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Aiming to analyze relevant aspects of interacting magnetic nanoparticle systems (frequently called interacting
superparamagnets), a model is built from magnetic dipolar interaction and demagnetizing mean-field concepts.
By making reasonable simplifying approximations, a simple and useful expression for effective demagnetizing
factors is achieved, which allows the analysis of uniform and nonuniform spatial distributions of nanoparticles,
in particular the occurrence of clustering. This expression is a function of demagnetizing factors associated
with specimen shape and clusters shape, and of the mean distances between near neighbor nanoparticles and
between clusters, relative to the characteristic sizes of each of these two types of objects, respectively. The
model explains effects of magnetic dipolar interactions, such as the observation of apparent nanoparticle
magnetic moments smaller than real ones and approaching to zero as temperature decreases. It is shown
that by performing a minimum set of experimental determinations along principal directions of geometrically
well-defined specimens, model application allows retrieval of nanoparticle intrinsic properties, like mean volume,
magnetic moment, and susceptibility in the absence of interactions. It also permits the estimation of mean
interparticle and intercluster relative distances, as well as mean values of demagnetizing factors associated with
clusters shape. An expression for average magnetic dipolar energy per nanoparticle is also derived, which is
a function of specimen effective demagnetizing factor and magnetization. Experimental test of the model was
performed by analysis of results reported in the literature and of original results reported here. The first case
corresponds to oleic-acid-coated 8-nm magnetite particles dispersed in PEGDA-600 polymer, and the second
one to polyacrilic-acid-coated 13-nm magnetite particles dispersed in PVA solutions from which ferrogels were
later produced by a physical cross-linking route. In both cases, several specimens were studied covering a
range of nanoparticle volume fractions between 0.002 and 0.046. Magnetic response is clearly different when
prism-shaped specimens are measured along different principal directions. These results remark the importance
of reporting complete information on measurement geometry when communicating magnetic measurement
results of interacting magnetic nanoparticles. Intrinsic nanoparticle properties as well as structural information
on particles spatial distribution were retrieved from our analysis in addition to, and in excellent agreement with,
analysis previously performed by other authors and/or information obtained from FESEM images. In the studied
samples, nanoparticles were found to be in close contact to each other within almost randomly oriented clusters.
Intercluster mean distance, relative to cluster size, was found to vary between 2.2 and 7.5, depending on particles
volume fraction.
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I. INTRODUCTION

A. Motivation

Magnetic nanoparticles (NPs) and their solid and liquid
dispersions are the subject of intense research due to their
interesting basic properties and their potential applications in
several fields as catalysis, biomedicine, environment, space,
and industry [1–6]. Magnetic NPs present unique properties,
i.e., single-domain state, large resultant magnetic moment,
moment relaxation mechanisms specific to the nanoscale,
magnetic anisotropy strongly affected by shape and surface,
etc. [7,8]. In addition, all these properties can be strongly
modified by interactions between particles [9–15].

A continuous magnetic material having nonzero magneti-
zation gives rise to a dipolar field originated in its elemental
magnetic moments. Outside the material, the dipolar field is
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known as stray field, which allows the detection and measure-
ment of the specimen magnetic moment in magnetometer and
susceptometer devices. Inside the material, the average dipolar
field at a given point is related to average magnetization by
a tensor known as demagnetizing tensor. For any uniformly
magnetized specimen, there are three principal directions û

for which the inner average dipolar field �HD opposes average
magnetization �M and is referred to as demagnetizing field.
In such simplest case �HD is a mean field proportional to
− �M through a demagnetizing factor Nsu ( �HD = −Nsu

�M),
which depends on specimen (s) geometry and on measurement
direction û. In this reference frame, the demagnetizing field
tensor is diagonal and its trace is unity in SI units system
[16,17],

∑
u Nsu = 1.

If the specimen is under an external applied field �HA,
the effective average field �HE within it has a reduced
value because of the demagnetizing field presence, being
�HE = �HA + �HD . Due to this fact, its apparent low-field

susceptibility κu = ∂Mu

∂HA
u
|HA

u =0 is lower than its actual or true
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susceptibility χu = ∂Mu

∂HE
u
|HE

u =0, then

κu = χu/(1 + Nsuχu). (1)

A ferro- or ferrimagnetic NP is a continuous piece of single-
phase material. Below a critical size the NP is a single-domain
and consequently bears a magnetization equal to its spon-
taneous magnetization MS , which depends on temperature.
Demagnetizing field originated in NP magnetization creates
magnetic anisotropy. This anisotropy, which depends on the
form of the NP, is a function of its demagnetizing tensor and is
known as shape anisotropy. Commonly principal contributions
to anisotropy in magnetic NPs come from NP shape, crystalline
structure, and surface. In magnetostrictive materials, applied
stress needs to be considered as another source of anisotropy.
Usually the combined effect of all potential causes can be
described by an effective uniaxial anisotropy K [18].

In this work we present a model to describe how magnetic
dipolar interactions modify the response of an ensemble of
particle moments to an applied magnetic field. It is known
that interactions change magnetic response in general [9–15].
In particular they modify susceptibility, relaxation time, and
coercivity. They may also lead to a collective behavior of the
ensemble of moments, in cases giving rise to freezing of the
system as a whole, when temperature is reduced below a criti-
cal value [19]. Even at temperatures where the system behaves
as an interacting superparamagnet [20], i.e., where the particle-
moment relaxation-time is shorter than observation time and
the magnetic measurements display features of an equilibrium
process, experimentally retrieved functions of temperature and
applied field, like susceptibility and magnetization, may result
in being considerably affected by dipolar interactions. In such
cases, it is remarkable that while the magnetization can still
be described using the same functions, which are valid in the
absence of interactions (like Langevin and hyperbolic tangent
functions, for example), function parameters do not correspond
to real physical properties of the particles. This is the case
of particle magnetic moments, which may display apparent
values approaching zero as temperature decreases [20,21].
Allia et al. [20] proposed a simple model that has proven to be
successful for analyzing some particular cases of the situation
just mentioned. In that model, dipolar energy per particle is
written as ε = αμ0〈μ〉2/4πd3, α being a geometrical factor
[22], 〈μ〉 the particle mean-magnetic-moment, and d the mean
distance between centers of near neighbor particles. Dipolar
energy is equated to a typical thermal energy kT ∗, where T ∗ is
a model parameter representing the temperature that must be
added to actual temperature T in the argument of the theoretical
equilibrium function, in order to give a correct description of
the material response and properties.

Recently [23,24], it has been reported that when magnetic
entities dispersed in a nonmagnetic matrix strongly interact
with each other, sample structure plays a role in defining easy
and hard directions. This effect is clearly observed in self-
organized magnetic nanowire arrays in alumina matrices. In
these works metallic nanowires constituted by nanoparticles
are grown in alumina membranes forming a bidimensional
network, pointing parallel to each other and perpendicular to
the specimen plane. Typically, nanowires are a few tens of nm
wide and a few μm long, while the alumina film has a few

mm2 area. Separation between nanowires is of the order of
1.7 to 3 times the nanowire diameter. When the separation-
to-diameter-ratio decreases and dipolar interaction between
nanowires increases, the effective magnetization easy direction
rotates from the nanowire longitudinal axis toward an axis
parallel to the film, i.e., from the nanowire easy direction to
the film easy one [23,24].

One question emerging from this scenario is whether
dipolar interactions in magnetic nanodispersions can be de-
scribed through an internal demagnetizing mean field affected
by specimen shape and the spatial distribution of NPs. For
example, when magnetic nanoparticles are not uniformly
distributed but are arranged in clusters or display spatial
concentration fluctuations: could this problem be treated using
demagnetizing factors associated to the specimen and clusters
geometries? The problem is complicated because clusters may
vary in shape, size, spatial distribution, and NPs concentration
[14]. Besides, magnetization is never uniform at a sufficiently
reduced scale. The purpose of this paper is to explore how
this question can be answered, what approximations must
be done, and what limitations appear. We anticipate that
under certain conditions, which are frequently realized in
experimental scientific work related to solid magnetic particle
dispersions, the response to this question is affirmative. On
the other hand, in liquid dispersions NPs are free to move
and form structures with low (negative) dipolar energy, as for
example chains where these linear arrays and moments of
NPs contained in them align preferentially in the direction of
the applied field, thus leading to magnetizing rather than to
demagnetizing effects [25].

After reviewing concepts about magnetic susceptibility
in Sec. I B, which are relevant for the model formulation
and its application, in Secs. II A–II D we will develop the
model and the strategies to extract useful information on
parameters that characterize the NPs spatial distribution. The
present work provides solid bases for the understanding of
the effect of dipolar interactions in dispersions of magnetic
single-domain objects. We will discuss the most relevant
similarities and differences with other descriptions reported
in the literature and discuss a few examples of analysis
applied to published and unpublished results. We will show
that meaningful information can be retrieved even when the
knowledge of some experimental details is missing. Finally,
we will suggest convenient measurement protocols that can be
followed in order to efficiently retrieve such information.

