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Thermal  Fluctuations of Fine  Ferromagnetic  Particles 
WILLIAM FULLER BROWN, JR., FELLOW, IEEE 

Absiruct-Fine  ferromagnetic  particles  jump  spontaneously  from one 
locally  stable  state to another;  they  surmount  intervening  energy bar- 
riers with  the aid of thermal agitation. A theory of this  phenomenon 
has  as its primary goal the  calculation of time  constants. The elements 
of such a theory are presented.  The  emphasis is  on calculations  that  re- 
quire only elementary  methods and on results  that are simple  enough to 
be easily  applicable.  The reader  is  assumed to be  acquainted  with the 
basic  properties of ferromagnetic  materials  but not necessarily with 
Brownian-motion  theory, on which  the  present  theory is based. 

I .  INTRODUCTION 

w HEN WE MAKE a  tape  recording  and then  put  the  tape 
on  the shelf, we expect to be  able  later to  take  it  off 

the shelf,  play it back,  and hear what we recorded;  in  other 
words, we expect  it to stay  in the same magnetic state. We 
can, of course,  put  it  into a new magnetic  state by subjecting it 
to  an erasure  procedure  or to a new recording  procedure.  But 
we should be surprised if, overnight,  it jumped  spontaneously 
from  being  a  recording of Beethoven to being  a  recording of 
Brahms.  Similarly,  we can,  by  appropriate  procedures, magne- 
tize  a  “permanent”  magnet in either  polarity  or  demagnetize 
it,  but we do  not  expect  it  to  jump  spontaneously  from  one 
polarity to  another  or  to a  state  of  zero magnetic moment. 

In principle,  however,  any  apparently  stable  magnetic  state 
of  a  tape or magnet is only  one  of  many local  minima  of  the 
free  energy;  thermal  agitation can  cause spontaneous  jumps 
from  one  such  state to another.  The  apparent  stability is due 
to  the fact  that  our  tape  or magnet cannot get  from  one  state 
to  another  without passing  over an energy  barrier that  is very 
large in comparison  with the thermal energy kT (k = Boltz- 
mann’s constant, T =  absolute  temperature);  the  probability 
per unit  time  of a jump over such  a  barrier is so small that  the 
mean  time we should have to  wait for  it far  exceeds  our  own 
mean  lifetime.  But  what is involved here is the total free en- 
ergy of  the system that undergoes  a change during the  hypo- 
thetical  transition,  and  this  energy  decreases as the volume  of 
the system  decreases. For  fine  ferromagnetic  particles at not 
too low  temperatures,  the  barrier  height  becomes  comparable 
with kT, and  spontaneous  jumps  from  one  state to another 
become  important [ l ]  , [2] .  

In  the  opposite limiting case, in which the barrier  height is 
very small in  comparison  with kT, a  ferromagnetic  particle  be- 
haves like  a  paramagnetic atom.  For a  sample  consisting  of 
such  particles,  if  interaction  between the particles is negligible, 
the magnetization  as  a  function  of  the  applied  field,  under  nor- 
mal  measurement  conditions,  exhibits  no  hysteresis  and  is  de- 
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termined  by  a Langevin function. This phenomenon is called 
“superparamagnetism” [3] . 

Under  intermediate  conditions,  when  the  barrier  height  is 
neither  very large nor  very small in  comparison  with kT, the 
specimen  neither  remains  in  a single state  for  a  long  time  nor 
attains  statistical-mechanical  equilibrium in a  short  time;  after 
a change of  field,  it  undergoes  a change of magnetization that 
is not  completed  “instantly”  (on  the  time scale  of the observa- 
tions) but requires some time  for  its  completion.  In a small 
alternating  field,  the resulting  small  change of  magnetization 
lags behind  the field. Such  phenomena  are  described,  rather 
loosely, by  such  terms as “magnetic  aftereffect”  and “mag- 
netic  viscosity.”  Their  analysis  requires  more than a  mere 
comparison  of  the sizes of an  energy  barrier  and  of kT. What 
is needed  is  a theory  that covers the whole range  of phenom- 
ena  from  quasistatic behavior to superparamagnetic.  Such  a 
theory is needed also for  complete  understanding  of  these  two 
extremes,  for  each is relative to  the  time scale of  the measure- 
ments:  what  appears to be  an  instantaneous response in mea- 
surements  that  take a  second  may  show  magnetic  aftereffect 
on  a  nanosecond scale. The  theory  must  therefore be  a dy- 
namic  theory, describing not  only  states of statistical- 
mechanical  equilibrium but also the  transition  to a new state 
after  a  change of the  external  parameters (e.g., the  applied 
field), and even the response to constantly changing parameters. 

Such a theory exists,  and the purpose of the present  paper is 
to  describe it.  The description is intended  for  readers  who 
would  like to get  a general understanding of the  main  features 
and  results  of the  theory,  and  who are not necessarily  already 
acquainted  either  with it or  with  the  Brownian  motion  theory 
of which  it is an  extension.  The  paper is tutorial  rather  than 
exhaustive; the reader  interested  in  more  details  may  consult 
the references. The bibliography, in  turn, is introductory 
rather  than  comprehensive; the references  chosen (all of  which 
are in English) will merely guide the reader to sources of addi- 
tional  information  about necessary physical  and  mathematical 
background  or  about  further  aspects of the  theory.  The  em- 
phasis is on  calculations  that require  only  elementary methods 
and on results  that are simple enough to be easily applicable. 
The  paper  contains no new  results but  does  present some sim- 
pler  and more  direct  derivations of  old ones,  and some quanti- 
tative  criteria for  their  applicability.  Experimental  results  are 
not discussed;  those will be  found  in  appropriate  references. 

As is well known, a  sufficiently  fine,  internally  homogeneous 
ferromagnetic  particle  lacks  the  domain  structure  that  compli- 
cates  the  magnetic behavior of  ordinary  magnetic  specimens;  it 
has  a  uniform  vector magnetization M whose magnitude M,, 
the  “spontaneous  magnetization,” is determined by  the  mate- 
rial and the  temperature,  but whose direction is determined  by 
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crystalline anisotropy,  internal  magnetostatic fields  (“shape 
anisotropy”),  and  the field H that  acts  on  the particle [4] . 
The field N may  include,  besides  the  directly  controlled or 
“applied”  field, the fields  of other particles;  such  “magnetic 
interactions”  between  the  particles  greatly  complicate  the  be- 
havior. It will be supposed  hereafter  than we are dealing with 
particles small enough so that  each is uniformly  magnetized 
(“single-domain”  particles),  and  far  enough  apart so that  the 
magnetic  interactions  are negligible and H is simply the applied 
field (assumed to be  uniform over the volume  of  a  particle). 
We can then restrict ourselves to study of a single particle. For 
a  sample  consisting  of  many  identical  particles, in a  uniform 
applied field H ,  the average  over the particles of any  compo- 
nent  of M ,  say M z ,  may  be  equated to  the statistical-mechanical 
“ensemble” average for a single particle. 

11. ENERGY AND FREE ENERGY 
In  atomic  and molecular theory, including  statistical  me- 

chanics, the energy E of a  system is a  microscopic concept, 
described  formally by  the  Hamiltonian  function  or  by  its 
equivalent  in Lagrangian variables. A physical  system  in ther- 
modynamic equilibrium at  temperature T is described by a 
Gibbs  canonical  ensemble of identical  systems [5], [6] . The 
energy E varies from  one  member  of  the ensemble to another; 
so does  the magnetic momentp.  The thermodynamic  quanti- 
ties U, the  “internal energy,” and m, the observable magnetic 
moment,  are  the ensemble averages, (. -), of E andp ,  respec- 
tively: U =  ( E ) ,  m = (p ) .  The averages are  computed  with  the 
weights  (per  state) e-EIkT; that is, the ensemble average of  any 
quantity u is 

where the sum is over all possible states  of  the system. 
If, as is usually the case, the convenient  independent  thermal 

variable is the  temperature T  rather  than  the  entropy S ,  a more 
convenient  thermodynamic  potential  than U is the “free en- 
ergy” F = U - TS. The statistical-mechanical  formula for F 
is 

F= - k T l n Z  ( 2 )  
or 
z = e - F / k T  

where Z is the  “partition  function” 
z = x e-EIkT 

S t  

In general, Z and  therefore F are functions  of T and  of  certain 
controllable  parameters,  such  as the volume of a  fluid or  the 
magnetic field applied to a  magnetic  particle.  The  entropy is 
given by S = -aF/aT; by use  of this  formula,  of ( 2 )  and (4), 
and  of  the  relation U =  F + TS, one easily  derives a  formula  for 
U and  recognizes if as equivalent to the  formula U = (E). 

In one-dimensional  Brownian motion,  the system (a solid 
particle in a viscous fluid) is not in  equilibrium;  but if we 
choose  as our microscopic variables, instead of the  coordinates 
of the individual atoms  or molecules of the particle and  of  the 
fluid,  the  coordinate x of the  center of  mass of the particle 

and a  suitable  set of  other  coordinates E j ,  then  it  may be legiti- 
mate to treat  the subsystem  described by  the E i  as  a  system in 
internal  thermodynamic  equilibrium at  each given  value of x; 
for  this  subsystem, x is  a  parameter, as was the volume or field 
in  the previous  paragraph. The  subsystem  formula analogous 
to (3) is 

z1 (x) = e -F ,   (x ) lkT  (5 1 
where Z1 is obtained  by  summation over the & states  only,  at 
specified x, and  where F,(x) is the subsystem  free  energy at 
the specified x. If  now the whole  system is in  thermodynamic 
equilibrium,  its  free  energy F can be  found by substituting  in 
( 2 )  thre value 
z = z1 (x) = e-Fl   (x) lkT (6)  

X X 

This is equivalent to (4) but differs  from  it in that 1) we  have 
to sum not over states  of  the  whole system but  only over states 
of the  coordinate x; and 2 )  instead of a  microscopic  energy E ,  
we must use the subsystem  free  energy F1 (x). 

