# TIME CONSTANTS OF SUPERPARAMAGNETIC PARTICLES 

William Fuller BRCWN, Jr.<br>Department of Electrical Engineering, University of Minnesota, Minneapolis, MN 55455, USA


#### Abstract

Time constants of uniaxial single-domain particles have previously been calculated from a convergent series for small energy barriers and from a single-term asymptotic expression for very large. The present paper develops a more complete asymptotic expansion for large values and a numerical-quadrature method for the intermediate range.


The nonequilibrium behavior of a thermally agitated single-domain particle is determined by a Fokker-Flanck equation [1]. For a uniaxial particle in zero field, the transient solutions are of the form $\Phi(x) \exp \left(\frac{1}{2} \kappa x^{2}-t / \tau\right)$, where $\Phi$ satisfies the differential equation
$\left(1-x^{2}\right) \Phi^{\prime \prime}(x)+\left[\kappa x\left(1-x^{2}\right)-2 x\right] \Phi^{\prime}(x)+\lambda \Phi=0$
and the boundary condition: finiteness at $x=$ $\pm 1$. Here $\kappa=2 K_{1} v / k T$, where $K_{1}$ is the anisotropy constant, $v$ the particle volume, $k$ Boltzmann's constant, and $T$ the Kelvin temperature; $x$ is the cosine of the angle between the magnetization and the particle axis; and $\lambda=v / k T h^{\prime} \tau$, where $h^{\prime}$ is a material constant. The quantity of interest is the longest finite $\tau$, hence the smallest nonzero eigenvalue of $\lambda$; the corresponding eigenfunction is odd in $x$.

Asymptotically for very large $\kappa, \lambda$ is approximately [1]
$\lambda_{0}=\left(2 \kappa^{3} / \pi\right)^{\frac{1}{2}} \exp (-\kappa / 2) ;$
but the accuracy of the approximation has not been investigated. For $\kappa=0$, (1) becomes Legendre's equation, and $\lambda=2$. For small and moderate $\kappa, \lambda$ has been calculated [2] by a numerical method from a truncated convergent series solution for $\Phi$. As $\kappa$ increases, this method requires more and more terms and more and more and more figures in each term, and rapidly becomes impractical. With a 10 -digit calculator (Hewlett-Packard HP-45), the seventh decimal place of $\lambda$ begins to behave erratically at $\kappa=11$, where $\lambda_{0}(=0.1189623)$ still deviates from $\lambda(=0.0959544)$ by $24 \%$. With a 12-digit calculator (Texas Instruments SR-52), the seventh decimal place begins to be erratic at $\kappa=18$, where $\lambda_{0}(=0.0075197)$ deviates from $\lambda$ ( $=0.0065876$ ) by $14 \%$. It therefore seems desirable to develop an alternate method of calculation for moderately large $\kappa$; in particular,
to replace the single-term approximation (2) by a more complete asymptotic expansion.

A method that at first seems inviting is the phase-integral (Liouville-Green, Horn-Jeffreys, WKB, etc.) [3] method. This gives two linearly independent solutions of eq. (1) in each of the ranges $\epsilon_{1}<x<1-\epsilon_{2}$ and $-1+\epsilon_{2}<x<-\epsilon_{1}$, where $\epsilon_{1}$ and $\epsilon_{2}>0$; each solution contains an asymptotic series in $1 / \kappa$. The problem of relating these solutions to solutions valid near 0 and $\pm 1$ is complicated by the Stokes phenomenon. In the zeroth order in $1 / \kappa$, this method leads again to formula (2). The first-order calculation is very laborious but ultimately yields

$$
\begin{align*}
\lambda= & \lambda_{0}\{1+(1 / \kappa)[\lambda(2 \gamma-\ln 2)+2 \lambda \ln \kappa-2] \\
& \left.+O\left(1 / \kappa^{2}\right)\right\}, \tag{3}
\end{align*}
$$

where $\gamma$ is Euler's constant. With neglect of the unknown $O\left(1 / \kappa^{2}\right)$ terms, this gives a result that is still in error by $7.6 \%$ at $\kappa=11$ and by $1.7 \%$ at $\kappa=18$. Calculations to higher orders would be extremely laborious. Furthermore, this method takes no advantage of the fact that when $\kappa$ is large, $\lambda$ is exponentially small, so that the terms in (3) containing a factor ( $1 / \kappa$ ) $\lambda$ may become negligible while terms containing factors $1 / \kappa^{2}$, $1 / \kappa^{3}$, etc. are still significant.

