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Magnetic microwires as macrospins in a long-range dipole-dipole interaction
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The long-range dipole-dipole interaction in an array of ferromagnetic microwires is studied through mag-
netic hysteresis measurements and Monte Carlo simulation. The experimental study has been performed on
glass-coated amorphous Fe77.5Si7.5B15 microwire with diameter of 5mm and lengths from 5 to 60 mm.
Hysteresis loops performed at room temperature for an array ofN microwires (N52, 3, 4, and 5! exhibit
jumps and plateaux on the demagnetization, each step correspondent to the magnetization reversal of an
individual wire. A model has been constructed taking into account the fact that the magnetization reversal is
nucleated at the ends of each wire, under the influence of a dipolar field due to all other wires. Measurements
for two wires allowed us to conclude that the dipolar field~or constant coupling! is independent of distance, at
least for an array of a few wires. With the exception of three wires, where frustration seems to be present, the
predicted reversal fields of our model are in good agreement with measurements. In order to study the role
played by the number of wires on the demagnetization process, we calculate hysteresis loops for a large
number of wires through the Monte Carlo method.
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I. INTRODUCTION

Long-range interactions are very common in nature i
wide range of sizes, varying from astrophysical to atom
scales. In condensed matter physics, one of the more rem
able manifestations of long-range interactions is in mag
tism. Interactions among magnetic entities are the core
basic and applied studies of modern magnetic materials.
instance, in magnetic materials the long-range dipolar in
actions can play a fundamental role in the magnetic prop
ties, being responsible for the formation of certain dom
structures and the dynamics of magnetization reversal
cesses. In addition, advances in fabrication techniques~in-
cluding lithography! have given rise to the possibility of pro
ducing nanostructured solids with especially interest
physical properties. In particular, it is possible to obtain co
trolled arrays of magnetic wires with diameters of a fe
nanometers, which are of practical interest in the design
optimization of magnetoresistive heads for ultrahigh-den
data storage applications. In such systems the contributio
the dipole-dipole interaction on the magnetic properties
comes yet more relevant, because long-range interactions
strongly modify the magnetic response of the system to
external excitation.

Although an array composed of a few ferromagnetic wi
could in principle seem a quite simple problem to study a
model, it is striking to notice how complex this problem c
turn out to be. Some recent investigations have dealt with
dynamics of magnetization processes, which can include
calized excitations and/or collective modes, independen
PRB 610163-1829/2000/61~13!/8976~8!/$15.00
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the parity of the system,1 weak chaotic behavior,2 and even
the possibility to tailor the value of the coercivity, in the ca
of nanoscopic flat wires.3 The complication in the study o
dipolar interactions is that the magnetic fields resulting fro
the interaction depend on the magnetization state of e
entity, which, in turn, depend on the effective field of neig
boring elements. In spin systems the long-range characte
a dipole-dipole interaction is an inherent difficulty to solv
the Hamiltonians due to the large number of neighbors t
one has to take into account in calculations. Several wo
have been made using Monte Carlo simulations calcula
the magnetic domain structure and magnetic hysteresis
cluding the dipolar interaction term in the Ising or Heise
berg Hamiltonian.4,5

An intrinsic difficulty in the study of magnetic interac
tions is the fact that it is extremely difficult to characterize
single magnetic element using most conventional magnet
etry techniques. Also, the predictions of numerical simu
tions are intricate to compare with real systems, owing to
necessity to introduce several approximations in the mode
problem. However, in this work we make use of a conv
nient macroscopic configuration, placing together seve
ferromagnetic microwires covered with glass. Such micro
ires exhibit a strong magnetic anisotropy with an easy m
netization direction along the axis of the wire with a ma
single domain practically extending along the whole wi
This fact will allow us to consider each one of such micr
wires as a elemental magnetic moment. The stray fields
ated by the microwires couple the magnetization of
neighboring wires, affecting the magnetic state of each sin
8976 ©2000 The American Physical Society
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PRB 61 8977MAGNETIC MICROWIRES AS MACROSPINS IN A . . .
wire. This system is relatively easy to study both experim
tally and theoretically, and, in the case of few wires it
possible to obtain analytical solutions. Some interesting
pects of the long-range character of dipole-dipole interac
and their influences on the magnetic properties app
clearly in the obtained results. The exact solutions and
perimental data can be compared with Monte Carlo simu
tions, which are necessary to employ when the array
formed by a large number of wires. As mentioned befo
although this arrangement seems to be rather simple, it
plays a variety of interesting aspects which certainly wo
apply in other physical systems.

