kOe at
T582 K. The assembly with noninteracting grains has
saturation field Hs;1.5 kOe, which is increased toHs
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;3.0 kOe~not shown in Figs. 2 and 3! due to dipolar inter-
actions. A decrease of the initial susceptibility due to t
presence of dipolar interactions is also observed~Fig. 3!,
from the valuex0;9.3 emu/Oe cm3 for the noninteracting
systems to the valuex0;1.6 emu/Oe cm3 for the dipolar one.
The increase of the saturation field and the decrease of
initial susceptibility observed in the dipolar system relati
to the noninteracting one, reflect the fact that dipolar int
actions among the particles inhibit the alignment of th
magnetic moments along the external field axis.

The field dependence of the hysteretic MR is shown
Fig. 4 and that of the anhysteretic MR in Fig. 5. Notice th
the maximum of the hysteretic MR appears at the coerc
field and not the zero field, in agreement with experimen2

By comparison of the noninteracting and the dipolar syste
we deduce that due to dipolar interactions, both the ma
mum MR value and the sensitivity of the MR to the extern
field are reduced. The reduction of the maximum MR va

FIG. 2. Hysteresis loop for a dipolar system~squares! and mag-
netization curve for a noninteracting system~circles!. Parameters
p530% (Co16Cu84) andT582 K. Monodisperse samples.

FIG. 3. Anhysteretic magnetization curve for a dipolar syst
~squares! and magnetization curve for a noninteracting syst
~circles!. Straight line fits to the low-field data are shown. Para
etersp530%(Co16Cu84) andT582 K. Monodisperse samples.
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indicates that the zero field configuration is not random,
positive ~ferromagnetic! moment correlations develop in th
assembly of particles. Thus the difference between the z
field and high field resistivities is reduced. Maximum ra
domization of the magnetic moments occurs at the coer
field, which explains the peak of the hysteretic MR atHC .
Notice also that the MR curve for the dipolar system is m
rounded around the zero field than the corresponding cu
for the noninteracting system. This behavior is related to
difficulty of a weak external field to rotate the magnetic m
ments that are coupled via dipolar forces. The same phys
situation manifested itself in the reduction of the initial su
ceptibility ~Fig. 3!.

The maximum MR value shown in Figs. 4 and 5 is M
;55%. In the definition of the magnetoresistance with
spect to the zero field resistance, the maximum value
MRmax8 5(RS2R0)/R03100. This result is related to ours b

FIG. 4. Field dependence of hysteretic magnetoresistance
dipolar sample~squares! and for a noninteracting sample~circles!.
Parameters: p530% (Co16Cu84) and T582 K. Monodisperse
samples.

FIG. 5. Field dependence of anhysteretic magnetoresistanc
a dipolar sample~squares! and for a noninteracting sample~circles!.
Parameters: p530% (Co16Cu84) and T582 K. Monodisperse
samples.
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MRmax8 52MRmax3(RS /R0). For the data shown in Figs.
and 5 the relevant ratio is foundRS /R0;0.6, which provides
MRmax8 ;235%. Experiments on granular films containin
Co particles2,6,10 report values of MR8 in the range of210–
220 %. We demonstrate below that our overestimation
improved by inclusion of the size distribution in our mode

In Fig. 6 we plot the ahnysteretic magnetoresistance a
function of the reduced magnetization of the system. For
noninteracting system, the parabolic dependence MR5c(1
2M2) is obtained in agreement with previous experiment2

and theoretical16–19 studies. A small flattening of the pa
rabola~28%! is observed near the zero field due to dipo
interactions. These deviations away from the parabola at
fields have been previously observed in experiments
they have been mainly attributed to interaction effects am
the grains10 or to grain-size distribution.8

Previous Monte Carlo simulations23,24have also predicted
a small flattening~;10%! of the moment-moment correla
tion function close to zero field and supported the role of
dipolar interactions in determining this flattening. Howev
both the deviations shown in Fig. 6 and the ones previou
calculated23,24 are much smaller than the ones measured
recent experiments~;50%!.10 We show below that size dis
tribution effects improve this discrepancy.