B. Considerations about magnetic susceptibility of
noninteracting NPs

At this point we consider it is necessary to remind the reader
of the dependence of low-field susceptibility of an ensemble
of identical anisotropic noninteracting NPs of volume V , on
easy axes orientations, temperature, and measurement time.
To this end, it is convenient to start with a phenomenological
model for the complex susceptibility [26],

χu = χu0 + iχu∞τ/τexp

1 + iτ/τexp
, (2)

where τ is the NP moment relaxation time, τexp is the
measurement time, χu0 is the equilibrium susceptibility,
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FIG. 1. Ratio ζu(ν,θ ) = χu0/(3χL) for different orientation of
easy axes relative to applied field direction. Shadowed regions
correspond to ν � 1, where the distribution of easy axes orientations
is irrelevant, and to ν � 1, where this distribution plays a crucial role.

valid when τ/τexp → 0, and χu∞ is the susceptibility far
from equilibrium, i.e., when τ/τexp → ∞. When τ/τexp = 1,
blocking of magnetic moment occurs, and this happens at a
temperature referred to as blocking temperature Tb.

χu0 depends on temperature, on the ratio of anisotropy to
thermal energies ν = KV/kT , and on the angle θ between
easy axis and the direction of the applied field (which is also
the measurement direction). It is convenient to express χu0

in terms of the Langevin susceptibility corresponding of NPs
without anisotropy, χL = μ0μ

2

3V kT
, as

χu0(ν,θ ) = 3ζu(ν,θ )χL, (3)

where ζu(ν,θ ), the ratio χu0/(3χL), has been recently obtained
[27] in terms of the imaginary error function of ν. A useful
simple expression for ζu(ν,θ ) can be derived partially from
an approximated expression reported in Ref. [28] for the case
θ = 0,

ζu(ν,θ ) ≈ (ν/3.4)1.47 cos2(θ ) + 1/3

(ν/3.4)1.47 + 1
. (4)

At sufficiently high temperatures, when ν � 1, the equilib-
rium susceptibility does not depend on θ , χ0(ν � 1,θ ) = χL.
On the other hand, at sufficiently low temperatures, when
ν � 1, ζu(ν,θ ) ≈ cos2(θ ) and the equilibrium susceptibility
becomes χ0 = 3 cos2(θ )χL. For an ensemble of NPs whose
easy axes are randomly oriented, χ0 = χL holds in the whole
temperature range. Indeed, Eq. (4), represented in Fig. 1,
reproduces very well the dependence of χ0 with ν and θ

semiquantitatively shown in Ref. [29]. Equation (4) provides
a quantitative tool to treat the general case of any arbitrary
orientation of easy axis relative to the applied field direction
at any temperature. Notice that even at room temperature
ζu(ν,θ ) values corresponding to typical NPs (10-nm diameter
and K = 2 × 104 J/m3, ν ≈ 2.53) display a quite important
dependence on particle orientation (see vertical line in Fig. 1).

FIG. 2. Sketch of nanoparticles and clusters. (a) Left-top inset:
NP shape (ellipse), sphere of diameter D with same volume V

as NP (continuous contour), and sphere with diameter equal to
mean near-neighbor distance d = γD (dotted contour, see also
right-bottom inset). Main figure: random distribution of NPs in a
nonmagnetic matrix. Packing fraction of dotted spheres is ϕ. (b)
Nonrandom distribution of NPs. Dotted spheres of diameter Dc have
same volume Vc as clusters. Mean distance between near-neighbor
clusters is dc = γcDc. Dashed spheres diameter is dc. Packing fraction
of dashed spheres is ϕc.

II. MODEL

A. Demagnetizing field and demagnetizing factors

Let us consider a three-dimensional spatial distribution
of identical magnetic NPs in a nonmagnetic matrix. Such
a distribution may be in states of higher complexity than
uniformity or randomness [Fig. 2(a)]. We will only consider
the cases in which spatial fluctuations of the number of
particles per volume unit can be accounted by the existence of
identical NP clusters [Fig. 2(b)]. Such clusters are specimen
regions where NPs are located.

In order to relate volumes of NPs, clusters, and specimen,
we will make a few simplifying assumptions. To this end,
each NP volume V is represented by a sphere of diameter D

with the same volume. Similarly, volume Vc of NPs clusters
will be represented by that of spheres of diameter Dc. We
introduce two parameters, γ = d/D, the near-neighbor mean
interparticle-distance d relative to D; and γc = dc/Dc, the
near-neighbor mean intercluster-distance (center to center) dc
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relative to Dc. We define the NP packing fraction ϕ as the
ratio of volume associated to all of the NPs within a cluster
to the cluster volume, where the volume associated to one
NP is defined as that of a sphere of diameter d. Hence, ϕ =
npcγ

3D3/D3
c [see Fig. 2(a)], where npc is the number of NPs

per cluster.
Dipolar field at the position of NP i generated by the other

NPs (j ) is a function of moments �μj = μv̂j , and vectors �dij =
dij ûij , which are the positions of NPs j relative to NP i, where
v̂j and ûij are unitary vectors, and is given by

�HD
i = μ

4π

nps∑
j �=i

�sij /d
3
ij ,

where �sij = 3(v̂j · ûij )ûij − v̂j and nps is the total number of
NPs in the specimen. This expression is strictly valid for spher-
ical single-domain NPs, which generate a disperse magnetic
field identical to that of magnetic dipoles of intensity μ =
V MS . It is still a very good approximation for NPs not strictly
spherical at distances dij > nD, with n of the order of unity
[30]. The last equation can be separated in two contribution to
the demagnetizing field corresponding to the summations over
the npc NPs inside cluster I , which contains NP i, and over
the nps − npc remaining NPs inside other clusters,

�HD
i = �HD

i,I + �HD
i,Q�=I

= μ

4π

npc∑
j �=i

�sII
ij(

dII
ij

)3 + μ

4π

ncs∑
Q�=I

npc∑
j=1

�sIQ
ij(

d
IQ
ij

)3 , (5)

where ncs is the number of clusters in the specimen, and now
d

IQ
ij and �sIQ

ij are determined for particle i located in cluster
I and particle j located in cluster Q. In order to achieve a
useful description depending on just a few parameters we will
make an approximation in the second summation. We assume
that for the evaluation of Eq. (5) it is acceptable to assign
the value dIQ to the element d

IQ
ij , where dIQ is the distance

between clusters I and Q, center to center. The relative error
introduced by this procedure is a decreasing function of dIQ.
In order to evaluate its reasonableness we explore the most
unfavorable case, which is that of near-neighbor clusters,
where the relative error is δ = |〈1/d3

ij 〉 − 1/d3
c |/(1/d3

c ). δ

was calculated for clusters with maximum and minimum
anisotropy. Considered cases are spheres [case (a) in Fig. 3]
and wires with two different relative orientation [cases (b) and
(c) in Fig. 3]. For wires δ was evaluated analytically and for
spheres a numerical calculation involving 104 NPs randomly
distributed per cluster was performed. Results demonstrate
that δ is a rapid decreasing function of γc and that reduces
below 0.1 for γc ≈ 3.3 in case (c) and for γc ≈ 1.7 in case (a).
When Eq. (5) is evaluated, taking into account contributions
from all clusters, the relative error in �HD is much lower than δ.

Now, we define the nondimensional quantities:

�λi = d3

npc − 1

npc∑
j �=i

�sII
ij(

dII
ij

)3 and

�λci = d3
c

nps − npc

ncs∑
Q�=I

1

d3
IQ

npc∑
j=1

�sIQ
ij .

FIG. 3. δ as a function of γc = dc/Dc for the case of spheres (a)
and wires (b) and (c) with the orientation sketched in the inset.

�λi and �λci are invariant under similarity transformations
performed either on NPs within clusters, or on clusters within
the specimen, respectively; a similarity transformation being
understood as an isotropic expansion or contraction. �λi and �λci

definitions permit us to write �HD
i,I and �HD

i,Q�=I in more compact
form,

�HD
i,I = μ

4π

npc − 1

γ 3D3
�λi,

�HD
i,Q�=I = μ

4π

nps − npc

γ 3
c D3

c

�λci .

Averaging over the specimen and considering the special case
where the specimen magnetization �Ms lays along one principal
direction

�HD = 〈 �HD
i

〉 = �HD
c,int + �HD

c,ext

= 1

24

(
npc − 1

γ 3
�λ + (ncs − 1)ϕ

γ 3γ 3
c

�λc

)
MS

=−NE
su

�Ms, (6)

where �HD
c,int = 〈 �HD

i,I 〉 and �HD
c,ext = 〈 �HD

i,Q�=I 〉 are the mean
demagnetizing field generated inside a cluster due to internal
and external NPs to this cluster, respectively. In the penultimate
member of Eq. (6) we have used μ = V MS , and we have
written 〈 �λi〉 = �λ, 〈 �λci〉 = �λc, for simplicity. In the last member
of Eq. (6) we have introduced two quantities, �Ms and NE

su. �Ms

is the specimen magnetization defined as the total magnetic
moment divided by specimen volume. NE

su is defined as the
specimen effective demagnetizing factor, and it is determined
by the spatial distribution of NPs in the whole specimen and
by the principal direction û at which magnetic field is applied
and measurement is performed.