II. EXPERIMENTAL DETAILS AND MEASUREMENTS

Concerning the experimental measurements, they h
been performed in glass-coated amorphous microwires
nominal composition Fe77.5Si7.5B15, diameter of 5mm, and
the thickness of the glass coating of 7.5mm. Glass-coated
amorphous microwires are presently attracting an increa
interest from both basic and applied points of view~for re-
views see Ref. 6!. Their metallic core, being structurall
amorphous and with typical diameter from 1 to 30mm, is
covered by an insulating Pyrex-like coating with thickne
between 1 and 20mm. They are fabricated by means
Taylor-Ulitovsky technique by which the molten metallic a
loy and its glassy coating are rapidly quenched and draw
a kind of composite microwire typically a few kilomete
long. This family of microwires displays quite remarkab
magnetic properties, that together with their tiny dimensio
and the protective coating make them potential candid
for many sensor applications.7

Owing to the amorphous nature of such microwires, th
unique magnetic behavior depends on the strength and
distribution of magnetoelastic anisotropy. That is first det
mined by the magnetostriction constant, which is mainly
function of composition.8 For the present alloy compositio
the saturation magnetostriction takes a value of 231025. In
turn, the internal stresses~as strong as 103 MPa! depend on
the ratio cover thickness to core diameter, which is c
trolled by the fabrication parameters, and also on particu
processing as thermal treatments and chemical etching o
coating.8 When axially magnetized these wires exhibit low
field square hysteresis loops with a single and la
Barkhausen jump.

We have measured magnetic hysteresis loops in array
N microwires (1<N<5) placed side by side, all paralle
each one touching its nearest neighbors. Their lengths
from 5 to 60 mm, cut from a single long microwire. W
performed the measurements by using either a supercon
ing quantum interference device~SQUID! magnetometer
~Quantum Design, MPMS XL model! or a very sensitive
magnetic-flux integrator. Essentially, the difference in the
two systems is the sensitivity and the time of measurem
Although the hysteresis loops measured in the SQUID do
exhibit either noise or drift, which appear in the flu
integrator, a single hysteresis measurement can take a
hours in the SQUID, while the same loop in the flu
integrator takes about 1 min. The flux-integrator was u
for rapid measurements, for instance, to measure the d
bution of reversal field values. We will focus our attention
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measurements performed at room temperature, but also
eral loops were performed at low temperatures@4<T(K)
<300#, in several attempts to strengthen the interactio
among the wires. However, at low temperatures there
change in the domain structure of the microwires, proba
owing to the increasing internal stresses induced by the
ferent thermal expansion coefficients of the ferromagne
alloy and the covering glass. Therefore, the loops which
rather square at room temperature turn out to lose this p
erty at low temperatures. This characteristic has been
reported for Co-based microwires.9

In the case of one 5 mm long wire (N51, see Fig. 1! the
hysteresis curve exhibits a typical square loop, with char
teristic large Barkhausen jumps. The observation of s
square loops, labeled as magnetic bistability, has been in
preted as in the case of in-water-quenched wires, conside
the remagnetization processes of the inner core between
stable remanence states.10 That internal core mainly consist
of a single axial domain, but at the ends of the wire a clos
domain structure appears at finite applied fields to reduce
otherwise quite high magnetostatic energy. Of course,
very short microwires closure structures coming from bo
ends overlap at the middle of the sample, destroying
magnetic bistability.11 The critical length to observe bistabi
ity in the microwires of the present study is less than 5 m
Nevertheless, in spite of the existence of these closure st
tures some stray field is generated in the surroundings of
microwire. Upon application of reversed field a domain w
depins from one end of the wire and propagates along
wire resulting in the observed magnetization jump.