In Fig. 7 we show the concentration dependence of
~maximum! resistance and magnetoresistance for a mono
perse system. The scattering potentials for the conduc
electrons are small compared to the bandwidthW, eNM
2eMG6J!W, consequently, the resistance of the sam
increases almost linearly with concentration below the p
colation threshold (pc;0.3). The MR also increases wit
concentration because more spin-dependent scatters ex
the system. The MR exhibits a concave parabolic dep
dence on the concentration. It was recently shown18 that the
concave shape in the concentration dependence of the M
an indication of important background spin-independ
scattering in the sample. In our model spin-independent s
tering is provided by the boundaries of the sample. Noti
finally, in Fig. 7 that the deviations between the nonintera

a

for

FIG. 6. Anhysteretic magnetoresistance versus reduced sa
magnetization for a dipolar sample~squares! and for a noninteract-
ing sample ~circles!. Parameters:p530% (Co16Cu84) and T
582 K. Monodisperse samples.
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ing and the dipolar system are larger below the percola
threshold and they tend to zero at high concentrationsp
;0.8). At large concentrations, the details of the underly
auxiliary lattice become important and in particular the
lattice, that is used in our study, when fully occupied
dipolar particles is known to lead to a columnar antifer
magnetic ground state.34 For this type of ordering of the
dipoles, the moment-moment correlation function is ze
when averaged over the two ferromagnetic sublattices,
the resistance of the system is very close to its value in
case of a random configuration. Thus it appears that in
dense limit the dipolar interactions do not modify the MR

The structural model used so far, assumes the presen
well separated magnetic particles in the granular alloy
emphasizes the role of dipolar interactions alone. It rep
duces qualitatively certain features of the experiments, as
flattening at low fields of the MR versus magnetization p
rabola, the reduction of the maximum GMR effect and t
reduction of the sensitivity of the GMR effect on the appli
field. But, it wrongly predicts a continuous increase of t
MR with particle concentration. The concentration depe
dence of the MR obtained in recent experiments6,7 shows an
optimum value around the percolation threshold. Therefo
the applicability of the model with well separated particles
restricted to dilute systems only. To proceed with mo
dense samples, we take account of the coalescence bet
granules. This effect leads to formation of clusters of vario
sizes and shapes and eventually the granular system bec
polydisperse.

B. The percolation model and polydisperse samples

We describe the effect of grain coalescence by the follo
ing percolation model. The grains~monomers! are distrib-
uted at random with a certain probabilityp on the sites of a

FIG. 7. Concentration dependence of~a! the zero-field resis-
tance and~b! the zero-field magnetoresistance of dipolar~squares!
and noninteracting~circles! monodisperse CoxCu12x samples. The
percentage change of the MR due to dipolar interactions is
shown ~stars! and MR~ni!, MR~i! denote the MR values for the
noninteracting and interacting systems, respectively. Parame
T58 K.
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simple cubic lattice. Then a cluster counting algorithm29 is
implemented that groups the monomers into clusters acc
ing to the rule that nearest-neighbor monomers belong to
same cluster. This structural model produces a distributio
cluster sizes that is shown in Fig. 8 for various concent
tions. Notice that the distribution is highly asymmetric a
monomers are the most frequently appearing clusters in
sample. Around the percolation threshold (pc;0.3), the tail
of the distribution is extremely long indicating that cluste
of all sizes exist in the system. The average cluster size
ies with the concentrationp ~Fig. 9! and the maximum aver
age size appears close to the percolation threshold. Ab
this threshold, a cluster that spans the sample~infinite clus-
ter! exists and the rest of the particles tend to form clusters
gradually decreasing size.

Regarding the magnetic structure of the clusters, we
sume for simplicity that within each cluster the magne

o

rs:
FIG. 8. Distribution of magnetic cluster size at various conce

trations. Abovep50.3 an infinite~percolation! cluster is formed
that is not shown in the histograms.