Next, based on magnetostatic considerations, we will write
�HD as a function of demagnetizing factors Ncu and Nsu, corre-

sponding to cluster and specimen shapes; when measurement
is performed in the principal direction û. Therefore, we will
assume that Nsu and Ncu satisfy all properties of magnetostatic
demagnetizing factors previously defined in the literature [17].
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In this sense, it is useful to introduce the cluster magnetization
Mc and the magnetic phase magnetization M , which are
defined as the total magnetic moment divided either by the
total volume of clusters or by the total volume of NPs. Ms ,
Mc, and M are related among themselves by

Mc = ϕ

γ 3
M and Ms = xV M = ϕϕc

γ 3γ 3
c

M, (7)

where xV is the NPs volume fraction in the specimen and ϕc is
the clusters packing fraction defined as the ratio of the volume
associated to all clusters relative to the specimen volume,
where the volume associated to one cluster is defined as that
of a sphere of diameter dc.

Taking into account that �HD
c,int is the mean demagnetizing

field inside one cluster originated only from the nanoparticles
inside this cluster, from magnetostatic considerations this
quantity can be written as

�HD
c,int = −Ncu

�Mc. (8)

The demagnetizing field originated from NPs outside this
cluster, �HD

c,ext, can be calculated as the demagnetizing field
produced by the whole specimen having an average magne-
tization Ms , minus the demagnetizing field corresponding to
the cluster shape if it had the same magnetization Ms , i.e.:

�HD
c,ext = −(Nsu

�Ms − Ncu
�Ms). (9)

From Eq. (6), Eq. (8), and Eq. (9) it is possible to obtain
expressions for �λ, �λc:

�λ = −24
ϕ

npc − 1
Ncu

�M
MS

, (10a)

�λc = −24
ϕϕc

ncs − 1
(Nsu − Ncu)

�M
MS

, (10b)

and also for specimen effective demagnetizing factor NE
su. It

may be more convenient, for practical purposes, to define
the magnetic-phase effective demagnetizing factor NE

u , which
defines �HD in terms of the NP magnetization �M: �HD =
−NE

u
�M . This choice is justified by the fact that frequently an

estimation of M(H ) can be more easily made, including the
dependence of MS on NP size [31]. Therefore, the expressions
for effective demagnetizing factors, for magnetic phase and
specimen, are the following:

NE
u = ϕ

γ 3

(
Ncu

(
1 − ϕc

γ 3
c

)
+ Nsu

ϕc

γ 3
c

)
, (11a)

NE
su =

(
γ 3

c

ϕc

− 1

)
Ncu + Nsu. (11b)

Note that NE
u = xV NE

su.
By construction NE

u (and NE
su) result from averaging �HD

and �M (or �Ms) over the specimen, therefore they should
be considered magnetostatic demagnetizing factors [17] but
with the peculiarity of having been defined for a magnetic
discontinuous system. In this system, magnetic charges are not
located only at specimen surfaces (as it happens in a uniformly
magnetized body) since internal charges at NPs surfaces do not
cancel completely [14]. Therefore, Eqs. (11) must be carefully

confronted with experimental results in order to determine
their usefulness and practical limitations (see Sec. III). NE

u

and NE
su are simple functions of the specimen and cluster

demagnetizing factors and of the relative distances γ and γc.
Since Nsu and Ncu verify

∑
u Nsu = ∑

u Ncu = 1, trace of
effective demagnetizing tensors become

Tr(NE) = ϕ

γ 3
, (12a)

Tr
(
NE

s

) = γ 3
c

ϕc

, (12b)

satisfying Tr(NE) = xV Tr(NE
s ). While frequently Nsu can be

precisely known, in most cases Ncu is unknown. However,
in some cases its average value over the specimen can be
estimated. For example, when clusters are randomly oriented,
or at least isotropically, the specimen average value of Ncu

becomes Ncu = 1/3.
We will consider three particular cases or limit situations:

(i) clusters that do not interact with each other, (ii) clusters
in contact with each other, and (iii) nanoparticles that do not
interact with each other.

Case (i): The case in which clusters do not interact
corresponds to the case in which the distance between cluster
is large, i.e., γc → ∞. In this case effective demagnetizing
factor responds to cluster shape, NE

u = ϕ

γ 3 Ncu, since dipolar
interactions are meaningful just within clusters.

Case (ii): When the nanoparticles are homogeneously
distributed in the whole specimen there are no clusters, that
correspond to γc = 1 and ϕc = 1. In this case, the effective
demagnetizing factors become NE

u = ϕ

γ
Nsu = xV Nsu and

NE
su = Nsu. The demagnetizing factor is determined just by

the specimen geometry.
Case (iii): When particles are very far apart, i.e., when γ →

∞, dipolar interactions among them become negligible and
HD = −NE

u M = NE
suMs tends to zero. This happens because

NE
u = 0 and Ms = 0.
Equation (11a) shows similarities with Eq. (2) of Ref. [14]

but a main difference. The expression in Ref. [14] includes
an additional term that we may rewrite here as Npu(1 − xV c),
where Npu is the demagnetizing factor corresponding to NP
shape and xV c is the volume fraction of NPs in clusters. When
multiplied by M , this term gives the part of the average field
inside a NP, which is produced by uncompensated magnetic
charges at its surface. Equations (11) have been built to
describe the mean dipolar field acting on the NPs, not inside
them, and therefore should not include such a term. As stated
in Sec. I A the effect of the demagnetizing field originating
from a NP’s own magnetization is taken into account in
the effective magnetic anisotropy through the magnetostatic
anisotropy contribution.

Recently, an experimental study [15] of dense assemblies
(packed powder) of spherical ferrimagnetic NPs, which cor-
respond to our case (ii), was presented. The authors identify
effects of the demagnetizing field in temperature-dependent
susceptibility curves, which were treated using an approach
similar to that of Ref. [14]. Also, the authors have demonstrated
how the packing fraction may be determined with this
approach.
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FIG. 4. (a) NE
x , NE

z for the case of clusters preferentially oriented.
Specimen lx and ly dimensions are identical. (b) NE

x , NE
y , and NE

z for
a high aspect ratio specimen with clusters randomly oriented. In both
examples the NPs relative distance parameter was set at γ = 1.5.

To end this section we will illustrate the behavior of NE
u as

a function of γc with a couple of examples for which γ = 1.5
was arbitrarily set. For the arrays considered, ϕ = ϕc = 0.7
was chosen (see Sec. II C). Figure 4(a) corresponds to a dis-
tribution of identical ellipsoidal clusters whose easy axes are
preferentially oriented perpendicular to the specimen plane. It
is a representation of Eq. (11a) corresponding to measurements
parallel (x) and perpendicular (z) to the specimen plane
(dimensions of specimen satisfy lx = ly � lz). Model predicts
that at γc ≈ 1.41 the effective easy direction changes from the
cluster easy axis (z) to a direction contained within the plane.
In this situation the system presents isotropic demagnetizing
properties: NE

x = NE
y = NE

z ≈ 0.070. Figure 4(b) shows NE
x ,

NE
y , and NE

z for a specimen with high aspect ratio (lx � ly �
lz) and randomly oriented clusters.

B. Demagnetizing field and apparent particle magnetic moment

Let us consider an ensemble of unblocked NPs with
a distribution of magnetic moments f (μ). f (μ)dμ is the
probability of finding a NP with its moment in the interval (μ,

μ + dμ). It is normalized to unity in the interval (0, ∞). For
simplicity we will assume MS independent of NP size, hence
μ = MS(T )V . When there are no interparticle interactions the
ensemble magnetization can be written as [32]

Mu

(
HA

u ,T
) = 1

〈V 〉
∫

μF

(
μ0μHA

u

kT

)
f (μ)dμ, (13)

where 〈V 〉 is the mean NP volume, i.e., the NPs total
volume divided by nps , and F (μ0μHA

u

kT
) is a function of state,

monotonous on HA
u /T , whose form depends on ν = KV/kT

and on the distribution of NP easy axes orientations relative to

the applied field direction [28]. For ν � 1, F ≈ L(μ0μHA
u

kT
),

the Langevin function. For ν � 1 and easy axes oriented

along field direction, F ≈ tanh(μ0μHA
u

kT
). These two situations

correspond to the shadowed areas in Fig. 1. When the NPs
experience magnetic dipolar interactions HE

u is the effective
field HA

u − NE
u Mu(HA

u ,T ), where NE
u is the effective demag-

netizing factor in the measurement direction û. In this case
Eq. (13) becomes a transcendental equation for Mu(HA

u ,T ):

Mu

(
HA

u ,T
) = 1

V

∫
μF

(
μ0μ

(
HA

u − NE
u Mu

)
kT

)
f (μ)dμ.

(14)

Therefore, magnetization is no longer described by a superpo-

sition of F (μ0μHA
u

kT
) functions. Nevertheless, when moments are

unblocked such simple description allows satisfactory fitting
of experimental results [20,21]. This observation leads to the
following approximate relationship:

Mu

(
HA

u ,T
) ≈ 1

Va

∫
μaF

(
μ0μaH

A
u

kT

)
g(μa)dμa. (15)

In the last term, Va and μa are apparent values of V and μ,
respectively, and g is the distribution of μa values. In order
that the approximate equality be of general validity, it would
be necessary that

μa ≈ μ
(
1 − NE

u Mu

/
HA

u

)
.