Small differences in the measured coercive fields (HC)
were detected when the magnetic field was applied al
positive or negative directions~in Fig. 1 theHC values cor-
respond to20.89 and 0.79 Oe, respectively!. There can be
several origins for the fluctuation ofHC values. When dif-
ferent samples are investigated, the fluctuation inHC is prob-
ably due to different magnetoelastic anisotropies induced
the wire ends during the cutting process, which can gene
different levels of mechanical stresses. Since the nuclea
of a domain wall starts in defects located at the extremities
the wires, and the number and strength of these defects
pend on the cutting, the switching field of one wire can
slightly different for magnetic fields applied in opposite d
rections, and it can also vary in different samples. We h

FIG. 1. Hysteresis loop for one microwire at room temperatu
The reversal field is20.89 Oe for negative reversal field and 0.7
Oe for positive reversal field. The coercive field is defined as
mean value,uHCu50.85 Oe.
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8978 PRB 61L. C. SAMPAIO et al.
investigated this fluctuation in several samples, and we h
found a maximum variation inHC of about 0.10 Oe. Anothe
distribution in theHC values arises from thermal fluctua
tions, and it occurs even when the same sample is meas
several times. To determine this distribution, we measu
HC several times in the same sample and with the field
plied in the same direction, and it was found that the width
this distribution is around 0.03 Oe. However, we cannot
clude that this intrinsic fluctuation of the reversal field c
arise simply from the fact that after each reversal the clos
domain structures cannot be exactly the same, thus intro
ing a fluctuation in the next magnetization reversal. From
above discussions we consider the absolute value ofHC of
this microwire as the mean value obtained from many diff
ent measurements,HC50.85 Oe.

Let us now consider two wires~5 mm long! placed side
by side with their axes parallel. In this case the distan
between their axes is twice the thickness of the coating p
twice the radius of the ferromagnetic core, i.e., around
mm. The corresponding hysteresis loops exhibit two cl
Barkhausen jumps steps and a plateau nearly at zero ma
tization ~see Fig. 2!. This plateau corresponds to the config
ration of two wires with opposite magnetization directions
is worth noting that the first jump occurs at magnetic fie
lower thanHC , while the second one occurs for fields larg

FIG. 3. Hysteresis loop for three microwires at room tempe
ture. Note that the second step does not appear. The magnetiz
is normalized to the saturation value. The arrows represent the m
netic configuration of the wires.

FIG. 2. Hysteresis loop for two microwires at room temperatu
The mean reversal fields on the demagnetization areH2

i

520.43 Oe andH2
i i 521.11 Oe. The magnetization is normalize

to the saturation value. The arrows represent the magnetic con
ration of the wires.
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than HC . These reversal fields will be namedH2
i and H2

i i ,
and their values are 0.38 and 1.10 Oe, respectively, for p
tive demagnetizing field. For negative demagnetizing fi
the values ofH2

i andH2
i i were found to be20.49 and21.12

Oe, respectively. As will be shown below, the splitting of th
HC in two reversal fields has its origin in the dipole-dipo
interaction between the wires. Varying the number of wir
the hysteresis loops exhibit several steps on the demag
zation ~see Figs. 2–5!, each one corresponding to the reve
sal of the magnetization of a single wire. As observed,
number of jumps equals the number of wires with the exc
tion of the particular case of 3 wires.

III. MODEL AND DISCUSSIONS

In order to understand the existence of jumps and p
teaux in the demagnetization curves, let us initially consi
the simplest arrangement: two parallel magnetic wires in
presence of a positive and saturating magnetic field app
parallel to the axis of wires. Such a situation yields the m
netization of both wires and the applied field to stay paral
pointing in the same direction. Notice that beyond the a
plied magnetic field~H! each wire feels the influence of
dipolar field (Hi , j ) due to the presence of the other wir
where Hi , j is the field of the wirei over the wirej. This
dipolar fieldHi , j is given by2

-
tion
g-

FIG. 4. Hysteresis loop for four microwires at room tempe
ture. The magnetization is normalized to the saturation value.
arrows represent the magnetic configuration of the wires.