If,  however, we wish to study  the behavior when  only  the E 
subsystem is in  equilibrium,  whereas x is not, we can treat  the 
system  as  a  thermodynamic  system  described by an indepen- 
dent variable x and a  free energy Fl  (x). This  procedure  would 
be  exact if F l ( x )  were  evaluated  by  carrying out  the  summa- 
tions  in 2, (x). Actually,  it  has to be  approximated  by use of 
symmetry  arguments,  truncation  of  infinite series, etc.,  and  is 
therefore  not  exact;  yet  it  may be quite  adequate. 

For  the magnetic  particle, x is replaced by  two variables 
(e.g., angles 6 and @) that describe the  orientation  of  the mag- 
netic  moment.  The subsystem  free  energy  corresponding to  
F1 is the free  energy F(0,  @) of  the particle  expressed as a  func- 
tion  of  the  orientation angles; its  form is  derived by  symmetry 
arguments,  truncation  of series, etc.;  it  contains  temperature- 
dependent  quantities  such as the anisotropy  constant  andMs. 
When there  is  equilibrium  with  respect to the  orientation  an- 
gles as well as with respect to  the internal  variables E ,  the mean 
values of observable  quantities,  such  as  a  component M,  of the 
magnetic moment,  may be found  by averaging  over orienta- 
tional  states  with weighting factor e - F ( e , o ) l k T .  

This  analysis is based,  essentially, on  the assumption  that  the 
time  required  for  attainment  of  internal  equilibrium  at given 
(e ,  @) is very short  in  comparison  with  the  time  for  attainment 
of  the equilibrium values  of f3 and @. 

111. THE DISCRETE-ORIENTATION MODEL 
When the energy  barriers are  large in  comparison  with kT, 

but  not so large as to preclude  changes of orientation  alto- 
gether, we may  suppose that  the magnetization is always  along 
one of the  directions (Oi, @i) of  easy magnetization, but  that in 
orientation i there  is a  probability vij per unit  time  of a jump 
to orientation j .  The vjj depend on  the anisotropy  constant, 
the  field,  and  the  temperature.  For a large number n of  identi- 
cal,  noninteracting  particles  at the same T and H ,  the  number 
n j  of  particles  in  orientation i then changes with  time in  accor- 
dance  with  the  equation  (the  dot  denotes  time  differentiation) 

r i j  = ( V j j n j  - vijnj). (7) 
j +  i 
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If there  are k directions of  easy magnetization,  there are k 
equations  (7): i = 1, 2, . . . , k.  Summation over i gives Z i i j  = 
0; thus  the  total  number n of particles  remains at  its initial 
value,  and  only  this  initial value needs to  be imposed if all k 
equations are used.  Alternatively, we  may impose the  condi- 
tion Cini = n at all times  and  drop  one of the  equations (7). 

Some  properties of the vii can be  deduced by study of  spe- 
cific cases. 

A.  Two Orientations 
This is the case of a  uniaxial  crystal  of the easy-axis type,  or 

of a  prolate  spheroid,  with  the  applied  field  along  the axis  of 
symmetry.  Let 1 refer to the positive orientation  and 2 to  the 
negative. Then  (7) reduces to 

l i l  = - l i 2  = v21nz - v I 2 n l .  (8) 

On setting n2 = n - n1 and solving the resulting differential 
equation, we find that n l ,  and  hence n2 and  the relative mag- 
netization M/Ms = n - n 2 ,  approach  their  final values (when 
v I 2  and v2 ,  are  constant)  according to  a  factor e-(v12 + ' ~ l ) ~ ,  Le., 
with  time  constant l/(v12 + v 2 , ) .  

By  analogy with  various  chemical processes [7] , it is usual to 
suppose that  [8] 

-u(Vm - V i ) / k T  v.. = VO. e 
11 Y (9) 

(i = 1, j = 2 or i = 2 ,  j =  l), where Vi is the free-energy density 
in orientation i and  where Vm is the free-energy  density  at the 
top  of the  barrier  between  orientations i and j ;  u is the particle 
volume.  The  factors v$, if they vary  with temperature, are as- 
sumed to  do so slowly in comparison  with  the  exponential 
variation  of the  other  factor;  often  the v$ are  taken to be  con- 
stant.  This  approximation is adequate  for  many  purposes. 
For  example,  one  application of the  theory is to "magnetic 
granulometry": the determination of the size distribution  in  a 
powder  of  ferromagnetic  particles  by  measurement  of  the 
remanence as a  function of temperature [9] .  Formula (9), 
with  the  appropriate  numerical values  (regardless  of the precise 
form of v;), shows that when vjT changes  by  a  factor of less 
than 3 in  a  certain  critical  part of its range, the time constant 
changes from  10-1 s to s. Thus to a good approximation, 
there is a  critical  volume u, such  that particles  with u < u, are 
superparamagnetic  and exhibit  no hysteresis,  whereas  particles 
with u > u, have hysteresis loops. By varying T and  hence u, 
and measuring the remanence,  one  can  find  the number of 
particles  with u < u, as a  function  of u,. 

In  thermodynamic  equilibrium, nl  = n 2  = 0, and  hence 
n,/n2 = v 2 , / v 1 2 .  One might suppose that  under these con- 
ditions n1  and n 2  are  proportional to the  Boltzmann 
factors e-''JlkT and e-uvz/kT; this  would give v21/v12 = 
e-'("I - 'z)/~=. This  relation is compatible  with (9) only if 
vy2 = v:,. As we shall see, the ni are not  exactly  proportional 
to  the  factors e-"'ilkT; the reason  is that  the particles are not 
actually all in orientations i and j but have statistical  distribu- 
tions  about these  orientations. 

In the simplest uniaxial case, the  anisotropy energy density 
is K 1  sin2 0 ( K ,  > 0), where 0 is the angle between M and  the 

positive z axis;  with a field H along the z axis, the  total free en- 
ergy density is [ 101 

V(0)  = K ,  sin2 0 - HM, COS 0 .  (10) 

If ]HI < 2 K 1  /Ms H,, V ( 0 )  has  minima  at 0 = 0 and 71 and  a 
maximum  at 0 = cos-' (-H/H,) 5 O m  ; the corresponding val- 
ues  of V are easily found. 

B. More than Two Orientations 
I )  General  Relations: In  thermodynamic  equilibrium,  the 

ni satisfy (7)  with  the  left  members equal to zero.  The sum  of 
the right  members is zero;  that is,  any one of the k equations 
can be  derived from  the  other k - 1, so that  the  determinant 
vanishes and the  equations are compatible.  Any k - 1 of them 
determine  the  ratios n 2  : nl  , n3  : n l  , etc.;  specification of the 
total  number n of particles then  determines  the ni themselves. 

The cases of greatest  interest are those of a  cubic  crystal,  for 
which the  anisotropy  energy  (truncated  after  its  leading  term) 
is 

V(a , ,  c y 2 ,  a 3 )  = K 1  (a:.: + ais: + (~2301:). (11) 

Here ( a , ,  a 2 ,   a 3 )  are the direction  cosines of the magnetiza- 
tion  with  respect to the cubic  axes. When K ,  > 0, Vhas min- 
ima  at the six orientations  of  the  type [ 1001 (i.e., a ,  = 1, a2 = 
a3 = 0, M along a  cube edge  of the  lattice);  it  has  maxima  at 
the eight orientations  of  the  type [ 11 11 (M along a  body diag- 
onal)  and saddle points  at  the twelve orientations  of  the  type 
[110] (M along  a face  diagonal).  When K ,  < 0, the minima 
and  maxima are interchanged.  The values  of V for  directions 
[ 1001, [ 1101 , and [ 11 11 are 0,  $ K l ,  and $ K , ,  respectively. 

2)  Cubic  Crystal,  Positive Anisotropy: We suppose that H = 
0; then all the minima are equivalent.  For K ,  > 0, let n ,  , n 2 ,  
n3 be the  numbers  of  particles withM along the positive cubic 
axes x ,  y ,  z, respectively,  and n i ,  etc.,  the  numbers along the 
opposite  directions. To get from  orientation  1 to  orientation 
2 ,  a  particle  must surmount  a single energy  barrier,  whose  low- 
est point is the saddle  point at  orientation [ 1101 ; to  get  from 
orientation  1 to orientation i, it  must  surmount  two succes- 
sive barriers. If the barriers  are  high, it is unlikely to  do this  in 
a single event;  between  the  two  surmountings,  it may  be  con- 
sidered to belong to  the intermediate  orientation 2 , 3 ,  ?, or 3. 
We may  therefore  set vi; = q j  = 0 (i = 1 , 2 , 3 )  and  set the  other 
vij equal to a single value v. Equations (7) then become 

r i 1 = v ( n 2 + n 3 + n 5 + n , - 4 n l )  

ri- 1 = v(n7 + ng + n2 t n 3  - 4ni )  (12) 

and  four  other  equations  obtained  from these  by cyclic 
permutation. 