Since μa and μ are not proportional to each other through
a constant factor, f and g must have different mathematical
forms. Moreover, μa is a multivalued function of μ since
it depends on Mu/H

A
u . However, at a given T and within the

range of HA
u values where the recorded low field susceptibility

χu = Mu/H
A
u can be considered constant, μ = (χu/κu)μa and

both distributions become related by

g(μa) = χu

κu

f

(
χu

κu

μa

)
, (16)

where χu = κu/(1 − NE
u κu) is the “true” NPs equilibrium

susceptibility [Eq. (1)], i.e., the one which would be measured
in the absence of interparticle interactions. Since χu/κu is
a constant, μa is a single valued function of μ and both
distributions have the same shape. Note that always χu � κu,
therefore g has a higher maximum than f and this maximum
is located at a smaller moment value. Besides, for NPs in
the unblocked regime, when T → 0, χu → ∞, κu → 1/NE

u ,
and therefore κu/χu → 0. From μa = κu/χuμ it follows that
μa → 0. Hence, an incorrect analysis of the equilibrium
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FIG. 5. Comparison of distribution functions f and g appearing
in Eq. (16) for the case χu/κu = 10/3. Lognormal distribution has
been used.

response of an ensemble of interacting NPs, disregarding
demagnetizing effects, leads to a nonphysical result: the NP
mean apparent moment seems to approach a null value when
temperature decreases, as it has been previously observed
[20,21,33]. This artifact is clearly expressed by Eq. (16).
Figure 5 illustrates the relationship between f and g for
the arbitrary case χu/κu = 10/3 and assuming a lognormal
distribution of moments.

C. Demagnetizing factor and susceptibility

Several parameters appearing in Eq. (11) are usually known
or can be retrieved from experiment while some others are
unknown and need to be calculated using this equation and
other relationships. Frequently, the specimen geometry is
known and so Nsx , Nsy , and Nsz can be readily calculated.
NE

x , NE
y , and NE

z , are accessible using experimental protocols
that will be described below. Reasonable estimations for the
values of ϕ and ϕc can be made from studies of packing fraction
of hard spheres in ordered (crystalline) and disordered arrays
for cases of monodisperse and polydisperse spheres [34,35].
In cubic crystalline monodisperse materials ϕ ranges from
0.52 (single cell) to 0.74 (face centered cell). In disordered
polydisperse systems ϕ takes a wide range of values and may
attain much higher ones. It has been reported that packing
fraction is a rapidly growing function of polydispersity and
approaches 0.7 when polydispersity is about 0.4 [36]. The
ensembles of NPs and clusters that will be discussed later
present this order of polydispersity, therefore we will assume
ϕ = ϕc = 0.7. This idealized situation leaves us with five
unknowns Ncx , Ncy , Ncz, γ , and γc. This system can be solved
using Eq. (11) for each principal direction, Eq. (12), and the
relationship among NPs volume fraction xV , packing fractions,
and relative distances:

γ 3γ 3
c = ϕϕc

xV

. (17)

Now we discuss an experimental protocol to determine NE
x ,

NE
y , and NE

z . The equivalent of Eq. (1) for the ensemble of
NPs under consideration is 1/κu = 1/χu + NE

u . When NPs

are in thermal equilibrium, this expression becomes

1

κu

= k

μ0V

(
T

ζu(ν)MS2

)
+ NE

u ,

where Eq. (3) was used. The true low-field susceptibility χu

can be retrieved from magnetization measurements of the
original sample performed above the blocking temperature
TB , provided that NPs, in the isolated condition, would also
have an equilibrium response. Then, plotting the inverse of
low field susceptibility κu as a function of T/ζMS2

, NE
u

and true susceptibility χu = κu

1+NE
u κu

can be determined. From

χu = μ0ζu(ν)V MS 2

kT
, ζ (ν)V can be obtained.

Frequently there is a distribution f (μ)dμ of NP moments
μ that cannot be ignored. We analyze how this distribution
modifies our last expression. To this end, we study its effect
on the equilibrium magnetization,

Mu

(
HA

u ,T
)

= 1

〈V 〉
∫

μF

[
μ0μ

(
HA

u − NE
u Mu

(
HA

u ,T
))

kT

]
f (μ)dμ,

where 〈〉 stands for mean value with the f distribution.
Susceptibility in low-field limit is calculated from previous
expression,

κu = 1

〈V 〉
∫

ζuμ0μ
2
(
1 − NE

u κu

)
kT

f (μ)dμ

= μ0

kT 〈V 〉
(
1 − NE

u κu

)〈ζuμ
2〉.

Solving for κu and writing its inverse,

1

κu

= k〈V 〉
μ0

(
T

〈ζu(v)μ2〉
)

+ NE
u . (18)

Estimation of a useful approximated expression for
〈ζu(ν)μ2〉, in the general case of an arbitrary distribution of
NP easy axes orientations will be treated elsewhere [27]. In
the particular case where easy axes are randomly oriented,
Eq. (18) leads to

1

κu

= 3k

μ0〈V 〉
(

T

ρMS2

)
+ NE

u , (19a)

where ρ = 〈μ2〉/〈μ〉2. From Eq. (16) we notice that

〈
μn

a

〉 =
∫

μn
ag(μa)dμa = χu

κu

∫
μn

af

(
χu

κu

μa

)
dμa

=
(

χu

κu

)n

〈μn〉,

which leads to 〈μ2
a〉/〈μa〉2 = 〈μ2〉/〈μ〉2 = ρ, i.e., ρ can be

evaluated using apparent moment μa and distribution g, from
the analysis of Mu versus HA

u measurements, which constitutes
a convenient straightforward procedure. Then χu (and 〈V 〉)
as well as NE

u can be obtained by measuring κu and MS at
different temperatures T . In terms of specimen susceptibility
κsu and specimen saturation magnetization MS

s ,

1

κsu

= 3k

μ0〈Vpp〉
(

T

ρMS
s

2

)
+ NE

su, (19b)
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where Vpp is the average volume per particle in the specimen,
Vpp = Vs

nps
, being nps the number of particles in the specimen

and Vs the specimen volume.
Figure 13 illustrates the application of Eq. (19a) for a

dispersion of magnetite NPs in a PVA hydrogel. 1/κu was
plotted in terms of T

ρMS 2 for a wide temperature range. The

straight line which best fits the part of the experimental
data corresponding to NP moments in thermal equilibrium is
shown. Vertical axis intercept is NE

u , and 〈V 〉 is retrieved from
slope. When NE

u = 0, κu = χu and Eq. (19a) becomes 1
χu

=
3k

μ0〈V 〉 ( T

ρMS 2 ) as expected for the susceptibility of noninteracting

NPs with random distribution of easy axes, χu = μ0〈μ2〉
3kT 〈V 〉 .

Note that this analysis only holds if the specimen is in
thermodynamic equilibrium. Data points recorded out of this
condition may depart from the linear behavior of Eq. (19a) as
shown in Fig. 13.

D. Dipolar energy

The specimen average magnetic dipolar energy per NP, i.e.,
the interaction energy of one NP with the field produced by
the others, when magnetization is measured in the direction û

of the applied field can be written as

εu = −μ0〈 �μi · �Hi〉 = μ0N
E
u Mu

2〈V 〉, (20)

with NE
u given by Eq. (11a). For simplicity we have disre-

garded correlations and approximated [37] 〈 �μi · �Hi〉 ≈ 〈�μi〉 ·
〈 �Hi〉, set 〈 �μi〉 = 〈V 〉 �M and 〈 �Hi〉 = −NE

u
�M . εu is different

when specimen is magnetized in different directions. For
same value of M , εu increases with NE

u . It is convenient to
explore ranges of values of εu for the typical situations that
are encountered when dealing with NPs of common magnetic
materials, such as Fe, Co, Ni, and their ferrites. Figure 6
displays εu for the cases corresponding to the demagnetizing
factors illustrated in Fig. 4, assuming spherical NPs with
D = 10 nm, and for an arbitrarily chosen magnetization

FIG. 6. Dipolar energy per NP for specimens whose demagne-
tizing factors are illustrated in Figs. 4(a) and 4(b) (identified by
the scripts a and b respectively). x and z identify the magnetization
direction. A value of M = 105 A/m has been used for the calculation.

M = 105 A/m, i.e., roughly midway toward saturation. εu

is calculated for �M pointing in x and z directions.
Values of εu shown in Fig. 6, which correspond to quite

concentrated clusters (γ = 1.5) of 10-nm diameter NPs, are
of the order of 10−22J to 10−21J. According to Eq. (20) εu

is proportional to M2, therefore in experiments aimed to
determine the magnetic susceptibility κu where M � MS

(frequently M = 104 A/m), εu takes values one or two orders
of magnitude smaller than those shown in Fig. 6. εu also
decreases rapidly with D and γ due to its cubic dependence
on these quantities. For the typical ensembles of NPs just
considered εu becomes of the order of kT for temperatures in
the range 10–100 K.