This suggests basing the calculation on the smallness of $\lambda$ rather than on the largeness of $\kappa$. Therefore let us assume a solution $\Phi=$ $\Sigma_{n=0}^{\infty} \Phi_{n} \lambda^{n}$. Substitution of this in (1) leads to a chain of differential equations that are easily solved in terms of integrals. The boundary condition, $\lim _{x \rightarrow+1} \Phi(x)$ finite, becomes, on division by $\Phi_{0}$ and application of L'Hospital's rule, $1+\Sigma_{n=1}^{\infty} \lambda^{n} F_{n}(1)=0$, where $F_{0}(t)=1$ and

$$
\begin{align*}
F_{n}(t)= & -\int_{0}^{t} \exp \left(\frac{1}{2} \kappa u^{2}\right) \mathrm{d} u \int_{0}^{u}\left(1-v^{2}\right)^{-1} \\
& \times \exp \left(-\frac{1}{2} \kappa v^{2}\right) F_{n-1}(v) \mathrm{d} v . \tag{4}
\end{align*}
$$

Inversion of the order of integration reduces the double integration to a single integration in which the integrand contains Dawson's integral, a well tabulated function with convenient, overlapping convergent and asymptotic series.

Numerical integrations in the range $\kappa=10$ to 18 established the following results: (1) At $\kappa=$ 10 , neglect of the $F_{4}$ term leads to an error of less than $0.001 \%$, and neglect of the $F_{3}$ term to an error of only $0.024 \%$. (2) Neglect of the $F_{2}$ term, i.e. use of the formula $\lambda=-1 / F_{1}(1)$, gives an error of about $2 \%$ at $\kappa=10$, about $0.2 \%$ at $\kappa=16$, and less than $0.1 \%$ for $\kappa \geqslant 18$. Thus for $0.1 \%$ accuracy in the range 10 to $18, F_{2}$ must be considered, but $5 \%$ accuracy in it is sufficient.

In the complete asymptotic expansion of $F_{1}(1)$, the dominant part is of the form $-\lambda_{0}^{-1} \Sigma_{n=0}^{\infty} d_{n} \kappa^{-n}\left(d_{0}=1\right)$. The recessive part is of the form $\sum_{s=0}^{\infty}\left(e_{s}+f_{s} \ln \kappa\right) \kappa^{-s-1}$. The asymptotic expansion, appropriately truncated, gives a value of $F_{1}$ correct to better than $1 \%$ for $\kappa \geqslant 10$, $0.1 \%$ for $\kappa \geqslant 13$, and $0.01 \%$ for $\kappa \geqslant 19$. The error
in $\lambda$ by omission of the recessive part of $F_{1}$ is comparable with the error by neglect of $F_{2}$. When $F_{2}$ is needed, the leading term in its asymptotic expansion is sufficient. At $\kappa=18$, neglect of $F_{2}$ and of the recessive part of $F_{1}$ gives error $-\mathbf{0 . 2 2 \%}$. Hence for accuracy $0.22 \%$ or better at $\kappa \geqslant 18, \quad \lambda=\lambda_{0}\left[1+d_{1} / \kappa+\right.$ $\left.d_{2} / \kappa^{2}+\cdots \cdot\right]^{-1} ; d_{1}, d_{2}, \ldots, d_{10}=2,7,36,249,2190$, 23535, 299880, 4426065, 74294010, 1397669175, respectively.

Further development of this method will be particularly important if it can be applied to cubic anisotropy, where the behavior at large $\kappa$ is subject to some uncertainty [4,5].

## References

[1] W.F. Brown, Jr., Phys. Rev. 130 (1963) 1677.
[2] A. Aharoni, Phys. Rev. A135 (1964) 447.
[3] R.B. Dingle, Asymptotic Expansions (Academic Press, New York, 1973), Chap. 13.
[4] A. Aharoni, Phys. Rev. B7 (1973) 1103.
[5] A. Aharoni and I. Eisenstein, Phys. Rev. B11 (1975) 514.