FIG. 9. Variation of the mean cluster size with concentration
magnetic particles. Error bars indicate the dispersion of cluster s
at each concentration. The infinite~percolation! cluster is not in-
cluded in the statistics.
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moments of the monomers rotate in cohesion. In ot
words, multidomain formation is not allowed, not even in t
infinite cluster that represents the bulk material. This is
reasonable approximation provided that spin-dependent s
tering at domain walls and anisotropic magnetoresistance
not considered in the present study. The magnetostatic
ergy of the system is expressed as a sum of terms co
sponding to the dipolar energy of pairs of monomers belo
ing to different clusters.

The concentration dependence of the zero-field resista
and the maximum magnetoresistance of a system with
lescence is shown in Fig. 10. Notice that the characteri
peak around the percolation threshold appears and tha
overall shape of the MR curve is in satisfactory agreem
with the experimental measurements.6,7 The increase of both
R and MR below the percolation threshold is attributed to
gradually increasing number of spin-dependent scatte
~Co monomers! in the sample. Well above the percolatio
threshold (p.0.5) the infinite cluster occupies almost th
whole volume of the sample and the resistance is appr
mately equal to the bulk resistance of Co. In the same
gime, the MR tends to zero, because the electrons in
sample travel through a single magnetic domain that
formed by the infinite Co cluster. In other words, the peak
MR is the result of competition between two factors, name
the increasing number of spin-dependent scatterers
causes an increase of MR~see Fig. 7! and the increasing
mean cluster size that leads to a decrease of MR.

Even below the percolation threshold, coalescence oc
to a certain extend and the average cluster size is greater
a monomer. This increase of the average cluster size is
sponsible for the reduced MR values observed in syst
with coalescence compared to the values in systems con
ing well separated particles with the same concentration

FIG. 10. Concentration dependence of~a! the zero-field resis-
tance and~b! the zero-field magnetoresistance of dipolar~squares!
and noninteracting~circles! CoxCu12x samples. Coalescence is a
lowed in all samples. Parameters:T582 K.
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magnetic material. This is demonstrated by comparison
the MR data below the percolation threshold in Figs. 7 a
10.

In addition to cluster size effects, further decrease of
MR value is caused by dipolar interactions. We can see
Fig. 10 that the reduction of MR due to dipolar interactio
is more dramatic now, compared to the monodisperse sys
~Fig. 7!. The largest deviations between the noninteract
and the dipolar systems are observed right above the pe
lation threshold (p;0.4). The reason is that due to the fo
mation of large clusters, strong local fields act on the sma
clusters and produce ordering of their magnetic mome
This ordering of the smaller clusters due to the fields of
few large clusters leads to strongly reduced MR values
concentrations above the percolation threshold~p50.3–0.4!.
For example, the noninteracting system exhibits a substa
MR value~;30%! at p50.4, while the dipolar system, at th
same concentration, shows a very weak MR effect~;5%!.

If the MR is defined with respect to the maximum~satu-
ration! resistance, the MR values atp50.3 (Co16Cu84) are
MR85222% for the noninteracting system and MR8
5219% for the dipolar system. These results should
compared with the experiments of Xiaoet al.2 who report
values of MR85210– 20 % for Co20Cu80 samples annealed
at various temperatures and of Parentet al.6 who report
maximum MR values MR85210– 15 % for Co25Ag75
samples grown by cluster beam epitaxy. We believe t
there is a reasonable agreement with these experime
given the simplicity of our model for the electronic structu
and the magnetic structure of the granules.

The size distribution in a granular film that has been th
mally annealed is commonly fitted to a log-normal function8

The size distribution function produced by the percolati
model ~Fig. 8! shares the same essential features with
log-normal function, namely, the long tail and the depe
dence of the mean value on the standard deviation. Th
fore, the percolation model serves also as a structural m
to study the interplay of size distribution and interaction
fects in granular films.