For experiments performed under low applied field, where
Mu ≈ κuH

A
u , dipolar energy per NP can be approximated

by εu ≈ μ0N
E
u κ2

uHA
u

2
V = μ0N

E
u [χu/(1 + NE

u χu)]2HA
u

2
V .

Therefore, under a given applied field intensity, εu presents
a maximum for NE

u ≈ 1/χu. When the same field is applied
along two different principal directions x, z, the ratio of low
field susceptibilities recorded in those directions is

εx

εz

≈ NE
x M2

x

NE
z M2

z

= NE
x κ2

x

NE
z κ2

z

= NE
x

NE
z

[(
χx

χz

)
1 + NE

z χz

1 + NE
x χx

]2

, (21)

which reduces to εx

εz
≈ NE

x

NE
z

( 1+NE
z χ

1+NE
x χ

)
2

, in the case of random

easy axes orientation, i.e., when χx = χz = χ . In this case,
Eq. (21) predicts that εx

εz
≈ 1 for χ ≈ (NE

x NE
z )−1/2. In terms

of global specimen quantities, εu can be written as

εu = μ0N
E
suMsu

2Vpp.

The last expression can be derived in a straightforward manner
from Eq. (20).

E. Comparison with model of Allia et al. [20]

The procedure described in Sec. II C is similar to one
previously proposed by Allia et al. [20]. However, one
important improvement is that adimensional parameter α

introduced in that article can now be identified in terms of
the effective demagnetizing factor. Allia et al. arrived at an
equation [38] equivalent to Eq. (19b) of present work, which
in the SI of units can be rewritten as 1

κsu
= 3k

μ0〈Vpp〉 ( T

ρMS
s

2 ) + 3α
ρ

.

Comparison of both expressions leads to the relationship
3α
ρ

= NE
su.

The model presented here uncovers that α is a function
of specimen and cluster geometries, and that its value
depends on specimen orientation during measurement of
susceptibility. Therefore, it becomes clear that in order to
make a meaningful comparison of susceptibility and dipolar
energy results obtained from magnetic nanodispersions, a
detailed description of specimen and measurement-conditions
geometries must be given. Furthermore, it becomes clear the
convenience of measuring magnetic properties along one of
the specimen principal directions. There is still a question to
be addressed. In the situation where moments are unblocked
the model presented here as well as the one presented by
Allia et al. propose modifications of the argument of the
equilibrium function describing the magnetization, in order
to give account of dipolar interaction between NPs. For the
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simple case of monodisperse samples, and when NP anisotropy
effects can be ignored, magnetization is well described
by Msu(HA

u ,T ) = MS
s (T )L(x), where x = μ0μHA

u /kT and
L is the Langevin function. The two approaches propose
modifications on temperature or field, as follows:

no interaction → interaction

x = μ0μHA
u

kT
→ x = μ0μHA

u

k(T + T ∗)

= μ0μHA
u

kTeff
(Allia et al. [20]),

x = μ0μHA
u

kT
→ x = μ0μ

(
HA

u − NE
suMsu

)
kT

= μ0μHE
u

kT
(present work).

In the linear response regime (x � 1) both approaches are
equivalent provided that

kT ∗ = μ0μ
2NE

su

3kVpp

⇒ kT ∗ = α
μ0μ

2

4πd3
(SI),

kT ∗ = α
μ2

d3
(cgs),

where Vpp = V/xV , which can be set equal to d3 when clusters
are not considered, in agreement with definitions made in
Ref. [20]. Therefore, both approaches are equivalent when
the NP dispersion is uniform and x � 1. However, they are
not equivalent at finite values of x because modifications are
introduced either in the denominator or the numerator of x,
depending on the approach. In consequence, the modification
produced by adding T ∗ to denominator of x would lead to
undesired deviations of the behavior of calculated M(H,T ),
especially for x ≈ 1. There is another difference with the
description of Allia et al. In their formulation ε depends just on
α, μ, and d values and is therefore independent of the specimen
state of magnetization. In the present model ε depends on M2

[Eq. (20)], which is a function of HE and T , as it happens
also for homogeneous materials. In Allia et al. model, dipolar
energy per NP is estimated [20] as

ε = αμ0μ
2

4πd3
, (22)

having α been observed to take values mostly in the interval
1–20. Equation (22) produces quite large values of ε, usually
in the range of 10−21 to 10−20 J, which are similar to the ones
obtained with Eq. (20) for nearly magnetic saturated states.
As an example to illustrate this point we will calculate dipolar
energy with both expressions for a single case: a Co10Cu90

inhomogeneous alloy containing 10.6 nm Co NPs separated
on the average 18.7 nm, for which μ ≈ 7.78 × 104μB and
α = 10.4 (alloy identified as “2” in Ref. [20]). We use ϕ = 0.7
and will assume that specimen has a demagnetizing factor
NE

su = 0.2 in the direction of measurement, and that it is mag-
netized to saturation (MS ≈ 1.4 × 106 A/m). Dipolar energy
per NP evaluated with Eq. (20) leads to ε1 ≈ 3.9 × 10−20 J,
while evaluated with Eq. (22) leads to ε2 ≈ 8.4 × 10−20 J
independently of its magnetization state. Therefore, ε2 is larger
than ε1 for any possible magnetization state.

We have demonstrated that the approximation based on the
appearance of a demagnetizing field −NE

suMsu presented here
is straightforward, brings information on specimen internal
structure, produces a more reasonable estimation of dipolar
interaction energy, and provides a reliable description of the
material magnetic response for any value of HA.

F. Conclusions and final considerations about the model

In conclusion, with the help of the model introduced here
intrinsic properties of the magnetic NPs such as χu, 〈V 〉,
and 〈μ(T )〉 as well as structural information of their spatial
dispersion like relative distances γ , γc and demagnetizing
tensor components Ncu and NE

u can be obtained, while dipolar
energy per NP can be estimated. This model, as the Allia
et al. one does, gives account of two well-documented ex-
perimental observations: the increasing importance of dipolar
interaction effects as γ (or d) decreases, and the observation
of apparent NP magnetic moments, which approach zero as
temperature approaches zero. However, the model presented
here has a direct relation with the demagnetizing effect of
dipolar interactions usually observed in NPs random solid
dispersions. In addition, it brings a more complete physical
description of dipolar interactions effects, by taking into
account specimen shape and internal structure. By this way it
is able to explain observed changes of specimen magnetization
easy axis direction as γc decreases, for example, from those
corresponding to cluster shape to that associated to specimen
shape [23]. Its application allows the recovery of true values
of NP magnetic moment and susceptibility. Model also leads
to an expression for the mean dipolar energy per NP, which
depends on magnetization and measurement directions. This
predicted property of dipolar energy may lead to a dependence
of NP Néel relaxation-process on experiment geometry.

The structural information provided by the present model
on the spatial distributions of nanoparticles and clusters,
and on clusters preferential orientation, could be a good
complement to results obtained with frequently employed
structural techniques as, for example, SANS, SAXS, DLS,
TEM, SEM, among others.

Since our model describes NPs and clusters on the basis
of spherical shapes, systematic errors should appear when
aspect ratio of these entities becomes pronounced, for ex-
ample, in specimens constituted for parallel arrangements
of micrometer-long magnetic nanowires. However, we had
performed preliminary analyses of the model predictions for
some of these cases and found that it gives a reasonable
qualitative and semiquantitative description of the ensemble
properties.

III. EXPERIMENTAL RESULTS

A. Complementary interpretation of reported results

The aim of this section is to verify the ability of our model to
retrieve information on the specimens structure, in particular
on NPs and clusters distributions, and to test its consistence
with the study performed by other authors. We will discuss
results published by Allia and Tiberto [12] on oleic-acid-
coated magnetite NPs in the form of dried powder (specimen
named DP), and of solid dispersions in PEGDA-600 polymer
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TABLE I. Values of NP volume fraction (xV ) calculated from data reported in Ref. [12], NP diameter reported in Ref. [40] (D′) and obtained
in the present work (D), mean interparticle distances reported in Ref. [12] (d ′) and obtained in the present work (d), effective demagnetizing
factor (NE

u ), and relative distances γ and γc.