.

u-

FIG. 5. Hysteresis loop for five microwires at room temperatu
The magnetization is normalized to the saturation value. The arr
represent the magnetic configuration of the wires.



t
wo
pr
n

a
on
m
s

e
m
lu
-
ag
,
d

is

r
te
s

th
iza
re
tio

ia
th
pe
e
n

th
ve
o

ve
e

o
g-
iv

n
co
-

o
th

ils
-
hen
to
it
ng

he

llel,
the

-
ex-

es

t

t of

ires
oned

for
are
for
ires
tal

the

r-
th

gu-
n
er-
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H i , j52KnM i , ~1!

whereKn is a geometric factor andM i is the magnetization
of the ith wire. As the coefficientKn depends in principle on
the distance between interacting wires, the subsciptn denotes
the distance between the wires,K1 corresponds to neares
neighbors,K2 to second neighbors, and so on. Thus, for t
wires one can easily write down the mutual dependence
duced by the dipole-dipole interaction through the functio
M15M1(H1H2,1) and M25M2(H1H1,2) with H i , j5
2KnM i .

Applying now a reversal magnetic field, one notices th
both applied field and dipolar fields act in the same directi
antiparallel to the magnetization of both wires. Let us si
plify the analysis by considering two quasi-identical wire
i.e., both wires have the same magnetizationM and coercive
field HC . It is important to emphasize that on the ideal d
magnetization process the field necessary to reverse the
netization of an individual wire has always the same va
~the coercive field,HC! and this value, but for the above
mentioned fluctuations, is characteristic of the internal m
netic properties~anisotropies! of that particular wire. Hence
at the first jump (H2

i ), in spite of the fact that the applie
field is H2

i , the effective field is equal toHC . Therefore, the
condition to the first wire to reverse its magnetization
given by2H2

i 2K1M52HC , and thus:

H2
i 5HC2K1M . ~2!

Once the first wire reverses its magnetization, the configu
tion of the system is given by two wires with compensa
magnetization (↑↓), which is more stable than the previou
configuration since the dipolar fields now act parallel to
magnetization of both wires. Now, to reverse the magnet
tion of the second wire a stronger external field is requi
because this field has to compensate the dipolar contribu
Therefore, at the second jump (H2

i i ), the effective field is
2H2

i i 1K1M52HC , and therefore:

H2
i i 5HC1K1M . ~3!

Actually, the dipolar interaction acts on the wires as a b
field with opposite direction, decreasing and increasing
reversal field of the first step and the second jumps, res
tively. Note that the plateau or difference between the rev
sal fieldsH2

i andH2
i i corresponds to dipole-dipole interactio

between the wires, and it is given by 2K1M .
Before proceeding with the discussion and extending

reasoning to the case of several wires, let us discuss se
important points regarding the dipole-dipole interactions
two wires. First, it is worth noticing that although we ha
considered, for the sake of simplicity, two wires with th
same magnetization and coercive field, the fluctuations
these values are essential to observe the effects of dip
interaction.2 If both wires would have exactly the same ma
netic properties they would feel exactly the same effect
field, and would reverse at exactly the same field value,H2

i .
However, in real situations the wires are not identical, a
they can display fluctuations in both magnetization and
ercive fields~see above!, and therefore one of the wires re
verses the magnetization before the other one, leading t
intermediate, more stable structure, and to the splitting of
reversal field.
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Second, it is important to further discuss some deta
about the coupling constantKn . We consider that the mag
netization reversal is nucleated at the ends of the wires w
the effective magnetic field acting on the wire is equal
HC . Calculating the dipolar field nearby one of the wires
is easy to show that the component of its dipolar field alo
the axis of the second wire at its ends is given by

Hd5pL/~r i j
2 1L2!3/2, ~4!

where p is the strength of the point poles, located at t
extremeties of the wire of lengthL and r i j is the distance
between the wiresi andj.12 Note that in our configuration the
magnetizations of the wires are either parallel or antipara
and the distances among wires are well known. Since
magnetization ispL, one identifiesKn as given by

Kn51/~r i j
2 1L2!3/2. ~5!

We write Kn5K1 when i 2 j 51 ~first neighbors!, Kn5K2
when i 2 j 52 ~second neighbors!, and so on. Since our sys
tems are composed of a few wires with distances never
ceeding a few tenths of millimeters, with length of the wir
of about 5 mm we have always the conditionr i j !L fulfilled.
Therefore, the constants of couplingKn become independen
of distance, at least in the range of a few wires.