Let 

x.'= y1. +n: I y i =  ni - ni .  (1 3) 

Then, by  addition  and  subtraction of (12), we obtain 

x, = 2v(xz + x 3  - 2x1) 

j ,  = -4vy, (14) 
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and four  other  equations  obtained  by cyclic permutation.  The 
three y equations  separate  from  the  three x equations  and 
from each other. By symmetry,  the equilibrium values (which 
are attained  at  time t = -) are n l  = n2 = . * = i ,  hencexi = 5 
and yi = 0. The  solutions  of they  equations,  for  initial values 
Yio 3 are 

yi = yio e-4vt (15) 

hence  each  component  of  the  magnetization,Mi = Msyi/n, de- 
cays with  time  constant ( 4 ~ ) ~ ’ .  

To solve the x equations,  note  that x1 t x 2  t x3 = n,  so that 
x2 t x3 in the first  (14)  may  be  replaced by n - x l ,  and so on. 
Solution of the resulting equations gives 

xi = i n  t (xio - 3.1 e-6ut. (1 6 )  

Thus  the deviations of the xi from  their  equilibrium values i n  
decay with  time  constant (6v)-’ ; and  the behavior  of the ni 
themselves is governed by  two  time  constants, (4v)-’ and 
(6 v)-‘ . 

As  in the case of  two  orientations, we may surmise that v is 
given by  a  formula  of the form (9), with Vi = 0 and V, = 
bKl  ; that  is, 

-(1/4)Ux1/kT v = voe (1 7) 

Here vo is presumably  a function of K l  and  perhaps  explicitly 
of  T, but  its variation with T i s  small in  comparison  with  the 
exponential  variation of the  other  factor. 

3)  Cubic Crystal, Negative Anisotropy: We again suppose 
that H = 0. For  K1 < 0, the eight  directions of  easy magneti- 
zation may be represented  by  the eight  corners  of  a  cube,  and 
the intervening  barriers by  the six cube  edges; at  this  point,  the 
reader is urged to draw  his own diagram. Let n ,  be  the  num- 
ber of particles with  magnetization  orientation [ 11 I]  ; let n 2 ,  
n3,- and n4 by  the  numbers  with  magnetization along [ 1  171, 
[ 11 11,  and [ i l l ]  , respectively, the  three  directions  of easy 
magnetization closest to [ 11 11 ; and  let nt be the  number  in 
the  orientation  opposite to  orientation i. We again suppose 
that only  one  barrier  at  a  time  can  be  surmounted;  then  for 
transitions  from  orientation  1,  for  example,  we have vI2 = 
~ 1 3  = ~ 1 4  = v, = vlz = vls = vl; = 0. On writing (7) and  on 
adding  and  subtracting the  equations  for rii and  for r i~ ,  we  get 
the following equations  for xi = ni t n i  and yi = ni - n i :  

x 1  = v(x2 t x3  + x 4  - 3X’) (1 8) 

and three  equations  obtained  from  this by  cyclic permutation; 

31 = ~(-3y 1 + Y Z  + ~ 3  + ~ 4 ) ,  

3 2  =.(VI - ~ Y Z  -y3 - ~ 4 ) ,  

33 = Veil - Y 2  - 3Y3 -Y4), 

j 4  = v ( Y l  - Y 2  - Y 3  - 3Y4). (19) 

In  (18), we  may set x 2  t x3 t x4 = n - x1 ;we  thus find  that 
the xi approach  their  equilibrium value i n  with  time  constant 
(4v)-’. The x component  of  magnetization is proportional to  
y 1   t y z   t y 3  - y4;  from (19) we find  that  the  time  rate of 

change of  this  quantity is -2v times  the  quantity itself; thus 
M, (or My or M,) decays  with  time  constant (2v)-l. There is 
still a  third  time  constant,  as  can  be  found  by assuming yi = 
Bie-Yut in  (19); the compatibility  condition  can  be  reduced to 
(r - 2)3 (r - 6 )  = 0, so that  the  third  time  constant is (6v)-’. 
The  distribution  that  decays  with  this  time  constant is one 
with y,   :y2 : y 3  :y4 = -1 : 1 : 1 : 1, as can be verified by assum- 
ing y i  = Bie-6vt in  (19)  and solving for  the  ratios of the Bi. 

Equation (9) in this case becomes, since V1 = -$IK1l  and 
V, = -; p 1  1 ,  

v =  voe - ( 1 / 1 2 ) u  1x1 l/kT 
(20) 

C Shortcomings of the Model 
The  discrete-orientation  model is adequate  when  the energy 

barriers are  large in  comparison  with  kT,  provided  suitable Val-’ 
ues  of  the v$ in (9) can  be found.  For  such  purposes as mag- 
netic  granulometry,  any v$ of the right order  of  magnitude 
will do;  one can begin by setting v$ equal to some  parameter 
of the system  with  dimensions  (time)-’,  for  example, the  fre- 
quency  of  gyromagnetic precession about  the  minimum.  Then 
empirical  adjustments  of  the value can  be  made if they prove 
necessary. 

For  a precise analysis  of  transient  effects,  we  need  a better 
theory:  one  that will not  only  evaluate  the v8, but give us  a 
criterion  for  applicability of the discrete-orientation  model, 
and  provide  alternate  formulas when  that  model is not applica- 
ble.  For the  discrete-orientation  theory  not  only  fails  when 
k T  becomes  comparable  with  the  barrier  height, but gives us 
no way of  knowing  how small a  ratio of these two  quantities is 
tolerable  within  the  framework of the  theory. 

IV. BASIC EQUATIONS 

A.  The Equation of Motion (Without Fluctuations) 
When thermal  fluctuations  are negligible, the  rotation  of  the 

vector  magnetization M of  a  single-domain  particle,  under the 
influence  of  a  (perhaps  time-dependent)  “effective  field” H , 
can  be  described by  either  of  two  phenomenological  equa- 
tions:  the  Landau-Lifshitz  and the Gilbert [ l l ]  (the  relations 
between  the  two  are discussed in  Appendix I). We shall use 
the Landau-Lifshitz equation, 

n i = Y b M X J C - ( h / M ~ ) M X ( M X H ) .  (21) 

The “gyromagnetic”  parameter 7; and  the  “damping  param- 
eter h are  constants  for  a given material at  a given temperature. 
The “effective  field” H includes the applied field H o ,  the  de- 
magnetizing  field due to  the particle’s own  magnetization,  and 
the  effect of crystalline  anisotropy.  If V ( M )  is the free  energy 
per unit volume  expressed as a  function ofM, then 

J( = -a vpM. (22) 

Here alaM is an  abbreviation  for iajaM, t j a /aM,  t ka/aM,. 
Because ]MI = const =Ms, V is indeterminate  by  an  arbitrary 
function  of M 2  and H by  an  arbitrary vector  along M ,  which 
contributes  nothing to M X H . 
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We shall use,  instead of M ,  the  unit  vector along it, r o  = 
M/M,, whose  Cartesian components are the  direction cosines 
ai of M .  Then ajaM may  be  replaced  by M i 1  alaro = Mi'V. 
Here the  symbol 7 has  its usual meaning in (Y ,  8 ,  @) space but 
will act  only  at  points  of  the  unit  sphere, I Y I = 1, and  only  on 
functions of the angular spherical  coordinates (e ,  $) or of 
equivalent generalized coordinates;  in  effect it is a  two- 
dimensional  gradient  operator on  the surface of  the  unit 
sphere.  Equation (2 1) now  becomes 

i o  = -aro X 7 V +  bvo X (yo X VV) (23) 

where the new gyromagnetic  constant a and  damping  constant 
b are given by 

a = yb/M, b = AIM: . (24) 

Hereafter, the parameters a and b will be used instead of the 
parameters yo' and h.' 

B. The Langevin Equation 
In Brownian-motion theory,  the  equation of one-dimensional 

motion of a  Brownian  particle  in  a viscous liquid, m i  = - q i ,  
where m is the particle mass and q a  friction  constant, is modi- 
fied to take  account  of  thermal  agitation  by  adding  to  the vis- 
cous  force -QX a  random  term f ( t )  whose  time and ensemble 
averages are  zero.  The  resulting  equation, mi = - v i  + f ( t ) ,  is 
called the Langevin equation [ 131 - [ 151 . 

The'analogous  procedure in our  problem  is to add to the ef- 
fective field H = -aV/aM a  random  term h( t ) ,  or  to -V V a  ran- 
dom  term g( t )  = M,h(t), whose  time  and  ensemble averages 
are  zero.  Then  (23)  becomes 

i o  = -ayO X [ V V - g ( t ) ]  +bra X { Y O  X [ V V - g ( t ) ] ) .  