Specimen xV D′ (nm) D (nm) d ′ (nm) d (nm) NE
u γ γc

Dried Powder (DP) 0.046(5) 9.8 9.2(3) 20 17(1) 0.031(5) 1.9(1) 1.2(1)
PEG5 2.7(3) × 10−4 8.2 8.2(3) 16 13(1) 0.054(7) 1.6(1) 7.4(4)
PEG10 5.5(5) × 10−4 8.2 8.3(3) 14 12(1) 0.09(1) 1.4(1) 6.9(3)
PEG90 0.0046(5) – 17(2) 29 25(3) 0.073(4) 1.5(1) 3.2(1)

with NP mass fractions xm = 0.0015, 0.003, 0.027 (specimens
named PEG5, PEG10, and PEG90). In connection with the
model introduced here, these materials have the convenient
feature that NPs are nearly spherical and monodisperse, to
the extent that isothermal anhysteretic M versus H curves
could be well described using a single Langevin function, thus
making analysis and comparisons more simple. According to
authors, NP diameters are about 8 nm and oleic acid shells
have thicknesses of about 2 nm. They have measured isotherm
Ms versus HA curves for temperatures between 10 and 300 K,
from which they have obtained initial (low field) susceptibility
values κ , NP moments μ, and mean number of NPs per
unit volume. They have plotted the equivalent of Eq. (19b)
considering ρ = 1, in view of the very low size dispersion,
and have determined T ∗ values. From their published data we
have retrieved values of temperature, specimen susceptibility,
and saturation magnetization, using information provided by
Figs. 3 and 4 of Ref. [12], and converting magnetic magnitudes
from cgs system to SI. We have estimated NP volume frac-
tions as xV = MS

s (300 K)/MS(300 K) using MS(300 K) =
375 kA/m obtained from Ref. [12]. Since MS

s (300 K) is
not reported we have obtained it by performing the ratio
of T to T/MS

s

2
from data presented in Figs. 3 and 4 of

Ref. [12]. Finally, we have calculated NPs susceptibility κu

and magnetization M = Ms/xV .
NE

u and D were obtained for each specimen by fitting
the linear region (high temperature) of the experimental
relationship between 1/κu and T/(MS)

2
using Eq. (19a); see

Fig. 1 in Supplemental Material [39]. Table I displays the
values of xV , NE

u , D, d, γ and γc. It also displays NP diameters
D′ and distances d reported in Ref. [40]. D and D′ values are in
good agreement within estimated uncertainties. It is striking
that size obtained for NPs in PEG90 specimen is too large,
about twice that of NPs in the original dried powder. This
result is in agreement with the values of NP magnetic moment
reported in Ref. [12]. Allia and Tiberto came to the conclusion
that magnetic individuality of NPs is lost in this specimen. In
effect, PEG90 NPs present a moment about 20 times larger
than the average NP one. In fact, they have observed clusters
of about 40 nm in SEM micrographs taken on PEG90. They
conclude that in this specimen (although not in the others)
magnetic response is no longer determined by individual NPs
but by NP aggregates. We will come back later to this point.

Now we will calculate γ , γc, and d for each of the specimens
using some reasonable assumptions. For PEG specimens we
make the reasonable simplifying assumption that clusters are
randomly oriented which leads to Ncu ≈ 1/3 for any direction.
In the case of DP specimen there are no differentiated clusters,

hence we may consider the specimen as a single cluster
satisfying ϕc = 1. From Eqs. (11a) and (17) the following
expression for γ is obtained:

γ =
[

ϕ

3NE
u − xV (3Nsu − 1)

]1/3

. (23)

Since NE
u and xV were already calculated and the estimation

ϕϕc ≈ 0.5 was made for PEG specimens, Eq. (23) gives γ

as a function of Nsu. In all of these cases γ varies less
than 2.1% within the whole range of Nsu allowed values.
By considering usual experimental limitations, good practices
for magnetic measurements, and requests expressly indicated
by magnetometer makers, we can safely assume that 0.1 �
Nsu � 0.33. γ and its uncertainty were calculated taking
Nsu = 0.2(1). The lack of correlation between γ and Nsu

strongly suggests that NPs are organized in clusters which
interact weakly with each other, therefore specimen shape
became almost irrelevant.

Once γ is obtained, mean distance d between near neighbor
particles can be calculated. Good agreement between d values
obtained with our model and those reported in Ref. [12] (d ′)
is observed in Table I.

Now γc can be calculated using Eq. (17). γ and γc are
plotted for all of the PEG solid dispersions in Fig. 7 (the value
corresponding to DP specimen is indicated by an arrow for
completeness). The tendency to clustering is confirmed by
the evolution of both relative distances parameters. On one

FIG. 7. Relative interparticle distances, γ , and intercluster dis-
tances, γc, as a function of volume fraction xV for all PEG specimens
listed in Table I. The value corresponding to DP specimen is indicated
by an arrow for completeness.
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hand, NP interdistance remains small and almost unchanged
(1.4 < γ < 1.6) for all of the PEG specimens, indicating that
NPs always are close to each another. On the other hand,
γc decreases from about 7.5 (PEG5) to about 3.2 (PEG90),
indicating that clusters become closer to each other due to
increasing NP concentration. Allia et al. state that Fig. 1(b)
of Ref. [12] shows NP clusters with Dc ≈ 40 nm in PEG90.
Since γc ≈ 3.2 for this specimen, mean separation between
near-neighbor clusters should be dc = γcDc ≈ 130 nm, which
is in reasonable agreement with separations observed in the
same figure. For DP specimen γ = 1.9(1) and γc = 1.2(1)
consistently with a powder specimen with no clusters as shown
in Fig. 1(a) of Ref. [12].

In conclusion, the comparison of results obtained by the
application of our model to data reported in Ref. [12], with the
structural parameters reported in that reference, is satisfactory.
In addition, our model not only gives account for clustering
effects in PEG specimens, but allows the estimation of relative
intercluster distances γc. For specimen PEG90 the estimated
mean separation of dc ≈ 130 nm is consistent with SEM image
shown in Fig. 1(b) of Ref. [12]. The fact that magnetic response
of PEG90 (NP moment value) corresponds to entities larger
than NPs used in the preparation of this solid dispersion is
intriguing. Especially because this is not the case for PEG5 and
PEG10 specimens, where clustering also occurs, and almost
with the same interparticle separation. One possibility is that
oleic acid coating of at least a fraction of the NPs is missing
in PEG90 specimen, allowing exchange interactions between
them and the formation of sort of magnetic domains larger
than NPs themselves.

B. Study of hydrogel (PVA) and magnetic
nanoparticles Fe3O4 ferrogels

In this section we present an experimental study of
PVA and Fe3O4 ferrogels. Experimental details are given in
Sec. III B 1. In Sec. III B 2 the procedure indicated in
Sec. II C is followed in order to obtain intrinsic information
on NPs properties such us mean volume 〈V 〉, as well as
true susceptibility χu, spontaneous magnetization MS , ρ,
and NP mean true moment μ as function of temperature.
By application of Eq. (19a), NE

u is also retrieved for one
principal direction. This information together with knowledge
of xV and Nsu values, estimation of ϕ, ϕc, and experimental
determination of κu at room temperature in three principal
directions for several specimens, is used in Sec. III B 3 to
obtain extrinsic properties, such as γ , γc, the three Ncu, and
NE

u in the two remaining principal directions.

1. Specimens and procedures

Magnetic characterization was performed using MPMS
XL-7 SQUID from Quantum Design and 7304 VSM from
LakeShore.

Ferrogel samples whose preparation is described in the Sup-
plemental Material [39] were kindly provided by collaborators
[41]. The samples were named FGXPi where X is the nominal
NP mass percentage and Pi identifies different specimens with
prism shape with dimensions lx , ly , and lz. Characters a and b
identify two samples obtained trough two synthesis processes
with same NP mass concentration and different NP volume

FIG. 8. FESEM image of FG6 specimen. Clusters of NPs are
indicated.

fraction. Samples used in this work have five different NP
volume fractions (see Table II). A field emission scanning
electron microscopy (FESEM) image from a cryofractured
surface of FG6 sample is shown in Fig. 8 where aggregates of
NPs can be observed.

Specimens were cut from ferrogel foils with rectangular
prism shapes, with lx > ly � lz, in order to allow the identi-
fication of the principal directions and the calculation of Nsu.
Linear dimensions were kept under 5 mm in order to fulfill
VSM and SQUID technical requirements. Demagnetizing
factors associated with specimen geometry, calculated in the
three prism principal directions using the expression given in
Ref. [42], are listed in Table II.

Measurements in the SQUID were carried out on FG9aP1
specimen with the applied field pointing along x direction. M

versus HA cycles were recorded varying field in the interval
[−6 T, 6 T] at different temperatures between 10 and 300 K.
Warming part of ZFC and FC measurements were performed
under a field of 0.01 T; and cooling part of ZFC and TRM
measurements were performed with no applied field. All of
them were carried out in the range between 10 and 300 K.
FG9aP1 specimen was measured first in its dry state and then
in a completely hydrated state. In the second case, during the
final part of the ZFC measurement and the initial part of the
FC protocol, temperatures were kept below water liquefaction
point in order to avoid potential out-of-equilibrium melting-
freezing phenomena. SQUID experimental window time for
M(HA) measurements was estimated to be about 100 s.

Measurements in the VSM were M versus HA cycles at
room temperature at applied fields between −1.9 and 1.9 T.
They were performed on all of the specimens with field applied
in the x, y, and z directions. Sensor coils are located on the
pole ends and have a diameter of ∼8 mm. Magnetic poles
diameter is 100 mm and gap between poles was set to 22
mm. VSM experimental window time was estimated to be
about 30 s.