In order to better understand the role of the constan
coupling and its dependence onr i j andL we have evaluated
the dipole-dipole interaction 2K1M for various lengths of the
wires. The distance between the wires is fixed since the w
are placed side by side adjacent to each other as menti
above. The experimental value of 2K1M was obtained from
the width of the plateau of the hysteresis loops measured
two wires using the flux-integrator setup. The results
shown in Fig. 6. Note that the coupling rapidly increases
the shortest wires and seems to become negligible for w
longer than around 40 mm, at least within our experimen
sensitivity. For the range of lengths larger than 5 mm
hysteresis loop for one wire exhibits bistability~square loop!
and the hysteresis loop for two wires are all identical diffe
ing only on the width of the plateau. However, for wires wi

FIG. 6. Width of the plateau in compensated magnetic confi
ration ~zero magnetization! measured from the demagnetizatio
curve of two wires. It represents the strength of dipole-dipole int
action~see text!. The line is a fitting following the power lawL21.2.
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8980 PRB 61L. C. SAMPAIO et al.
length of about 1 mm the hysteresis loop for one wire d
not exhibit bistability anymore, preventing equivalent ana
sis.

According to our model the quantity 2K1M is propor-
tional toL/(r i j

2 1L2)3/2 @Eq. ~4!#. The limit r i j !L produces a
power-law decay to 2K1M with L following L22, and on the
other hand, in the limitr i j @L, the factor 2K1M varies lin-
early onL following L/r i j

3 . The conjunction of the two limits
should exhibit a maximum in the plot 2K1M vs L, which
was clearly not experimentally observed. Thus, from Fig
we conclude that in our samples we are always working
the limit r i j !L. In this range of length, the data were fitte
by the power law,L21.2, which, however, is not in good
agreement with the expected dependence (L22).

However, one should always keep in mind that consid
ing each microwire as a single magnetic dipole with tw
magnetic charges at both ends is an idealized approach~that
is nevertheless supported by the observation of single ju
for multiwire loops!. Indeed, a fully realistic approac
should have to consider that magnetic charges could be
tributed along the whole length of the wire, making mu
more complex the calculations of the fields created by th
charges around each microwire.13 Therefore, the lack of full
agreement between experiments and model can be rega
as the result of an oversimplification of the model.

It is important to clarify that the dependence on leng
measured for 2K1M is not related to the demagnetizing fiel
The wires as long cylinders have a very low demagnetiz
factor. For instance, in our samples the wires are 5mm in
diameter and for a typical length of 5 mm the demagnetiz
factor is around 1026,14 which, considering a saturation mag
netization of 1240 emu/cm3, results in a calculated demag
netizing field,Hdm , of about 1022 Oe. This value is well
below the reversal field of one wire (HC) and it does not
play an important role in the demagnetization process. E
though the demagnetizing effects are very small compare
the reversal fields, it is easy to calculate how the wid
2K1M would be modified by taking them into account. A
discussed in Eqs.~2! and ~3!, and since the demagnetizin
field is opposite to the magnetization, the first wire to reve
the magnetization feels the resulting field,2H2

i 1K1M
2Hdm , and the corresponding reversal field is given
2H2

i 2K1M1Hdm . For the second wire, because the ma
netization is also positive, the demagnetization field has
same sense as before; the resulting field is2H2

i i 1K1M
2Hdm . Therefore, the reversal field is given byH2

i 5HC

1K1M1Hdm . Hence, note that the width of the step,H2
i i

2H2
i , the demagnetizing field cancels out and the platea

the hysteresis loop remains equal to 2K1M .
It is worth noting that the above discussion provides s

port to the idea that we are dealing with a magnetic syst
which displays a dipolar coupling that is independent of d
tance, in other words, the dipole-dipole interaction is co
stant, at least for a few wires. Furthermore, it reinforces
applicability of the model to explain the presence of regu
steps in the demagnetization curves, as will be shown be
for the cases of more than two wires.

Now, it is straightforward to extend the above develop
reasoning to an array of a few wires. For example, for th
wires, the first step (H3

i ) arrives from the magnetization re
s
-
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versal of the wire that is in the middle position due to t
greatest dipolar field from the two others—it corresponds
↑↓↑ magnetic configuration. Thus, atH3

i , identifying the
effective field that this wire feels to its coercive field (HC),
one has2H3

i 22K1M52HC , and therefore

H3
i 5HC22K1M . ~6!