(25) 

Concerning the statistical  properties  of g( t )  we make  assump- 
tions analagous to those  made  in  the  theory of Brownian mo- 
tion. If g( t )  = i g l   ( t )   + jgz ( t )  + kg3( t ) ,  we assume for  the  en- 
semble  averages 

(g i   ( t ) )  = 0, (26) 

(g i ( t )g i ( t+T) )"p6 i j s (7 )  (27) 

where p is a  (temperature-dependent)  constant.*  Equation 
(26)  restates that  the ensemble  mean of g( t )  is zero.  Equation 
(27) for j # i states  that  different  components of g(t )  are un- 
correlated;  for j = i, it  states  that gi ( t )  and gi ( t  + T )  are  uncor- 
related  for  any T other  than 0, and  that  the  correlation  concen- 
trated  at T = 0 is  such  that  the  random variable 

Gi (T) = l*+ ' g i ( t l )  dt1 (28) 

'In an earlier publication [ 121 , the following symbols  were  used: g' = 

2The p of [12] is the present p / M i .  
n ,  h' = b. 

whose  mean is zero,  has variance p ~ :  

( [ c , ( T ) l ' ) = (  J * + ' d h  t y i r g i ( t 1 ) g i ( t 2 ) d t 2 )  t 

= l+' d t l  lt+' ( g i ( t l ) g i ( t 2 ) ) d t 2  

= p  l t + ' d t l   [ ' + ' 6 ( t 2   - t l ) d t z  

= p  lt+' dt l  = 117. (29) 

Physically, the  delta  function in  (27)  means  that  the  correla- 
tion time of the  random field is  assumed to  be very short  in 
comparison  with  the  times over which H varies and  with  the 
response time  of  our  system, as  determined  by  (21).3 We 
make  the  further  assumption  that  the  random process gi ( t )  re- 
sults  from  the superposed  effects  of  a large number  of  inde- 
pendent  random  events;  then by  virtue  of the  central  limit 
theorem [I71 , the statistical  distribution of the  random vari- 
able g j ( t )  at  any  time  is  normal (Gaussian). It follows that 
Gi(7) and any  other  quantities  in  which  the gi occur  linearly 
also  have normal  distributions. 

We shall call (25)  the Langevin equation of our problem. 
When it  can be linearized,  direct  solution  of it, followed by en- 
semble averaging,  is a  practical method of  solving the  problem. 
This  method will be  illustrated in  Section V. In  most cases, 
however,  (25) is nonlinear,  and  analytical  solution  of  it is not 
possible. We then need  a method  that  does  not require  solu- 
tion of the Langevin equation. 

C. The  Unit-Sphere  Representation 
The  instantaneous  orientation (e ,  @) of the magnetization  of 

a  particle  can  be  represented by a  point on  the unit  sphere, 
with spherical  coordinates (1,8,  @). As the magnetization 
changes its  direction,  the representative point moves on  the 
surface of  the sphere. 

Now consider  a  statistical  ensemble  of  identical  particles, 
and  let W ( 0 ,  $) dC2 be  the  probability  that a  member of the 
ensemble has  orientation (e ,@)  to within solid angle dC2; the 
integral j" W d f l  over the  unit sphere is unity.  Then W is repre- 
sented  by  a  surface  density on  the  unit  sphere. To it corre- 
sponds  a  current  density J :  since representative points are 
neither  created  nor  destroyed, but can  only move to new  posi- 
tions on  the sphere, W and J satisfy the  continuity  equation 

W =  -7 * J .  (30) 

We shall seek  an expression for J based on  the  equation  of 
motion (25); insertion  of  such  an expression  in (30) will give a 
partial  differential  equation to determine  the  distribution 
function W. 

3A theoretical  treatment based on less restrictive  assumptions has 
been given by Smith  and  de Rozario [ 161 . 
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For  a sample  consisting  of  a large number n of  noninteract- 
ing  particles,  the  statistical  properties  of  the  actual  collection 
of  particles  are  approximately  those  of  the  statistical  ensemble 
(population) of our  theory.  Then  the  number of particles  with 
orientations (8, @), to  within solid angle d!2, is approximately 
nW(6, @) d!2. The reader may find it  easier to visualize the 
situation  by  letting W be  this  quantity, so that J Wdi2 = n 
rather  than  1 ; he can  then  think of W as a  density  and J as  a 
current  density  of  representative  points  on  the  unit  sphere. 

D. The Fokker-Planck Equation 
Let us first  suppose  that  the  random field h( t )  is absent. 

Then J = Wu, where u, the  velocity  of  a  representative  point  at 
the  specified  location (e, $), is the  value  of io according to 
(25)  with g(t)  = 0. 

There  are now two  ways of  taking the  random field h(t)  into 
account. 
1) Intuitive Derivation: The  tendency of the  random  ther- 

mal forces is to  produce  disorder: to destroy  any  concentra- 
tion  of  representative  points  in  particular  regions  of  the  unit 
sphere. We can  describe  this  tendency  by  postulating  a  term  in 
J of the  form -kt  V W ,  where k’ is a positive  constant  (at given 
temperature); a current  of  this  form  would rob the  rich  regions 
to feed  the  poor  and  would cease only  when W became  uni- 
form. We thus get 

J = WU - k‘V W ,  (3  1) 

where u is  given by  (23).  Insertion  of (3 1) in (30) gives the  de- 
sired  partial  differential  equation, 

aW/at=aro - (VVX VW)+bV  *(WVV)+k‘V2W.  (32) 

In  the first term, we  have used the  fact  that, as  is  easily shown, 
V- ( roXVV)=O; in thesecond , tha t roX( roXVV)=-VV.  

Equation  (32) is the  “Fokker-Plank  equation” of the  pres- 
ent  problem. 

The new constant kt is not  independent  of  the  previous  con- 
stants. When aW/at  = 0, W must  reduce to the  equilibrium 
distribution 

w0 = A  e-@’ (33) 

where 

P = v/kT (34) 

(an  abbreviation we shall use frequently  hereafter),  and  where 
A is a  constant.  Substitution of (33) in (32) shows that  (32) is 
satisfied  by W o  only if 

kt = b/P. (35) 

2)  Derivation from the Lungevin Equation: The  Fokker- 
Planck  equation  (32)  can be derived  directly  from  the Lange- 
vin equation  (25);  the  interested  reader is referred to the  litera- 
ture [ 121 -[ 151 . When this  method is used,  the last term  in 
(32)  contains  the  constant p of  (27)  instead  of  the  constant k’ 
of (3 1). The  relation  between  these  two  constants is 

k‘ = ap(b2 t a’). (36) 

V. CASES IN WHICH THE LANGEVIN EQUATION 
IS LINEARIZABLE 

A. Simplification near a Stationary Point of  the Free  Energy 
There  are cases in  which we are  interested  in  the  behavior  of 

W in  the vicinity  of a  minimum or other  stationary  point  of 
the free-energy  density V. In  such  a case,  take the z axis  along 
the  direction of minimum  (or  stationary) V. Then by  suitable 
orientation of thex  andy axes, Vto the second  order  of small 
quantities is 

v =  v, t 3 t c&) (3 7) 

where V, is the value at  the  stationary  point, a1 and cy2 are 
the  direction  cosines  with  respect to  the x and y axes,  and  the 
c are  constants.  The  stationary  point is a  minimum if c1 and 
c2 are  both  positive,  a saddle  point if they have opposite signs; 
the case of a  maximum (cl and c2 both negative) is of  no in- 
terest to us. 

The Langevin equation  (25), expressed to  the  first  order  of 
small quantities,  becomes 

ci1 = -bclal t uc2a2 t bgl( t )  - ag2(t) 

c i Z  = -aclal - bc2a2 t agl ( t )  t bgz(t). (3 8) 

The  Fokker-Planck  equation  (32)  becomes 

awlat = (bclal  - ac2a2) aw/aa1 t (aclal t bc2a2)  aW/aa, 

tb(c1  +C2)W+(b/P)V2W (39) 

(V2 = az/aa: t az/laa”,>; in  the  last  term, we  have used (35). 
The  element  of  solid angle is d!2 dal dol,/( 1 - a: - ; 
in the linear  approximation,  this  becomes  simply dal daz . The 
current  density (3 1) becomes 

J1 = -(clbal - c2aa2)W-  (b/P) aW/aal 

5’ = -(claal t c2baZ)W - (b/P) aW/aa2 (40) 

J1 and J z  are the  components along the cy1 and a2 axes, 
respectively. 

E. Behavior  near  an Isotropic Minimum 
In  this  case, c1 = c2 = c > 0. 

1 )  Equilibrium and Quasiequilibrium: In  equilibrium, 

w = A‘e-pv z A’ exp [-ova - ipc(a: t a;)] 

= A exp [-; ~ c ( a :  t a;)] (41) 

where A = If PC is sufficiently  large,  this  formula is 
valid out  to values of a: t a; at which W becomes negligible. 
For  the  unit  sphere as a  whole,  a  formula  of  the  form  (41) will 
be valid within  a  region CLi about  each  minimum. If the  equi- 
librium is complete,  the  constant A’  will be  the same for all 
minima  and  can be found  by  setting  the sum of the  integrals  of 
W over the regions Qi  equal to  unity.  The  contribution of 
parts of the  unit  sphere  outside  the  regions ai may be  ne- 
glected, since there W is exponentially  small;  for  the same rea- 

* -  . son,  the  integration over each region ai can be  extended over 
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the range - 03 < a ,  < t m, - 00 < a2 < + M (when  the  element 
of solid angle  is written dol, da2) .  

We are  interested also in the case in  which relative equilib- 
rium  has  been  established  within  each region ai, but  the dis- 
tribution  between  the  different regions  has not  yet  attained 
equilibrium becasue  of the high  energy  barriers between  the re- 
gions. In  this case  we can again  use formula  (41),  but  with dif- 
ferent values  of A’ for  different regions. The integral of W 
over  region ai then gives the  probability  that  a representative 
point is in region ai; or  approximately,  for an actual  collec- 
tion of identical  noninteracting  particles,  the  fractional  num- 
ber  of  particles ni/n with  orientations close to direction i. 
With the  approximation  already  described,  this gives 

ni/n = A [ exp (- flea’) d ]  = 2nA/pc. 
+ m  2 

(42) 
-m 

It  may be legitimate to assume an equilibrium relative distri- 
bution  at distances too far  from  the  minimum to permit the ap- 
proximation  (41).  This will not invalidate the calculation  just 
made, since W at such  distances is too small to introduce  ap- 
preciable  error  in the relation  (42).  But at such  distant  points 
we must use the  exact  formula W =  A‘e-O‘ =Ae-O(’- ‘0) in- 
stead  of the  approximation (41). We then get 

w = (ni/n)  (flc/2n) e+(‘- ‘0). (43) 

This  relates the value of W at any  point  within  the  quasiequi- 
librium region about  a  minimum  to  the relative number of par- 
ticles  in that region. 

