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Time constants of uniaxial sin#e-domain particles have previously been calculated from a convergent series for small 
energy barriers and from a sin#e-term asymptotic expression for very large. The present paper develops a more 
complete asymptotic expansion for large values and a numerical-quadrature method for the intermediate range. 

The nonequilibrium behavior  of a thermally 
agitated single-domain particle is determined by  
a Fokker -F lanck  equation [1]. For  a uniaxial 
particle in zero field, the transient solutions are 
of the form ~ ( x ) e x p  (1Kx2-t/T), where • sa- 
tisfies the differential equation 

(1 - x2)~"(x) + [Kx(I - x ~) - 2x]~ ' (x)  + ; t~  = 0 
(1) 

and the boundary  condition: finiteness at x = 
+-1. Here  K = 2 K i v l k T ,  where KI is the aniso- 
t ropy constant ,  v the particle volume, k Boltz- 
mann's  constant,  and T the Kelvin temperature;  
x is the cosine of the angle be tween the mag- 
netization and the particle axis; and )t = vlkTh'7 ,  
where h' is a material constant.  The quantity of 
interest  is the longest finite ~-, hence the smallest 
nonzero  eigenvalue of A; the corresponding 
eigenfunction is odd in x. 

Asymptotical ly for  very  large K, ;t is ap- 
proximately [1] 

;to = (2K3/1r) ~ exp (-- r/2); (2) 

but  the accuracy of the approximation has not  
been investigated. For  K = 0 ,  (1) becomes 
Legendre ' s  equation, and A = 2. For  small and 
moderate  K, A has been  calculated [2] by  a 
numerical method f rom a t runcated convergent  
series solution for ~.  As K increases, this 
method requires more and more terms and more 
and more and more figures in each term, and 
rapidly becomes impractical. With a 10-digit 
calculator (Hewle t t -Packard  HP-45),  the se- 
venth decimal place of A begins to behave er- 
ratically at K = 11, where ;to (=0.1189623) still 
deviates f rom A (= 0.0959544) by  24%. With a 
12-digit calculator (Texas Instruments SR-52), 
the seventh decimal place begins to be erratic at 
K = 18, where )to (= 0.0075197) deviates f rom A 
(=0.0065876) by  14%. It therefore  seems 
desirable to develop an alternate method of 
calculation for moderate ly  large K; in particular, 

to replace the single-term approximation (2) by 
a more complete asymptotic  expansion. 

A method that at first seems inviting is the 
phase-integral (Liouvil le-Green,  Horn-Jef f reys ,  
WKB,  etc.) [3] method. This gives two linearly 
independent  solutions of eq. (1) in each of the 
ranges e l < X  < l - e 2  and --I+EE<X ( - -El ,  
where E~ and e2 > 0; each solution contains an 
asymptot ic  series in 1/K. The problem of relating 
these solutions to solutions valid near 0 and --1 
is complicated by  the Stokes phenomenon.  In 
the zeroth order in l/K, this method leads again 
to formula (2). The first-order calculation is very  
laborious but  ultimately yields 

A = A0{1 + (l/K)[X(2y -- In 2) + 2A In K -- 2] 
+ o(1/,~2)}, (3) 

where ~/is Euler 's  constant.  With neglect of the 
unknown O(I/K 2) terms, this gives a result that 
is still in error by 7.6% at K = 11 and by 1.7% at 
K--18.  Calculations to higher orders would be 
ext remely  laborious. Fur thermore ,  this method 
takes no advantage of the fact  that when K is 
large, ;t is exponential ly small, so that the terms 
in (3) containing a factor  (l/K);t may become 
negligible while terms containing factors I/K 2, 
l/K 3, etc. are still significant. 

This suggests basing the calculation on the 
smallness of )t rather than on the largeness of K. 
Therefore  let us assume a solution ~ =  
X~=0~,;t". Substitution of this in (1) leads to a 
chain of differential equations that are easily 
solved in terms of integrals. The boundary 
condition, limx~+~ q~(x) finite, becomes,  on 
division by  *0 and application of L 'Hospi ta l ' s  
rule, 1 + X~=~ ;t"F.(1) = 0, where Fo(t) = 1 and 

F , ( t )  = - exp (-~ru 2) du (1 - v2) - '  

× exp (--~Kv2)F,_l(v) dr.  (4) 
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Invers ion  of the order  of integration reduces the 
double integration to a single integration in 
which the integrand contains Dawson ' s  integral, 
a well tabulated funct ion with convenient ,  over-  
lapping convergent  and asymptot ic  series. 

Numer ica l  integrations in the range K = 10 to 
18 established the following results: (1) At K = 
10, neglect of the F4 term leads to an error of 
less than 0.001%, and neglect of the F 3 te rm to 
an error of only 0.024%. (2) Neglect  of the F2 
term, i.e. use of  the formula  A = -1/F~(1), gives 
an error  of about  2% at K = 10, about  0.2% at 
K = 16, and less than 0.1% for K /> 18. Thus for  
0.1% accuracy  in the range 10 to 18,/72 must  be 
considered,  but 5% accuracy  in it is sufficient. 

In the comple te  asymptot ic  expansion of 
FI(1), the dominant  par t  is of the fo rm 
- Ao 1 E~=0 d,K " (do = 1). The recess ive  part  is of 
the fo rm ET=0 (es +fs In K)K s ~. The asymptot ic  
expansion,  appropr ia te ly  truncated,  gives a 
value of F l correct  to bet ter  than 1% for  K ~ 10, 
0.1% for  K /> 13, and 0.01% for K I> 19. The error 

in A by  omission of the recess ive  part  of F~ is 
comparable  with the error by  neglect of F2. 
When F2 is needed,  the leading term in its 
asympto t ic  expansion is sufficient. At K = 18, 
neglect of F2 and of the recessive part  of F~ 
gives error  -0 .22%.  Hence  for  accuracy  0.22% 
or bet ter  at K >I 18, A = Ao[1 + d~/K + 
djK2+...]kl; dl, d2 . . . . .  dl0 = 2, 7, 36, 249, 2190, 
23535, 299880, 4426065, 74294010, 1397669175, 
respectively.  

Further  deve lopment  of this method will be 
particularly important  if it can be applied to 
cubic anisotropy,  where the behavior  at large K 
is subject  to some uncertainty [4, 5]. 
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