2. Determination of NPs intrinsic properties

ZFC-FC results obtained with the SQUID for FG9aP1
specimen, processed to subtract diamagnetic signal from PVA
and water, are shown in Fig. 9. Field was applied parallel to
the longest (lx) prism dimension. It can be noticed that κx is
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TABLE II. Specimens FGXPi (see text), NPs volume fractions xV , rectangular prism dimensions lx , ly , and lz, and specimen shape
demagnetizing factors (calculated according to Ref. [42])

Specimen xV lx(mm) ly(mm) lz(mm) Nsx Nsy Nsz

FG1P3 0.0017(1) 4.00(2) 2.00(2) 0.12(2) 0.036(4) 0.074(9) 0.89(1)
FG3P7 0.0067(4) 4.68(2) 1.32(2) 0.24(2) 0.046(3) 0.17(1) 0.78(1)
FG6P6 0.0158(8) 4.90(2) 1.10(2) 0.20(2) 0.037(3) 0.17(1) 0.79(1)
FG9aP1 0.0169(9) 4.00(2) 2.00(2) 0.14(2) 0.040(4) 0.083(9) 0.88(1)
FG9aP5 4.90(2) 1.00(2) 0.14(2) 0.028(4) 0.15(1) 0.83(2)
FG9bP2 0.020(1) 3.90(2) 3.00(2) 0.24(2) 0.066(3) 0.087(5) 0.847(9)
FG9bP4 5.00(2) 1.00(2) 0.24(2) 0.040(2) 0.21(1) 0.75(1)

larger for hydrated than for dry sample. This is consistent with
the expected effect of hydration, i.e., due to materials swelling
distances among magnetic NPs and/or clusters should increase
thus reducing demagnetizing effects and increasing measured
susceptibility.

Equation (19a) was applied to results obtained from dry
specimen. To this end a temperature range where the specimen
is in thermodynamic equilibrium during the process of data
acquisition was selected. This interval was identified by the
coincidence of ZFC and FC responses which begins at the
irreversibility temperature Tirr. A close inspection of Fig. 9
(see inset) reveals that 240 K � Tirr � 250 K. In order to apply
Eq. (19a), ρ = 〈μ2〉/〈μ〉2 and MS were also determined. To
this end, analysis of cycles M versus HA measured at different
temperatures for FG9aP1 specimen (Fig. 10) was performed,
after removal of the minor diamagnetic contribution originated
essentially from PVA, using [the equivalent of Eq. (15)]

M(HA,T ) ≈ 1

〈Va〉
∫

μaL

(
μ0μaH

A

kT

)
g(μa)dμa, (24)

where we have used a Lognormal distribution as g(μa) and
approximated F ≈ L disregarding, for the sake of simplic-
ity, possible effects of finite values of ν = KV/kT . Such

FIG. 9. ZFC-FC-TRM curves from FG9aP1 specimen. Cooling
part of ZFC and TRM measurements were performed under zero field.
Warming part of ZFC and FC measurements were performed under
a 8 kA/m field. Field was applied parallel to the longest (lx) prism
dimension. Inset shows a close look of ZFC-FC around irreversible
temperature (Tirr) of dry specimen

approximation should be acceptable when ν � 3 (see Fig. 2(b)
in Ref. [28]), which corresponds to T � 250 K assuming
typical values of K for magnetite NPs of about 10 nm.
No coercivity is observed at T = 300 K, which is the only
measurement performed above 250 K (inset of Fig. 10). From
these analyses, values of MS and ρ were determined for each
temperature, which are presented in Figs. 11 and 12 (dots).
ρ and MS temperature dependence were fitted with a linear
function and MS(T ) = A(1 − T/B)C , respectively, in order to
have continuous expressions for ρ(T ) and MS(T ) suitable for
the analysis of κx results [Eq. (19a)]. Then, 1/κx (ZFC and
FC) was plotted as a function of T/ρMS2

(see Fig. 13).
A departure from linear behavior becomes evident below

215 K, this departure becoming more pronounced at lower
temperatures. This behavior is reasonably consistent with the
fact that reversibility holds only above 240–250 K. From the
analysis of the linear region with Eq. (19a) values of NE

x =
0.068(1) and 〈V 〉 = 1.15(2) × 103 nm3 (D = 13.0(1) nm
assuming spherical NPs), were estimated. The knowledge of
NE

x is important because it allows to retrieve susceptibility
values corresponding to noninteracting NPs, as χx = κx/(1 −
NE

x κx). Figure 14 displays κx and the result calculated for χx

using the previous expression as a function of temperature.
χx is represented with filled or open spheres, identifying

FIG. 10. M(HA) cycles for FG9P1 specimen at several tempera-
tures. Field was applied parallel to the longest (lx) prism dimension.
Inset shows coercive field (Hc) vs. temperature.
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FIG. 11. Saturation magnetization MS versus temperature T for
FG9aP1 specimen. Dots were obtained from the analysis of Fig. 10
data. Line corresponds to fitting with MS(T ) = A(1 − T/B)C . The
values obtained were A = 3.97(1) × 102 kA/m, B = 350(8) K, and
C = 0.100(7)

temperature regions where specimen is in- or out-of-
equilibrium, respectively. These regions are separated by a
vertical dashed line. Correction in the equilibrium region is
supported by the procedure outlined in this work, in which
just the equilibrium susceptibility term was considered in
Eq. (19a). Notice in Fig. 14 that after correcting for demagne-
tizing effects, room temperature susceptibility increases 2.8(2)
times to a value χx(300 K) = 26(2).

Considering the procedures followed when preparing the
materials studied in this section, a random distribution of NP
easy axes is expected, therefore we can safely assume that χx ≈
χy ≈ χz. Increase of susceptibility with diminution of dipolar
interactions is readily observed from experimental results,
by comparing specimen responses in dried and completely

FIG. 12. ρ = 〈μ2〉/〈μ〉2 versus temperature T were μ is the NP
magnetic moment. Dots were obtained from the analysis of Fig. 10
data. Line corresponds to fitting with a linear function ρ = AT + B.
The values obtained were A = 3.1(1) × 10−3 K−1 and B = 0.97(1).

FIG. 13. Inverse of apparent susceptibility 1/κx , obtained from
ZFC and FC measurements, as a function of T/ρMS2. Straight line
is the fit of the linear region (specimen magnetization in thermal
equilibrium).

hydrated states. Hydration increases susceptibility maximum
by a factor of about 1.44. This increase is explained by the
fact that hydration expands the PVA matrix and pulls apart
NPs and NP clusters, reducing dipolar interactions. It can be
seen that hydration also produces a temperature shift of the
maximum-susceptibility temperature, from 126 to 91 K (see
Fig. 9). This shift is not accounted for by the transformation
χx = κx

1−NE
x κx

when κx is the in-phase component of the
apparent susceptibility. In this regard it is convenient to
remark that the estimation of χx is valid at temperatures at
which the system is in equilibrium. This expression should
hold between complex susceptibilities [Eq. (2), even out-of-
equilibrium] in absence and presence of dipolar interactions
whose incidence on NP moment relaxation times needs to be
studied. It has been widely reported that dipolar interactions
produce an increase of τ [11], and it is well documented that
temperatures at which susceptibility maximum and blocking
occurs, frequently increase with increasing relaxation time.

FIG. 14. Apparent susceptibility κx and corrected (true) sus-
ceptibility χx . Vertical dash line corresponds to T = Tirr, therefore
correction is only reliable at T � Tirr (black symbols for χx).
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FIG. 15. NP magnetic moment μ: μa is the apparent NP moment,
μχ is the corrected NP moment obtained with the present model, and
μMs is the NP moments obtained through saturation magnetization
data. Vertical dash line corresponds to T = Tirr, therefore correction
μχ is only reliable at T � Tirr (black-star symbols).

NP apparent mean moment μa obtained from fits with
Eq. (24) of cycles shown in Fig. 10 is represented in Fig. 15
(filled spheres in bottom curve) as a function of temperature.
Continuous line represents interpolated values obtained with
a quadratic function. Notice that μa displays a nonphysical
behavior since its value increases with temperature. Following
Sec. II A we have corrected μa NP moment, using suscep-
tibility results, to μχ = (χu

κu
)μa . Again we have used filled

symbols (stars) to distinguish the equilibrium temperature
region from the out-of-equilibrium one (open stars). Another
way of recovering true NP mean moments is from saturation
magnetization measurement, as μMS = MS〈V 〉, where 〈V 〉 =
1.15(2) × 103 nm3 was previously determined. μ values
obtained in this way are also represented in Fig. 15. In the
temperature region where equilibrium holds (T � 240 K) the
relation μχ ≈ μMS also holds, supporting the present model.

Equation (20) states that dipolar energy per NP (ε) depends
on magnetization and on effective demagnetizing factor, i.e.,
takes different values when experiment is performed along
different specimen axes. It reaches values of about 1.0 ×
10−20 and 2.2 × 10−20 J when our specimens are magnetized
to saturation along their longest and shorter dimensions,
respectively. For ZFC-FC experiments ε values were of at most
5.5 × 10−22 J.

3. Parameters of NPs space distribution: Effective demagnetizing
factor and demagnetizing factors of clusters

Figure 16 displays specific magnetization curves σ (HA)
[43] of specimen FG6P6 obtained at room temperature with
a VSM, after removal of diamagnetic contribution. Field
was applied along the three principal prism directions (see
Table II). It can be observed that high-field magnetization
appears to follow σx > σy > σz. This effect, observed in all of
the specimens, is an artifact originated in the measurement
geometry (finite size sample and sample geometry effects
[44,45]). When external field is applied in the x direction,
for example, a larger fraction of the stray field lines originated
at specimen magnetization come across the VSM sensing coils

FIG. 16. σ (H ) cycles for specimen FG6P6 (raw data).

than when external field is applied in any other direction.
Therefore, due to these geometrical conditions, flux � across
sensing coils satisfies �x > �y > �z leading to the observed
effect. For subsequent analysis these cycles were normalized
at high fields taking as reference the one obtained at room
temperature using the SQUID (Fig. 10). Figure 17 shows
the linear (central) region of the normalized M(HA) cycles
for specimen FG9aP1. The low-field apparent susceptibilities
were obtained from the analysis of this region and are listed
in Table III for all of the specimens. Only specimen FG1P3
presents a small coercivity of at most 350 A/m (4.4 Oe)
revealing that a small fraction of NPs is not in equilibrium.
For all specimens κx > κy > κz (except for FG3P7 where
κx ≈ κy > κz), as listed in Table III. This is connected to
demagnetizing effects originated, at least partially, in specimen
geometry. In effect, since lx > ly > lz, then Nsx < Nsy < Nsz.
This could in turn lead to NE

x < NE
y < NE

z and to the observed
result. Figure 18 displays the dependence of κu on Nsu for all
of the specimens in the three measured directions.