At the second jump (H3
i i ) the magnetic configuration of th

wires goes from↑↓↑ to ↑↓↓, or ↓↓↑, and hence atH3
i i the

resulting field on the wire is2H3
i i 2(K12K2)M and again

setting it toHC , one finds

H3
i i 5HC2~K12K2!M . ~7!

Finally, the third step from↑↓↓, or ↓↓↑, to ↓↓↓; the mag-
netization reversal of the wire at the other extremity occurs

H3
i i i 5HC1~K11K2!M . ~8!

Performing similar calculations we found the reversal fie
with their respective magnetic configuration for four and fi
wires, and the corresponding reversal fields are summar
in Table I, from two to five wires.Note that our model re-
veals that the dipole-dipole interaction among the wires,
sociated with fluctuations of M and/or HC values, is the ori-
gin of the splitting of the reversal field in different values.

In order to evaluate the applicability of our model, w
initially compare for the case of two wires the calculated a
measured values of the reversal fieldsH2

i andH2
i i . In a de-

magnetization process, an initially saturating magnetic fi
~defined here as positive! is monotonously decreased
reaches zero, and then is reversed and increased un

TABLE I. Magnetic configuration, expressions and measu
values~in Oe! of reversal fields on the demagnetization for an arr
of 2, 3, 4, and 5 wires. The symbol~* ! in the configuration of three
wires means that respective transitions were not observed~see text!.

2 wires

↑↑ ↓↑ H2
i 5HC2K1M 20.43

↓↑ ↓↓ H2
i 5HC1K1M 21.11

3 wires

↑↑↑ ↑↓↑ H3
i 5HC22K1M 20.63

↑↓↑ ↓↓↑ H3
i i 5HC2(K12K2)M *

↓↓↑ ↓↓↓ H3
i i i 5HC1(K11K2)M *

4 wires

↑↑↑↑ ↑↑↓↑ H4
i 5HC2(2K11K2)M 0.16

↑↑↓↑ ↓↑↓↑ H4
i i 5HC2(K12K21K3)M 20.45

↓↑↓↑ ↓↑↓↓ H4
i i i 5HC1(K12K21K3)M 21.35

↓↑↓↓ ↓↓↓↓ H4
iv5HC1(2K11K2)M 22.45

5 wires

↑↑↑↑↑ ↑↑↓↑↑ H5
i 5HC2(2K112K2)M 0.69

↑↑↓↑↑ ↓↑↓↑↑ H5
i i 5HC2(K12K21K31K4)M 20.13

↓↑↓↑↑ ↓↑↓↑↓ H5
i i i 5HC2(K12K21K32K4)M 20.73

↓↑↓↑↓ ↓↑↓↓↓ H5
iv5HC1(2K12K21K3)M 21.90

↓↑↓↓↓ ↓↓↓↓↓ H5
v5HC1(2K11K21K3)M 23.0
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reaches a saturating, negative value. In this way, calcula
the average ofH2

i andH2
i i we find 20.77 Oe, which should

correspond toHC @see Eqs.~2! and~3!#. Calculating the dif-
ference betweenH2

i and H2
i i , we find 20.68 Oe which

should be equal to 2K1M @see Eqs.~2! and~3! and Table I!.
Since the mean value ofHC measured for a single wire i
20.85 Oe, we may consider thatHC obtained from the av-
erage and the one measured are in good agreement. T
really acceptable if we take into account several source
fluctuations or peculiarities of each wire, as different def
structures originated from the cutting, imperfect alignmen
the wires, etc. Note that the term that represents the dip
dipole interaction (K1M ) corresponds in modulus to 0.3
Oe.

The discussion can be extended for an even numbe
wires, i.e., for four parallel microwires. One can immediate
remark that the first and fourth (H4

i andH4
iv) and the second

and third reversal fields (H4
i i and H4

i i i ) are approximately
equidistant fromHC . In other words, the average of the
values should be equal toHC as should be expected from
calculations~see Table I!. From Fig. 4, we obtain these av
erage values to be20.9 Oe and21.3 Oe, respectively. As
previously discussed, we have measured fluctuations aro
HC to be approximately 0.1 Oe, in the case of single wir
However, increasing the number of wires, the error in
measured values of reversal fields should accordingly
crease. With that consideration in mind, the latest val
~20.9 and21.3 Oe! are in reasonable agreement withHC .