Given such  quasiequilibrium,  the  condition  for  validity  of 
the  relation  (43) is that  exp (-+pea’) must  become negligibly 
small while a2 is still negligibly  small, so that  the linear  ap- 
proximation is still justified. If we simultaneously  require 
exp (-4 pea2) < e, and a2 < e2 ,  where e l  and e2 are  specified 
small quantities, we must have 

P C  ( 2 / E 2 )  In (Uel). (44) 

If = e2 = E ,  then for e = 0.1, 0.01, and 0.001  we get flc 2 
4.6 X lo’, 9.2 X I O 2 ,  and  1.4 X lo4, respectively. Similar 
conditions  may  be derived for  validity  of  the  relations to be 
derived in Sections V-C, -D, and -E. 
2) Solution of the Langevin  Equation: In order to judge  the 

legitimacy of our  assumptions  about  the relative times for es- 
tablishment  of  various degrees of  equilibrium, we need an esti- 
mate of the time necessary to establish the relative equilibrium 
discussed in 1). For  this  purpose, we must solve the Langevin 
equation  (38) or the Fokker-Planck  equation  (39) for  the case 

The Langevin equation is complicated  by  the presence of  the 
gyromagnetic terms acaz in drl and - a m ,  in c i 2 .  This  com- 
plexity  can  be removed by using direction  cosines a;, a; re- 
ferred to axes that  rotate  with angular  velocity 

c1 =e2 = c > o .  

w = -ea (4 5) 

and that  coincide  with  the xy axes  at  time 0. The  resulting 
equations are easily solved; and  by  carrying out  appropriate 
ensemble averages,  we find  that if the initial values (a lo ,  a z o )  
are the same for all members of the ensemble  (as  could be ac- 

complished  by  initial  application  and  removal of a large field), 
ai and ai have means 

(a;) = ala e-cbt (or;) = a20 e-cbd- (46) 

and variances and covariance (sa; af - (ai)) 

(6a;2)=  (&ab2)= u2 = u; [ I  - e-2cbt] 

(6a;6a;)= 0 (47) 

where 

ug = p(b2  t a2)/2cb = k’lcb = l/flc = kT /w .  (48) 

Equations (46) show  that in the  rotating  axes,  the  mean 
magnetization  decays,  with time  constant l/cb, toward the di- 
rection of minimum V ;  in fluted axes, it  executes  a  damped 
precession about  this  direction.  Equations (47) show that a; 
and a: are uncorrelated  and have a  common variance that is 
initially  zero  and that  approaches,  with time constant 1/2cb, 
the value 0; = l/flc. Transformation  back to fixed  axes  at t = 
00 shows that a1 and a2 then are  uncorrelated  and have zero 
mean  and variance l/flc, in  accordance  with the  Boltzmann 
distribution (41). 

Since the gi ( t )  are normal  random variables, so are the a:; 
and  being  uncorrelated  normal  random variables, they are 
independent. 

3)  Solution of the Fokker-Planck  Equation: The  Fokker- 
Planck equation  (39),  with c1 = c2 = e, contains  terms  in 
a1 and a2 aW/aal that prevent  solution  by  separation 
of the variables a1 and c y 2 .  These terms can be removed by 
the same transformation  that was  used for  the Langevin equa- 
tion.  The  equation  can  then be solved by separation  of vari- 
ables.  The  mathematics from  that  point  on is essentially the 
same as  in  Uhlenbeck and Ornstein’s treatment of Brownian 
motion [18], [19] . For  arbitrary initial conditions,  one  can 
expand W as a series of  terms  that decay  with  reciprocal time 
constants (m t n)bc, where m and n are nonnegative  integers 
(the  term m = n = 0 is the equilibrium  solution) [ 181 . For the 
special initial conditions considered  in 2) above,  one can  use 
either  the series method  or  a  more direct  one [ 191  in which, 
instead of W ,  one  uses the “characteristic function” [20] of 
the  distribution (essentially the Fourier  transform of W ) ;  the 
results  are  the same as before. 

From  the results of this  and  the  preceding  subsection, we 
may  conclude that quasiequilibrium about  a  minimum of Vis 
established in a  time of the  order  of llcb. 

C. Behavior  near  an  Anisotropic Minimum 
When c2 #e1,  the  quasiequilibrium  calculations of Section 

V-B1) require  only trivial modifications.  In  (41), e(.: + a;) 
must be replaced  by c ,  a: + c,a; ; in  (42)  and  (43), c must be 
replaced  by (e1 

The Langevin equation can  be  solved by  standard  methods, 
such as the Laplace transform.  The  transient  parts  of  the soh-  
tion  contain  terms  in e’’ ‘ and es2 t ,  where s, and s2 are the 
roots  of 

(s t bc,)(s + be, j t a2c1 c2 = 0.  (49) 
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The time for  attainment  of equilibrium may be estimated  as 
the reciprocal  of the smaller of -sl and -s2 when  they  are 
real, and of their  common real part  when  they  are  complex. 
This time is of  the  order  of llbc, and llbc, when  these  are of 
the same order. 

Solution  of  the Fokker-Planck  equation  is more difficult 
and is not necessary for  our  purposes. 

D. Behavior  near a One-Dimensional Maximum 
When the system  is  symmetric about  an axis  (as in  the case 

of  a  uniaxial  crystal  in  the  form  of  a  prolate  spheroid,  with the 
crystal  and  spheroid  axes  coincident  and  the field along this 
axis), V is a function  of a single variable 0 ,  the angle between 
M and  the  axis of symmetry. If W is initially  symmetric about 
this  axis,  it will  remain so. Any  energy  barrier will be at some 
value O m  of 6 and will extend  around a parallel of  latitude  on 
the  unit  sphere, a total distance 2n sin O m .  In  the  local  axes  of 
Section V-A, if  we take a, along the  direction of increasing 8 ,  
V and W are independent of a, ; in  the Fokker-Planck  equa- 
tion (39), cl = 0 and c2 = -c', where c' > 0. Thus 

a wlat = -bc'aa wlaa - bc'w t (b lp) a 2  wlaa2. (50) 

We have dropped  the subscript on a,. 
We are  interested  in  the case in which the regions on  oppo- 

site sides  of the  barrier,  and  not too close to  it, are  practically 
in internal  equilibrium,  as  described  in  Section V-B, but are 
not  yet  in  equilibrium  with  each  other. We can  describe this 
situation  by  saying  that  for  sufficiently large I a (  , W is ap- 
proximately  equal to Ate-@"(") for a > 0 and to B'e-@'(") for 
a< 0, with A ' #  B'. We suppose that  this  becomes  true  at 
small enough values of 1 0 1 1  so that  the  approximation V =  Vm t 

the  maximum.  Then  the values of W at such values of a are 
A exp (:oc'a2)(a > 0) and B exp (+pc'a')(a < 0), where 

L c Q C 2 = V m -  1 ' 2 '  
2 2 2  c a 1s still valid;  here Vm is the value of V at 

A =A'e-@vm and B = B'e-p'm. 
Let 

w = u exp (3 pc'a') (5  1) 

then  the  limiting values of U are A and B. The partial  differen- 
tial equation satisfied  by U is 

a2 ulaa2 + o c h  aulas = (P/b)  aulat.  (52) 

The  time-independent  solution (aUlat = 0) is found  by ele- 
mentary  integration  and is 

u = c, $(ap' /2ct1/2)  + c, (53) 

where 

@(x) = ( 2 / 7 ~ ) ' / ~  Lx exp (4 t2) dt .  (54) 

For 1x1 >>l ,$(x)=+l  f o r x > O a n d = - 1   f o r x < O .  
On imposing the  boundary  conditions U = A for a o ' / 2 ~ ' 1 / 2  

large and positive, = B  for up1~2c'1/2 large and  negative, we 
find  a  time-independent  distribution  that satisfies our  con- 
ditions: 

W =  exp (+oc'a2)  [:(A t B )  t + ( A  - B ) @ ( c Y ~ ~ / ~ c ' ~ ' ~ ) ] .  

( 5 5 )  

To maintain  such  a  distribution  indefinitely  would  require 
continuous  destruction of representative points  (or of particles) 
at a = +a, and  creation of them  at  an  equal  rate  at QC = -00, or 
vice  versa, so as to keep  the  numbers  there  constant  despite 
the flow  across the barrier;  otherwise, A and B will change 
with  time,  approaching  the values that  correspond to equilib- 
rium for  the whole  system. We may neglect this  fact  if, as we 
are assuming, the  time  for  attainment of equilibrium  between 
regions is very long  in  comparison  with  the  time  for  attainment 
of  equilibrium  within  a  region. 