We show in Fig. 11 the anhysteretic magnetization cu
for a system withp50.3, that contains the distribution of C
clusters shown in Fig. 8. The mean cluster size is increa
relative to the monodisperse sample^V&;3 and conse-
quently, saturation is achieved at lower fieldsHS
;0.45 kOe for the noninteracting sample andHS;1.5 kOe
for the dipolar sample. The field dependent MR is plotted
Fig. 12. It is important to notice that in this system a dras
reduction~;25%! of the maximum MR value is observe
due to dipolar interactions. The corresponding reduction
the monodisperse system (V51) was only;8% ~Fig. 5!.

In recent measurements of MR in CoCu polydispe
granular samples, Alliaet al.10 observed large reduction
~;10–70 %! in their MR data with respect to the theory fo
noninteracting particles. Our results in Fig. 12 indicate t
similarly large reductions are predicted within a transp
calculation that takes into account both the cluster size
tribution and the interaction effects among the clusters. T
large reductions of the MR values is the combined effect
these two factors. In Fig. 13, we demonstrate the effect e
of these factors independently has on the MR value and
their combined effect. We plot the MR data versus the squ
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of the sample magnetization for four different samples w
the same concentration of magnetic material (p50.3) and
the same average cluster size. In particular, we show re
for a monodisperse noninteracting system withV53, a poly-
disperse noninteracting system with^V&;3, a monodisperse
dipolar system withV53 and a polydisperse dipolar syste
with ^V&;3. Making this choice, the average cluster s
and the metal volume fraction are approximately the sam
all systems, while the width of the size distribution is a
lowed to take the zero value, in the case of the monodisp
system, and a large value in the case of the polydisp
system~see Fig. 9!.

Consider first the overall arrangement of the curves. I
polydisperse noninteracting sample, the presence of clus
with size smaller than the mean size leads to increased
values relative to the monodisperse sample. This happ
because the GMR effect decreases with increasing clu
size.2,16,19 When the interactions among the clusters

FIG. 11. Anhysteretic magnetization curve for a dipolar syst
~squares! and magnetization curve for a noninteracting syst
~circles!. Parametersp530% (Co16Cu84) and T582 K. Coales-
cence is allowed in both systems.

FIG. 12. Field dependence of anhysteretic magnetoresistan
a dipolar sample~squares! and a noninteracting sample~circles!.
Parameters:p530% (Co16Cu84) and T582 K. Coalescence is al
lowed in both samples.
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switched on, a reduction of the MR values is observ
which is, however, more dramatic in the polydisperse th
the monodisperse sample. In other words, dipolar inter
tions cause a stronger reduction of the GMR effect as
width of the size distribution increases. This trend was a
observed in the experimental data of Alliaet al.,10 where the
largest reductions of the MR values due to dipolar inter
tions were observed in the sample Co15Cu85, in which the
size distribution was nearly flat, and consequently all clus
sizes were equally probable. On the contrary for the sam
Co15Cu85, that was nearly monodisperse, a weak flatten
~;10%! of the MR curve was measured. An explanation f
this behavior is that in the polydisperse sample, the la
clusters (V.3) produce strong magnetostatic fields th
cause an efficient alignment of the surrounding small clus
(V,3), thus large positive correlations are introduced in
magnetic structure that lead to a severe reduction of the M

Regarding the shape of the curves in Fig. 13 we not
that the data for the monodisperse noninteracting sampl
on a straight line over the whole range of magnetization,
this is not the case for the noninteracting polydispe
sample. When a weak field is applied to a noninteract
polydisperse sample, the larger clusters are aligned along
field while the smaller ones are not due to thermal fluct
tions. This differentiation in the response of the various cl
ters to the applied field leads to the deviations from
straight line fit close to zero magnetization. When the dipo
interactions are present, deviations from a parabolic dep
dence occur, which are more severe for the polydisperse
tem.