From previous discussions we can consider the dip
interactions in our case as almost constant, i.e., indepen
of distance. In this case,Kn is simply K1, and the reversa
fields H4

i i i andH4
i i take a simplified formHC6K1M . Actu-

ally, this expression is identical as for the reversal fields
the case of two wiresH2

i and H2
i i , and comparing their re

spective values, we findH2
i andH4

i i equal to20.43 Oe and
20.45 Oe, respectively. ForH2

i i andH4
i i i the obtained values

are21.1 Oe and21.35 Oe, respectively. Moreover, the fir
reversal fieldH4

i becomes equal toHC23K1M , and substi-
tuting the value ofK1M , we findH4

i equal to 0.17 Oe, which
is very close to the measured value, 0.16 Oe. Notice that
field is now positive, i.e., the effective dipolar field is s
strong that it overcomes the applied magnetic field. T
same analysis can be performed for the fourth jumpH4

iv ,
which turns out in the expressionHC13K1M , and results in
21.87 Oe, which, however, differs from the measured val
22.45 Oe. Thus, using the fact that allKn’s have the same
strength, the predicted fields toH4

i , H4
i i , andH4

i i i ~in excep-
tion of H4

iv) are in very good agreement with experiment
Let us now analyze the demagnetization curves of arr

with an odd number of wires, starting with the case of fi
wires, and assuming again that allKn’s are equal toK1. As
before, we can compare the predicted and measured va
of the reversal fields. It is remarkable that the expression
the third stepH5

i i i is oversimplified to give simplyHC , and
the measured values ofH5

i i i 520.73 Oe andHC520.85 Oe
are rather close. The first and second steps,H5

i andH5
i i , with

corresponding expressions,HC24K1M andHC22K1M , re-
spectively, result in 0.51 Oe and20.17 Oe, which are also
close to the measured values, 0.69 Oe and20.13 Oe, respec
g
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tively. The fourth and fifth steps,H5
iv andH5

v , with opposite
increments inK1M are positioned afterHC , and are given
by HC12K1M and HC14K1M , respectively. Comparing
their expected values~21.53 Oe and22.21 Oe! with the
measured ones~21.9 Oe and23.0 Oe! one finds that the
agreement is not as good as in the previous case of
wires.

In conclusion, comparing the reversal fields predicted
cording to the model with measured values for four and fi
wires, a good agreement is obtained mainly for fields n
and belowHC , while for fields well aboveHC the agreement
is poor.

The particular situation of three wires, contrary to oth
arrays with two, four, and five wires, is characterized by t
absence of one of the jumps. This situation has been exh
tively tested for different samples both in the SQUID and
the flux integrator, but we could not obtain the missing jum
Actually, all samples measured are in the conditionr i j !L,
where allKn’s have the same strength. Hence, it is possi
that the geometry of an array of three wires, whereK1 and
K2 have the same approximate value, should be equivale
three wires placed as a triangle. This configuration can fa
the occurrence of frustration of magnetic interactions, a
might prevent the formation of an intermediate configu
tion. On the other hand, the elimination of the conditionr i j
!L requires either the increase ofr i j in a controllable way
or the decrease ofL to order of a few tenths of micrometers
however, both are quite difficult to attain experimentally a
are not in the scope of our present study. Our model se
not to be applicable to three wires under the conditionr i j
!L possibly because of the existence of frustration.