To the  time-independent  solution ( 5 5 )  may  be  added  time- 
dependent  solutions  of (52), determined  by  the  initial  con- 
ditions.  These  solutions  decay  with  time  constants  whose 
reciprocals are multiples of bc'. Thus the  barrier  attains  a 
steady-flow  situation  in  a  time  comparable  with  that  in  which 
the neighborhood of a  minimum  attains  equilibrium (since nor- 
mally c' for  a  maximum  of V and c1 and c2 for  a  minimum 
are  of the same order). 

The  current  density J z  across the  barrier  is,  by (40), 

J ,  = C ' ~ C Y W  - (blp) awpa = - exp ( + ~ c ' Q c ~ ) ( ~ / P )  aulaa 
= -(A - B) b ( ~ ' / 2 n " ) l ' ~ .  (5 6 )  

There is  also a component J, = -c'aaW along the  barrier;  this 
represents  a  mean  gyroscopic  precession  about  the  symmetry 
axis. The  total  current I ,  across the  barrier is found by  mul- 
tiplying Jz by  the barrier  length 2n sin O m .  

Let P, and Pz be two  points, in the regions a > 0 and u < 0, 
respectively,  far  enough  from a = 0 so that  the  corresponding 
values of W have their  limiting values W ,  and W ,  = 
B'e-O"; , respectively,  where Vi and V; are the values  of Vat  
P, and P,. In  terms  of W ,  and W 2 ,  we  have A = A  e I -PVm = 

W1 e-@(VWl-v:) and B = B ' e -pVm = W2e-@(Vi?l-V;). Thus 

I ,  = -b(2ncr/p)l/2 [W,e-p(Vm-V;)- ~ , e - @ ( ~ m - ~ ; ) ]  sin e m .  
( 5 7 )  

Equation (57) relates the  rate  of  flow  of  representative  points 
across the barrier to  the values  of W at  two  points  on  opposite 
sides of  the  barrier,  and  far  enough  from  it to be  within  the 
regions of quasiequilibrium for  the  corresponding minima. 

E. Behavior  near a Saddle Point 
In  a  more general situation, flow of representative  points 

occurs  across  barriers that are not  of  uniform  height;  the flow 
across  any  barrier will be concentrated near the point of least 
height, i.e., a  saddle  point  of V:  say  a  minimum  with  respect 
to a, and  a  maximum  with  respect to a,. Then in (39), 
c1 > 0 and c2 < 0; let c2 = -ck, where ci > 0. As in  Section 
V-D, we suppose that away from  the  barrier W =A'e-OV for 
a, > 0, = B'e-0" for 01, < 0, and  that these  limiting values  are 
realized  while I a, I is still small enough to  justify  the linear  ap- 
proximation in a,. We also suppose that W decreases  rapidly 
enough  with increasing I a, I to become negligible within  the 
range of validity  of the linear approximation  in a , .  As before, 
we seek  a  relation  between the flow I ,  across  the  barrier  and 
the values of W at  two  points on opposite sides  of the  barrier, 
and not  too close to  it. 
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where 

p = alb. (59) 

Equation (58) does  not yield to an  attempt  to separate the 
variables a, and a2 (the  separation of t from  them  is  easy 
enough),  because  of the  gyromagnetic  terms  containing p. 
These  terms  cannot  be  removed  by  any  orthogonal  transforma- 
tion  (rotation of  axes). They  can, however,  be  removed by a 
nonorthogonal  transformation to variables z p  = Eiqpiq,  with 
the qpi suitably  chosen. The  penalty is that a  cross  term  con- 
taining a2U/azl az2 now  appears;  but  it  turns  out  that  when 
aU/at = 0,  there  are  solutions  that  are  functions  only  of z ,  or 
only  of z2, and  in  such  solutions the cross  term drops  out. 

We therefore  seek,  directly,  a  solution of (58) of  the  form 
U = f (z), where 

Z = 4a1 t a2 (60) 

with 4 to be determined.  (For 4 = 0, z will reduce to a2) .  On 
substituting U =f(z) in (58), we get  a  result that reduces to an 
ordinary  differential equation in z only if a  certain  linear  com- 
bination  of a, and a2 is identically  equal,  except  for  a  multi- 
plicative constant L ,   t o  the  linear  combination z. On  imposing 
this condition, we get two  equations  that can  be  solved for L 
and q .  On  substituting  these values in the  differential  equation 
and  integrating it, we get 

exp (-ipc”$2)d$ t C, (6 1 )  

where 

c ’ ) =  pc ,c ; /q (c ,  t c;) .  (63) 

This is the  solution  that  approaches  finite values as I a2 I in- 
creases. There is another  solution, corresponding to a  minus 
sign before  the radical in (62), which  becomes  infinite  as 
I oc, I + 0”; it  corresponds to the  other z p  and is not useful  here. 
C, and C2 are now  determined  by  the  conditions  at large 

positive and negative I a2 I c212 . The evaluation of J2 by 
(40) and of I ,  = 1-r J2 da, is straightforward;  in  the  integral 
for I,,  the  term  in J2 that  contains U can be transformed, by 
integration  by  parts, to  one  that contains aU/aa,, so that  the 
integral over $ disappears. We get,  instead of (57) of the  one- 
dimensional  case, 

I ,  = -G(b/P)(c;/c,)’12 [W,e-p(vs-v’) - W2e-P(Vs-v;) I 
(64) 

where V, is the value  of Vat the saddle point,  and where 

G = 1 -I- p4 = (2ck)-‘ {(e; - e l )  

t [(c, + c;)2 t 4p2c,c;]”z}. (65) 

For given b,  the value of p affects 12, and hence the rate of 
approach to an  equilibrium  distribution of representative 
points  between  the  two  minima,  only  through  the  factor G. 
This  factor reduces to  unity  when p = 0 (i.e., a = 0, b # 0: 
damping but  no gyromagnetic  torque  in  the  Landau-Lifshitz 
equation  of  motion (23)). 

Although (57) and (64) have much  in  common,  the  tempera- 
ture  dependence (recall that p = u/kT) of the  pre-exponential 
factors is quite  different  in  the  two cases. 

Time-dependent  solutions  of (58) can be  expected to decay 
with  time  constants  of  the  order  of llbc’. 

VI. THE  UNIAXIAL CASE 
A. The Fokker-Planck Equation 

We turn now to consideration  of  the  Fokker-Planck  equa- 
tion (32) in  situations in which the corresponding Langevin 
equation (25) cannot  be  linearized. Though  the  Fokker- 
Planck equation itself is linear  in  either case, it is much more 
complicated  in  the  latter case than in the former. 

In  this  part we shall  consider the special  case in  which Vis a 
function of 0 only,  independent of q5. Then if W is initially 
independent  of 4, it  will by  symmetry remain so. In  this case, 
(32) reduces to  

The gyromagnetic terms  (those  containing a) have disappeared. 
The  only  effect of the gyromagnetic  term  in the  equation of 
motion is that  the  current  density J of representative points 
has a q5 component;  that is,  there is a  mean precession  of the 
magnetization  about  the  symmetry axis. This  part  of J is 
divergenceless and does  not  affect  the  evolution of W .  

If we set W = Ue-pv and change to x = cos 0 as independent 
variable, we can put (66) into  the  form 

b at 
(67) 

The  boundary  conditions are:  finiteness of U at x = +1. 

direct  integration.  The general solution  in  this case is 
The  time-independent  solution (aUjat = 0) can  be found by 

u = c, t c2 x ( l  - $2)-1 e+pv( t )  dg. (68)  

For finiteness at x = ?I, C2 = 0;  then W = C, e - p v ,  the  expected 
equilibrium  solution. 

Time-dependent  solutions  are  of  the  form 

U = X(x )  e-P (69) 

where X(x )  satisfies the  ordinary  differential  equation 
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with X = p/b .  (Note  the  new use of  the  symbol X; the  Landau- 
Lifshitz X has  been  absorbed  into  the  constant b.) If the eigen- 
values X, of  the  parameter X can be found,  the characteristic 
reciprocal  time  constants p ,  will be given by 

p ,  = X, blP = X, bkT/v. (7 1 )  

The case  of greatest interest is that  of  a particle with uni- 
axial  crystalline anisotropy  and  with  a field H applied  along  its 
axis: from ( l o ) ,  

V =  K1(1 - x 2 )  - HM,x (K1 > 0). (72) 

When H = 0, (70)  for  this case reduces to 

dX X 
dx 1 - x 2  
-+- X= 0. (73) 

Equation  (73)  has  two regular singularities, at x = t 1  and at 
x = - 1 ,  and an irregular  singularity at x = 00 [ 2 1 ] .  These  prop- 
erties  take  it  outside  the classes of second-order  differential 
equations  that are easily solved: Fuchsian,  especially hyper- 
geometric  (these have only regular singularities),  and confluent 
hypergeometric  (these  have  an  irregular  singularity a t  00 and 
only  one regular finite singularity) [21] .  If  one  seeks  a  series 
solution, X= ZnanxP+n, one  obtains  a  recurrence  relation 
that  contains  three successive a's rather  than  two, so that  no 
simple explicit  formula for  the  coefficients  can be obtained. 
If one  performs  an  integral  transformation (e.g., a  Fourier 
transformation),  one  obtains  for  the  transformed variable a 
differential equation  that is  as  complicated  as  the original 
equation.  Therefore.  'one  must  resort to approximate  or  nu- 
merical  methods. 

