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TIME CONSTANTS OF SUPERPARAMAGNETIC PARTICLES
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Time constants of uniaxial single-domain particles have previously been calculated from a convergent series for small
energy barriers and from a single-term asymptotic expression for very large. The present paper develops a more
complete asymptotic expansion for large values and a numerical-quadrature method for the intermediate range.

The nonequilibrium behavior of a thermally
agitated single-domain particle is determined by
a Fokker-Flanck equation [1]. For a uniaxial
particle in zero field, the transient solutions are
of the form ®(x)exp (Gkx>—t/r), where & sa-
tisfies the differential equation

1= xHP"(x) +[kx(1 = xH - 2x]P'(x) + AP =0
M

and the boundary condition: finiteness at x =
+1. Here « =2K,v/kT, where K, is the aniso-
tropy constant, v the particle volume, k Boltz-
mann’s constant, and T the Kelvin temperature;
x is the cosine of the angle between the mag-
netization and the particle axis; and A = v/kTh'r,
where h' is a material constant. The quantity of
interest is the longest finite 7, hence the smallest
nonzero eigenvalue of A; the corresponding
eigenfunction is odd in x.

Asymptotically for very large «, A is ap-
proximately [1]

Ao = (2K*|m) exp (— k/2); )

but the accuracy of the approximation has not
been investigated. For k=0, (1) becomes
Legendre’s equation, and A =2. For small and
moderate k, A has been calculated [2] by a
numerical method from a truncated convergent
series solution for ®. As « increases, this
method requires more and more terms and more
and more and more figures in each term, and
rapidly becomes impractical. With a 10-digit
calculator (Hewlett-Packard HP-45), the se-
venth decimal place of A begins to behave er-
ratically at « =11, where A, (=0.1189623) still
deviates from A (= 0.0959544) by 24%. With a
12-digit calculator (Texas Instruments SR-52),
the seventh decimal place begins to be erratic at
k = 18, where A, (=0.0075197) deviates from A
(=0.0065876) by 14%. It therefore seems
desirable to develop an alternate method of
calculation for moderately large «; in particular,
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to replace the single-term approximation (2) by
a more complete asymptotic expansion.

A method that at first seems inviting is the
phase-integral (Liouville-Green, Horn-Jeffreys,
WKB, etc.) [3] method. This gives two linearly
independent solutions of eq. (1) in each of the
ranges €, <x<l—-¢ and —-l+e<x<-—¢,
where €, and €,>0; each solution contains an
asymptotic series in 1/x. The problem of relating
these solutions to solutions valid near 0 and *1
is complicated by the Stokes phenomenon. In
the zeroth order in 1/k, this method leads again
to formula (2). The first-order calculation is very
laborious but ultimately yields

A =Afl +(1/1)AQy —In2)+2A In k —2]
+ 01/}, (3)

where vy is Euler’s constant. With neglect of the
unknown O(1/«?) terms, this gives a result that
is still in error by 7.6% at « = 11 and by 1.7% at
k = 18. Calculations to higher orders would be
extremely laborious. Furthermore, this method
takes no advantage of the fact that when « is
large, A is exponentially small, so that the terms
in (3) containing a factor (1/k)A may become
negligible while terms containing factors 1/«2,
1/&°, etc. are still significant.

This suggests basing the calculation on the
smallness of A rather than on the largeness of «.
Therefore let us assume a solution &=
3n_o ®,A". Substitution of this in (1) leads to a
chain of differential equations that are easily
solved in terms of integrals. The boundary
condition, lim,.., ®(x) finite, becomes, on
division by &, and application of L’Hospital’s
rule, 1+Z;_, A"F,(1) =0, where Fy(t) =1 and

F.(t)= —I exp Gku?) duj a—-ovH?!
0 0

x exp (—3kv*)F,_(v) do. @)
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Inversion of the order of integration reduces the
double integration to a single integration in
which the integrand contains Dawson’s integral,
a well tabulated function with convenient, over-
lapping convergent and asymptotic series.
Numerical integrations in the range x = 10 to
18 established the following results: (1) At « =
10, neglect of the F, term leads to an error of
less than 0.001%, and neglect of the F; term to
an error of only 0.024%. (2) Neglect of the F,
term, i.e. use of the formula A = —1/F,(1), gives
an error of about 2% at k = 10, about 0.2% at
x = 16, and less than 0.1% for « = 18. Thus for
0.1% accuracy in the range 10 to 18, F, must be
considered, but 5% accuracy in it is sufficient.
In the complete asymptotic expansion of
Fi(1), the dominant part is of the form
=o' Zi_od.c " (dy = 1). The recessive part is of
the form =, (e, + f, In k)x *~'. The asymptotic
expansion, appropriatzly truncated, gives a
value of F; correct to better than 1% for « = 10,
0.1% for « = 13, and 0.01% for « = 19. The error

in A by omission of the recessive part of F, is
comparable with the error by neglect of F,.
When F, is needed, the leading term in its
asymptotic expansion is sufficient. At « =18,
neglect of F, and of the recessive part of F,
gives error —0.22%. Hence for accuracy 0.22%
or Dbetter at Kk =18, = Aol +d,/x +
dy/’+-- 1" dd,y, ..., dw=2,17, 36,249, 2190,
23535, 299880, 4426065, 74294010, 1397669175,
respectively.

Further development of this method will be
particularly important if it can be applied to
cubic anisotropy, where the behavior at large x
is subject to some uncertainty [4, 5].
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