Let us finally discuss the demagnetization process fo
large number of wires. It is clear that extending the reason
developed above for a still larger number of wires the cal
lation of reversal fields becomes increasingly tedious. The
fore, we have used the Monte Carlo~MC! method based on
a one-dimensional modified classical Ising model. We ha
considered a one-dimensional array of magnetic mome
interacting through the long-range dipole-dipole interactio
In our model, the Hamiltonian takes a simple form,

H5M2( Ji j s is j2~H1Hani!( s i , ~9!

where the variables i takes the values61 on a sitei on a
one-dimensional array, allowing the magnetic moments
point up (s i511) or down (s i521) along an axis perpen
dicular to the axis of the array. The first summation in E
~9! denotes the dipole-dipole interaction acting over all pa
of magnetic moments. The constant of couplingJi j is iden-
tified with 1/Kn @see Eq.~5!#, and the distances between th
magnetic moments,r i j , are measured in units of the lattic
constanta. Note that the magnetization,M , of a wire is given
by Ms iz ~z is a unitary vector perpendicular to the axis
the array!. The second term denotes the interaction betw
the magnetic moments and an external magnetic field (H),
Hani being a fixed bias field representing the magnetic
isotropy of one wire, i.e., the reversal field of one wire. It
easy to realize that the fieldHani can be recognized asHC .

Note that in the experimental case, the wires are gl
coated, inhibiting any possibility to interact through e
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change interaction, and therefore, the constantJi j contains
only the dipole-dipole interaction. Another point to remark
that sinceJi j is positive, the first term favors an antiparall
alignment among the magnetic moments.

We used the single-spin-flip Metropolis dynamics a
open boundary conditions~details of calculations are give
in a previous publication!.4 The hysteresis loops were calc
lated changing the fieldH with a sweep rate of 10 MC step
for each magnetization value. The temperature~T! was con-
sidered low enough in order to be well below th
antiferromagnetic-paramagnetic phase transition. The va
of parametersM ,H,T, are chosen arbitrarily. Notice tha
what is here mostly relevant is the relative intensity amo
the terms of the Hamiltonian. In that way, we determi
trends and not absolute values; thus our results calcul
from the MC method may be qualitatively compared w
experiments. We usedM2, Hani , andT equal to 5, 5, and 1
respectively. This trial of values is good enough to disc
the role played by the number of wires on the demagnet
tion process.

Figure 7 shows hysteresis loops for 1 wire and for arr
of 2, 4, 10, and 500 wires calculated using the MC meth
As observed in experiments~see Figs. 2–5! the reversal
fields for an array of multiple wires are distributed arou
the reversal field of 1 wire (HC), and enlarging the numbe
of wires the width of plateaux decrease. This agreement c
firms the idea that spin models can be used to study
magnetic properties of macroscopic systems like an
semble of microwires. In addition, for 500 wires the syste
demagnetizes monotonically with small jumps and platea

FIG. 7. Demagnetization region of hysteresis loop calcula
using the Monte Carlo method for 1 wire and for arrays of 2, 4,
and 500 wires.
o
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which should correspond in real systems to microsco
Barkhaunsen jumps. Notice the presence of a clear an
ropy field, even for 500 wires~Fig. 7!. Although the under-
lying physical meaning of this field is still unknown, an
needs further experimental and theoretical investigations
can be referred to as a ‘‘long-range effective interaction
isotropy,’’ which is generated by the intricate superpositi
of dipolar fields from many wires in a specific array.

IV. CONCLUSIONS

In this work we have presented experimental hystere
loops of sets of long microwires arranged parallel in a de
packing configuration. Owing to the protective insulatin
glass-coating the magnetic microwires are nevertheless
touching each other. The hysteresis loops are character
by well-defined Barkhausen jumps corresponding each to
magnetization reversal of individual microwires that a
separated by horizontal plateaux. As discussed in the t
these jumps are theoretically interpreted according to
model based on the nucleation of closure domains at the e
of the wires and the subsequent depinning and propaga
of a domain wall. The dipolar field acting on each individu
microwire due to all surrounding wires is responsible for t
actual value of its observed reversal field. The plateaux h
been proved to be determined by the dipole-dipole inter
tion as well. It has been pointed out how the peculiarity
the coupling between the wires, namely, the independenc
distance from the magnetic coupling transforms it in a ve
interesting system.

One main achievement of the present work is that
though the array of microwires is macroscopic, the dipo
interaction among them has a similar effect on the magn
properties as classical spins interacting throughout lo
range interactions. Therefore, we believe that the studied
tem can be regarded as a standard system to verify the i
ence of dipolar interactions in the magnetic response of
array of dipoles, being possible to test micromagnetic pred
tions and verify the best conditions to optimize the mac
scopic magnetic behavior for specific applications.
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