B. Limiting Cases 
1 )  Low Energy  Barrier  (High Temperature), PlVl<< 1 : In 

the limit += 0, (70)  becomes Legendre's equation, with eigen- 
values X, = n(n + 1 )  (n = 0, 1 , - * a); the eigenvalue 0 corre- 
sponds to the  equilibrium  solution,  which  is  simply W = const. 
The  other eigenvalues determine  reciprocal  time  constants p ,  
that  are integral  multiples  of b/P. 

For PI VI nonzero  but small, perturbatlon  theory can be 
used,  and A, can be expressed as the  Fist  few  terms  of  a series 
in a small parameter, e.g., PK, for  (73) [ 121 , [ 2 2 ] .  

2J High Energy Banier (Low Temperature), I VI >> 1 the 
Kramers Method: For  this case, we can use tne  ideas  presented 
in Sections V-B and -D: that  the  time to attain relative  equilib- 
rium  in the region about  a  minimum of V is very short in 
comparison  with  the  time to attain  equilibrium  between  dif- 
ferent  minima. 

For simplicity, we consider  the case of two minima, Vl and 
V2 , at 0 = 0 and ?T(X = t 1  and - l ) ,  respectively,  separated by  a 
maximum V, at 8 = 0,. Near the  minimum  at f3 = 0 

V =  V ,  t +C(1)e2 (74) 

where = (d2 V/dO2)O=,,. With the . ~~ z ~ axis  along  the  direc- 
tion 0 = 0, a: t ai = sin' 0 z O 2  , so that 

V z  V, t +c(1'(a;: t a,") 

and  in (43), c1 = c2 = d l ) ;  thus  the value of y at  a  point Pl 
close to the barrier, but still  within  the  region  of  quasiequi- 

librium  about f3 = 0, is 

w1 = (n , In) (p/2?r)  c(l)e-P(v; (75) 

where is the value of V at P, . For  the  minimum  about 
0 = 71, a similar equation  holds. Now by  (57),  the  current  of 
representative  points  across  the  barrier  from 2 to 1 is 

s e, - e )  
121 = - b ( 2 ? ~ ~ ' / 0 ) ' / ~  

On inserting (75) and  its P2 counterpart in (76), we get 

n12, = b(pc'/2~r)'/~ 

(7 7) 

For an ensemble  of  identical  noninteracting  particles, 
nIzl = il = -i2 in  the  discrete-orientation  model;  therefore, 
the  coefficients  of n, and  of n2 in (77) must  be  equal to 
-v12 and v21 , respectively,  in (8). Thus we get (i = 1 ,  j = 2 or 
i = 2 , j =  1 )  

where 

v$ = ~ ( ~ c ' / ~ ? T ) ' / ~ c ( ' )  sin 8,. (79) 

Equation (78) is equivalent to (9), but we now  have  an  ex- 
plicit formula  for v$. It does  indeed  depend on T ,  both  di- 
rectly  through  the  factor @'2(aT-'12_) and  indirectly,  through 
the  temperature~  dependence  of c', and b. 

Having found v12 and vzr, we can find the  time  constant 
T =  1/(v12 + v21)  (see Section 111-A). This  method  of  evaluat- 
ing r is an  adaptation  to  the  present case of  a  method  de- 
veloped by  Kramers  for  handling  the  escape  of  Brownian 
particles over potential barriers [23]. 

3) High-Energy  Barrier, Asymptotic Expansion: For  the 
particular case of  (73),  a  correction to  the Kramers  formula 
has  been  obtained in the  form  of  an  asymptotic series [ 2 4 ] .  In 
this case V, - Vi = K 1 ,  $1 = e' = X I ,  O m  = 7r/2, and vy2 = 
v% = 2bp112n-1/2K:/2 ; hence  the  reciprocal  time  constant 
pQ = v12 t v21 according to (78)  and  (79) is 4bP1l2 * 

and  the  corresponding eigenvalue of X in  (73) is 

~ ~~~~ 

X. = /3po/b = ( 2 ~ ~ / ? r ) ' / ~ e - ( l / ~ ) ~ ,  (80) 

where 

K = 2PK1 = 2K1 v/kT. (8 1 )  

The  asymptotic series for X is 

X-' = X,' (1 + 2/K + 7/K2 + 3 6 / ~ ~  t 2 4 9 1 ~ ~  t . -). (82) 

The  error  may  be  expected to be  comparable  with  the  first 
omitted  term;  therefore  this  formula  can give very accurate 
values of X when K is large. 

According to (82), the  fractional  error  by use of  the  leading 
term  only  (Kramers  approximation) is of  the  order  of 
2 / ~  = 2/2pK1 = 2/Pc('); if  this is to be a negligibly small 
quantity E, 0 8 )  should  be  no smaller than 2/15 This is con- 
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sistent  with the  estimate  (211~) In (1/~) obtained in  Section 
V-Bl).  Equation  (82)  omits an exponentially small correction 
that will be significant  when K is only  moderately large. 

C. Intermediate Energy  Barrier:  Numerical Solution 
When PI VI - 1, we must resort to numerical  methods. 

These have been  applied  to  the case when V is  given by  (72), 
both  for H =  0 [22]  and  for H # 0 [25].  One can express U 
either as a series of  Legendre  polynomials or as an ordinary 
power series. The  three-term  recurrence  formula is quite 
amenable to a  purely  numerical  method;  one  procedure  for 
handling  such  problems,  when  the  object is to find  the smallest 
eigenvalue of  a  parameter,  has  been  described  by  Jeffreys  and 
Jeffreys  [26]. 

The difficulty  with the  numerical  method  is  that  as K be- 
comes larger and  larger,  one  needs  more  and  more  terms  of the 
series (which  for  numerical  calculations  must always be trun- 
cated  after  a finite  number of  terms);  and  because  of  cancella- 
tion  of  terms,  one  needs  more  and  more figures  in the calcula- 
tion  (try  calculating e-30 directly by  the series formula!). 
Thus  with  a given number  of  figures  and a given amount of 
available computer  time,  there is a limit to how large a K is 
manageable. 

Before this  point is  reached,  however,  the  asymptotic  for- 
mula  (82)  can  take over. Thus in the case of  the  free-energy 
formula  (72)  with H = 0, the  leading  time  constant is now 
known  accurately over the  whole K range, Extension  of  the 
same methods to the case H # 0 or  to  a  more  complicated 
uniaxial-anisotropy  formula  presents, in principle, no difficulty. 

VII. MORE COMPLICATED  CASES 
In  the general case V = V(6, @), the  Fokker-Planck  equation 

(32)  becomes 

_-  a w  a j a v a w - a v a w )  
a t  sin e ae a$ a$ ae 

The  assumption W = F(6, @)e-Pt reduces  (83) to a 
differential-  equation  for F(0, @), containing  a  parameter 
h = Pp/b whose eigenvalues (determined  by  the  condition  of 
finiteness over the  unit  sphere) are to be found.  The eigen- 
value h = 0 corresponds to  the  equilibrium  solution F = Ae-P'. 
For h # 0, even with  the simplest forms of V(6,$) that are of 
interest,  the variables 6 and 4 do  not separate:  assumption  of  a 
series Ern [f, ( e )  cos m@ + g,(B) sin m@] leads to coupled  dif- 
ferential equations  for  the  functions f, and g,, and  assump- 
tion  of  a series Zmn(Am, cos m@ t B,, sin m$)PT (cos e )  
leads to an infinite set of  simultaneous  equations  for  the  co- 
efficients A,, and B,, . Approximate  and  numerical  methods 
are again necessary. 

A. Limiting Cases 
I) Low Energy  Bawiers  (High Temperature): For P = 0, the 

differential equation  for F(6,  @) reduces to  the differential 

equation  of  the  spherical  harmonics;  thus  the eigenvalues of h 
for 0 = 0 are again n(n t l), and  for small 0 one  can use per- 
turbation  theory. 

2) High .Energy  Barriers (Low Temperature): In  this case, 
we can use the same method as for  the  uniaxial case, except 
that  the  flow  of  representative  points  from  one  minimum  of V 
to  another is now  concentrated  near saddle points,  and  instead 
of (57) we must use (64).  The result is that  the vji of (7) are 
given  by 

V i i  = G ( b / 2 ~ )  (c i lc , )  I /Z  ( ~ 1  (i) CZ (i) ) l/Z,-P(Vs-Vj). (84) 

Here Vi and Vs are,  respectively, the values of V at  the  mini- 
mum i and at  the saddle point  between i and!; cy) and cf) are 
the  constants in the  expansion  of V about i, V =  Vi t 
&(c$~)cx; t c2)a;) t * * ; c1 and ck are the coefficients in the 
expansion  about  the  saddle  point, V= V, t & (c,aI - cia;) t -  * 
(of  course, a1 and a2 have different  meanings  in the  two  ex- 
pansions);  and  G is  given by  (65).  Equation (84) applies to 
two  minima  separated  by a single barrier; as in  Section III-B2) 
and  3), we set uji = 0 for  two  minima  separated  by  two  or 
more  barriers. 