Ferrariet al.8 have shown that the effect of size distrib
tion on the MR values is best observed if the normaliz
magnetoresistance, defined as MRn5MR/MRmax, is plotted
as a function of the sample magnetization. For a noninter

of

FIG. 13. Anhysteretic magnetoresistance versus reduced ma
tization. Data for a monodisperse noninteracting system~triangles!,
a monodisperse dipolar system~stars!, a polydisperse noninteract
ing system~circles!, and a polydisperse dipolar system~squares! are
shown. The monodisperse samples haveV53 and the polydisperse
samples havêV&;3.06. ~The volume of a monomer is defined a
the volume unit!. Parameters:p530%(Co16Cu84) andT582 K.
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3950 PRB 62D. KECHRAKOS AND K. N. TROHIDOU
ing monodisperse sample, under the assumption that th
sistance is a quadratic function of the sample magnet
tion 22 and using the above definition of MR~Ref. 33! we
obtain the parabolic law MRn512(M /Ms)

2. Ferrariet al.,
using the transport model of Zhang and Levy,16 showed that
when a size distribution exists in the sample, the MRn curve
lies above the 12(M /Ms)

2 parabola. Our data in Fig. 1
reproduce this behavior for the noninteracting sample wit
cluster size distribution. Interestingly, when dipolar intera
tions are present a qualitative difference is observed, as
MRn curve lies below the reference parabola. This res
suggests that the plots of the MRn vs M /Ms provide infor-
mation on the relative importance of the interaction effec

IV. CONCLUSIONS

We have developed a theoretical scheme appropriat
study the giant magnetoresistance effect in granular m
films, that includes the effect of grain size distribution a
magnetostatic interactions between the grains. The sch
combines the Monte Carlo simulation, that provides a rea
tic description of the micromagnetic structure and the Ku
formula for the conductivity, which is valid in the whol
concentration range. We have assumed spin-dependent
tering to be the cause of the GMR effect and we have

FIG. 14. Normalized anhysteretic magnetoresistance versu
duced magnetization for a dipolar sample~squares! and for a non-
interacting sample~circles!. Parameters:p530% (Co16Cu84) and
T582 K. Coalescence is allowed in both samples.
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scribed the electronic structure of the granular alloy by
tight binding Hamiltonian with a single spin-polarized ban

We have calculated the concentration dependence of
MR for a CoxCu12x alloy over the whole range of concen
trations (0<x<1) taking into account the effect of cluste
formation due to magnetic particle coalescence. We h
found an optimum MR value around the percolation thre
old, in agreement with experiments. We have demonstra
that close to the percolation threshold, the dipolar inter
tions among the clusters cause the largest reduction of
MR values and thus they seriously modify the optimum M
value. We have attributed this behavior to the presence
wide distribution of cluster sizes in the system and a cor
sponding wide distribution of local fields. Multidomain for
mation in large clusters, whose size exceeds the excha
correlation length~typically a few hundreds Å! occurs in
dense samples. This effect is expected to reduce the ro
dipolar interactions between clusters and also modify
concentration dependence of MR. The cases studied wi
our present model, namely, the case of well separated
ticles and that of fully saturated clusters, constitute the t
extreme limits as regards the role of the dipolar interactio
We expect a smooth transition between the results in th
two limiting cases as the saturation condition within the clu
ters is gradually relaxed and magnetic domains form.

Finally, we have investigated the combined effects of
polar interactions and cluster size distribution on the MR
a granular CoxCu12x system below the percolation threshol
We obtained deviations from the MR vs (M /Ms) parabola at
low fields in agreement with experiments on polydispe
samples. Magnetostatic interactions and particle size dis
sion have opposite effects on the MR value of the granu
alloy. Size dispersion alone causes enhancement of the
while interactions always have a degrading effect. Most
terestingly, the effect of dipolar interactions is amplified
the presence of a wide distribution of cluster sizes. By
amination of the normalized MR curves, we found that s
distribution and interaction effects produce deviations fro
the theoretical 12M2 line in opposite directions. We there
fore suggest that the normalized MR curves provide an in
cation of the relative importance of interaction effects.
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