For  a  cubic crystal with K ,  > 0, in zero field (Section 
III-B2), we find Vi = 0, Vs = i K , ,  cf) = c y )  = 2K1, c ,  = K ,  , 
ci = 2 K ,  , and  hence in (1 2) 

= G . 21/ZT-1 b ~ , ~ - ( 1 / 4 ) P K 1  > ( K ,  >o> (8 5) 

where 

G = 4 t 4 (9 ,t 8p2)'/'. (86) 

For a cubic  crystal  with K1 < 0, in zero  field  (Section  III-B3), 
we find q = - $ I K l  I, Vs=-$IK,  1, cp)=c$)=(4/3)1K1 1, 
c1 = 2 I K1 I, c; = I K 1  I, and  hence  in (18) and  (19) 

v = G . 21/2(3n)-1 b IK1 le -(l/iZ)PIK1 I , (Kl < 0) (87) 

2 2  (9 ' 8pi )1/2.  (88) 

where 
G = - L +  1 

Recall that  the  reciprocal  time  constants  of  the discrete-orien- 
tation  model are 4v and 6v for K 1  > 0 and are 2v, 4v,  and 6v 
for K ,  < 0; the  mean  magnetization  decays  with  reciprocal 
time  constant 4v for K ,  > 0 and 2v for K1 < 0. 

The  cubic cases  have been  worked out directly  by  Eisenstein 
and  Aharoni  [27]  and  by  Smith and de Rozario  [16],  The re- 
sults of Eisenstein  and  Aharoni are equivalent to (85)-(88> 
only  when p = 0, so that 6 = 1. The  discrepancy  when p f 0 
can be attributed  to  their  assumption  that W near the saddle 
point is even in a1 ; (61)  shows that  this is true  only  when 
p = 0, so that q = 0. The results of Smith  and de Rozario are 
equivalent to  (85)-(88)P 

We can now  derive  a  criterion  for  applicability  of  the  high- 
barrier  formula (84).  The  reciprocal  time  constant  for  estab- 

4Note  that  the v of (85) and  (87) is differently  defined  from the v of 
Eisenstein and Aharoni [27], which differs from it by a factor 4 when 
- K1 > - ~~. 0 and  by a factor 3 when K1 < 0. Eisenstein and Aharoni [27! p. 
12831  correctly interpreted  the discrepancy  between  their  formulas and 
those of Smith and de Rozario 1161. The  printed version of the article 
by Smith and  de Rozario [ 161 corrects  errors  present in  the preprint. 
The symbol q in their (81) is evidently a misprint for 9. 
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lishment  of  equilibrium  between  minima  is  of  the  order  of vii; 
for  establishment  of relative equilibrium  (quasiequilibrium) 
about  a  minimum, of the  order of bey) or bey). The  ratio of 
the  former to  the  latter, if ch - c1 , is of  the  order  of e 
which is less than  0.001 if P(Vs - 5) islarger  than 6.91. The 
assumptions  made  about  these  time  constants will then  be 
justified. The  conditions  assumed in  Section V-B-E, e.g., 
that  exp (-4flc‘a;) becomes small while ai is  still small, are 
more  stringent  (in  the  cubic case, both PC’ and p(  Vs - 5) are 
of  the  order  of I K1 I). 

B. Cubic Czystals: Numerical Solution 

-P(vs-vi) 
3 

Eisenstein  and  Aharoni  [27] have evaluated  the  longest  time 
constants  by  numerical  methods  for  cubic crystals with positive 
and  with negative Kl . There  is  still  a range of PI  K ,  I in which 
numerical  calculation  was  not  feasible  and  in  which  the  one- 
term  asymptotic  approximation (84) is not  yet reliable. The 
derivation  of an asymptotic series  analogous to  (82) presents 
difficulties not  present in the  uniaxial case. 

C. Other Methods 
Instead  of dealing directly with  the  probability  density W, 

one  may  consider  its  moments mEmn = JWa, a2 a3 dQ; for  ex- 
ample,  in  the  uniaxial case, m, = 2rJ:W cosn 0 sin B dB = 
2ri:: W x n  dx  (n = 1,2,  *). The first-order moments (e.g., 
1 = m = 0, n = 1) are proportional  to  the  components  of  the 
magnetic  moment  and  are  therefore  of  direct  interest. An ex- 
pression  for dmlmn/dt can be obtained by multiplying  the 
Fokker-Planck  equation  by ai a ~ c ~ ~  dQ and  integrating; if V 
is a  polynomial in the  direction  cosines ai, the right  member 
can be transformed,  by partial integration, to an  expression 
involving only  the  moments.  But  the  expression for dmlmn/dt 
involves moments of higher order,  and so one  gets  an  infinite 
system  of  coupled  differential  equations. As in  many  such 
problems  in  statistical  physics,  one  can “close” the  system  by 
introducing  an  approximate  expression  for  the  moments  of 
some  definite  order in terms of moments of lower  order,  and 
thus get an  approximate  solution  of  the  problem.  This  method 
has  been  applied to several problems,  including  ones that relate 
to  a mechanism  of  magnetization  relaxation  not  considered 
here,  and  possibly  important when the  magnetic  particles are 
suspended in a liquid:  Brownian  rotation  of  the  particle  itself 
(rather  than  of  the  magnetic  moment  with  respect  to  the 
particle) [28] - [3  1 J . 

I m n  

VIII. CONCLUSION 
The basic theory  described  in  Section  IV  appears to be 

adequate;  the difficulties  in  applying it are chiefly mathemati- 
cal ones,  resulting from  the  complexity  of  the  Fokker-Planck 
partial  differential equation (32). 

Solutions  for small energy  barriers pose no serious  difficulty 
but have so far not  proved of much  interest  experimentally. 
Large energy  barriers  can be treated fairly  satisfactorily  by the 
Kramers  method; essentially this consists  of solving, in  each of 
several regions  on  the  unit  sphere, an approximate  Fokker- 
Planck  equation  based on a  linearized  form  of  the Langevin 
equation valid in that  region,  and  then  joining  these  solutions 
together.  In  principle  this is a  straightforward  procedure,  and 

in the  uniaxial case the result  is well established;  but  in  the 
cubic case the  discrepancies noted  in  Section  VII-Al),  demon- 
strate  that  some  algebraic  cleaning  up is  still  necessary.  Once 
the  Kramers  calculation  has  been  carried out and  the vii have 
been  found, their  relation to  the  time  constants  of  the discrete- 
orientation  model  (Section 111-B2) and  3)) is  a  matter  on 
which  there is no  disagreement [ 161,  [27]. 

The  Kramers  formula is the  leading  term in an  asymptotic 
series; evaluation  of  additional  terms  would  insure  accuracy at 
values of PI VI = I VI u/kT that  need  not be quite so large,  and 
would  provide  means  of  estimating  the  error.  This  has  been 
achieved in the  simplest  uniaxial case but  presents, in the  cubic 
case,  difficulties not  yet  overcome. 

For  intermediate  energy  barriers,  numerical  calculations,  or 
approximate  methods, such as the  moment  method  with  trun- 
cation  of  the infinite  chain  of equations, are necessary. The 
numerical  calculations  can be carried out  successfully  pro- 
vided PI VI is not  too large; they  become  impractical  at  a value 
at  which  the  Kramers  approximation  is  still  inaccurate.  The 
gap is filled by  the  complete  asymptotic  expansion,  which  in 
the  cubic case is  still to be derived. 

Thus  the  simplest  uniaxial case may  be  considered  com- 
pletely solved; more  complicated  uniaxial cases can  in  principle 
be solved equally  completely  by  the same techniques;  the 
cubic cases are still  subject t o  some  incompleteness  and  un- 
certainty;  and  more  complicated cases, such as a  cubic  crystal 
in an applied  field,  remain to be  investigated. 

APPENDIX  I 
THE  GILBERT AND LANDAU-LIFSHITZ  EQUATIONS 

The  Gilbert  equation IS 

n i = y , M X ( X - q , n i )  (A 1) 

where yo is a  “gyromagnetic”  and q a  “damping”  parameter. 
Equation (Al) can be put  into  the  form  (21)  by  the  following 
steps.  Operation  with M . gives M * M = 0 (or d(@)/dt  = 0; 
thus  the  differential  equation  guarantees  constancy  of  the 
magnitude  of M). Operation  with M X, use of M . dl = 0, and 
substitution of the result  in the last term  of  (Al) give an 
equation  that can be  solved for $2. The result  is  (21) with 

7;   YO/(^ +r,”qZG), X=~i?@’@/(l + y , ” ~ ~ l @ ) .  (-42) 

The inverse relations are 

yo = 7; + A.2 /+;M: rl = A/ [(y;M,)Z + h2 1. (A3) 

To any  specified  real value of yo and  real  positive value of q 
correspond  a real value of 7; and  real  positive value of X, and 
vice versa; but if the  “gyromagnetic”  parameter of one  equa- 
tion is held  constant while the  “damping”  parameter is varied, 
the  “gyromagnetic”  parameter  of  the  other  equation will not 
remain  constant. If 17 = 0, h = 0, and vice versa;  in  this  limiting 
case of no damping, yb = yo, both  equations  reduce  to 
M =  yoM X X, and  the  common value of yo and yb is  pre- 
sumably  at  least  approximately  equal to  the  gyromagnetic 
ratio.  for  an  electron spin.  The  same  mechanisms that cause 
damping  produce  a  deviation  of  the  “gyromagnetic”  parameter 
from  this value in at least  one  of the  equations,  and  quite 
possibly in both. 
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The Gilbert  equation  has  the  theoretical  advantage  that  it 
can be derived from  a classical Lagrangian function and  Ray- 
lei& dissipation  function.  But if  we were to  start  with it in 
the  present  problem,  the first step would  be to transform  it to  
the Landau-Lifshitz  form.  Consequently,  our  final  formulas 
are simpler  when  expressed  in  terms of the Landau-Lifshitz 
parameters  than of the  Gilbert. Equivalent  formulas  in  terms 
of the Gilbert  parameters  can be found by the  substitu- 
tions (A2). 
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