As already mentioned, all of the specimens have been
synthesized using commercial NPs from the same batch, and

FIG. 17. Linear region of M(H ) curves, measured in FG9aP1
specimen with the applied field along the three prism directions.
Curves were normalized at high fields as described in the text.
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TABLE III. Susceptibilities κu measured in the three prism directions u = x, y, z. Relative distance parameters γ and γc. Specimen effective
demagnetizing factors NE

su. Demagnetizing factors Ncu associated to average cluster shape.

Specimen κx κy κz γ γc NE
x NE

y NE
z Ncx Ncy Ncz

FG1P3 9.7(2) 9.6(2) 6.5(2) 1.42(1) 4.6(2) 0.063(2) 0.065(2) 0.115(5) 0.26(1) 0.27(1) 0.47(2)
FG3P7 8.6(2) 8.6(2) 5.9(2) 1.35(1) 3.1(1) 0.077(3) 0.076(3) 0.129(6) 0.28(1) 0.28(1) 0.45(2)
FG6P6 8.7(2) 8.5(2) 6.0(2) 1.35(1) 2.32(8) 0.076(3) 0.079(3) 0.128(6) 0.29(1) 0.29(1) 0.44(2)
FG9aP1 9.3(2) 8.9(2) 5.7(2) 1.36(1) 2.25(8) 0.068(2) 0.073(3) 0.135(6) 0.27(1) 0.28(1) 0.48(2)
FG9aP5 9.1(2) 9.0(2) 5.8(2) 1.37(1) 2.25(8) 0.070(3) 0.072(3) 0.132(6) 0.28(1) 0.28(1) 0.47(2)
FG9bP2 8.7(2) 8.4(2) 5.4(2) 1.33(1) 2.19(7) 0.076(3) 0.080(3) 0.144(7) 0.27(1) 0.29(1) 0.47(2)
FG9bP4 8.6(2) 8.4(2) 5.5(2) 1.33(1) 2.18(7) 0.076(3) 0.080(3) 0.143(7) 0.28(1) 0.28(1) 0.47(2)

isotropic distributions of NP easy axes are expected from
ferrogels fabrication procedure. Therefore, noninteracting sus-
ceptibility should be the same in all specimens and directions,
i.e., χx ≈ χy ≈ χz ≈ χ .

From Eqs. (1), (11), (17), and Tr(NE
u ) = ϕ

γ 3 , the unknowns

NE
u , Ncu, γ , and γc are obtained. To calculate the correspond-

ing uncertainties all expressions were written as function of
the known parameters xV , Nsx , Nsy , Nsz, and of the measured
apparent susceptibilities. Results are listed in Table III and
displayed in Figs. 19 and 20.

Figure 19 clearly reflects the organization of NPs in clusters.
In effect, values of γ indicate that mean separation between
near neighbor NPs is d ≈ 1.35D. Since particles have a
polyacrylic acid coating, such separation is consistent with
NPs in contact or in a near contact configuration, similar to
that observed in Fig. 8. In fact, a close inspection of that
micrograph indicates that average size of coated NP is about
17 nm, in good agreement with D ≈ 13 nm, obtained in the
previous section. On the other hand, Fig. 19 shows that clusters
separation monotonously decrease with NPs volume fraction.
FESEM image shown in Fig. 8 correspond to FG6 sample and
shows clusters of the order of 70 nm separated by distances
of about 150–160 nm, consistently with results in Table III
and Fig. 18 (γc ≈ 2.3). Mean cluster distance increases up to
almost 4.6 times the cluster size in the case of FG1 specimen.
Figure 20 indicates that Ncu factors are not too far from 1/3,
the value expected in the case of a random distribution of

FIG. 18. Measured (apparent) susceptibilities κu versus demag-
netizing factors Nsu corresponding to specimen shape.

cluster orientations. However, Ncz displays a clear tendency to
stay above 1/3. This result suggests a nonrandom distribution
of clusters orientation. In support of last interpretation it
may be recalled that ferrogel fabrication procedure introduces
asymmetries. Since z is always the direction normal to ferrogel
foils surface, nonisotropic clusters may have acquired a degree
of texture during ferrogel formation and drying. After drying
in Petri dishes, ferrogel samples are several centimeters in
diameter but only one or two tenths of millimeters thick.

The linear region of M(HA) curves was corrected for de-
magnetizing effects by the usual transformation from (HA,M)
coordinates to (HE = HA − NE

u M,M) ones. Figure 21 dis-
plays the corrected results for all specimens studied in the
present work. It is worth mentioning that VSM field stability
is of the order of 1–2 Oe (80–160 A/m). In almost all of the
cases the M versus HE curves overlap to each other within the
field uncertainty. Only the results from one specimen (FG1P3)
depart systematically from the rest by at most 350 A/m (4.4
Oe). This small coercivity was observed also in the (HA,M)
representation of FG1P3 magnetization (not shown). Such
agreement is expected because demagnetizing correction does
not affect coercivity.

C. Summary of experimental section

We have applied this model to PEG-magnetite and PVA-
magnetite nanocomposites with different NP volume frac-
tions between 0.0017 and 0.05. Analysis of susceptibility

FIG. 19. Relative distance parameters γ and γc versus NPs
volume fraction xV .
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FIG. 20. Cluster demagnetizing factors Ncu, as a function of NPs
volume fraction xV . Dashed line stands for the expected value for
random cluster orientations, Ncu = 1/3.

measurements furnished quantitative information on clustering
occurrence and was consistent with clusters being quasiran-
domly oriented in all of the samples. Retrieved interparticle
relative distances were 1.4 � d/D � 1.6 in PEG-magnetite
specimens and 1.3 � d/D � 1.4 in PVA-magnetite speci-
mens. Taking into account that NPs have a few nanometers
of polyacrilic acid coating, these results indicate that NPs
are in close contact to each other. Relative intercluster
distances were found to be in the ranges 3.2 � dc/Dc � 7.5
and 2.2 � dc/Dc � 4.6 in PEG-magnetite and PVA-magnetite
specimens, respectively. Hence, NPs should be almost exclu-
sively in aggregates. These results were supported by FESEM
observations.

IV. CONCLUSIONS AND REMARKS

One of the highlights of the MFISP model introduced here
is that it is simple and practical. It allows the retrieval of
relevant information about the NPs spatial distribution through
the relative distances γ and γc, and cluster demagnetizing
factors Ncx , Ncy , and Ncz. It also allows the estimation of

FIG. 21. Linear part of room temperature M vs. HE cycles for
all of the specimens, after correcting by demagnetizing effects.

dipolar energy per NP and makes explicit its dependence on
specimen shape and magnetization state.

Its application requires the occurrence of experimental con-
ditions, which are frequently fulfilled. In its actual formulation,
its main limitations are connected with shape and distribution
of NP clusters. As relative cluster distance γc = dc/Dc

decreases and becomes comparable to unity its application
should lead to nonnegligible systematic deviations of the
values of retrieved parameters. It must be remarked that in its
present form the model does not describe the effects of dipolar
interactions on NP magnetic moment relaxation, and therefore
its application must be constrained to conditions were the
ensemble of NP magnetic moments is in thermal equilibrium,
i.e., it behaves like an interacting superparamagnet.

From its formulation and application, it becomes evident
that magnetic measurements of sufficiently concentrated NP
ensembles must be designed taking into account specimen
geometry and directions along which external field is applied
and magnetic properties are measured. In this regard, we
consider it useful to introduce protocols aimed to organize and
simplify experiments devoted to retrieving information from
such ensembles. In order to determine NPs intrinsic properties
it is necessary to apply Eq. (19b), which implies that Ms , ρ, and
κu must be previously determined as functions of temperature.
To this end, it is suggested to measure M versus HA, at
different temperatures, and to obtain the mentioned quantities
from fitting whole or part of the cycles with appropriate
functions and distributions. Alternatively, κu can be obtained
from ZFC-FC measurements under low enough applied fields,
with the advantage of making this magnitude available as a
quasicontinuous function of T . If random orientation of NP
moment easy axes is expected, experimental determination of
κu versus T can be made along just one specimen principal
direction û; otherwise, measurements must be performed
along the three principal directions. Having determined the
mentioned quantities, χu and 〈V 〉 are readily determined using
Eq. (19b) (this procedure also leads to the determination of
the effective demagnetizing factor NE

su). Then, true NP mean
magnetic moment can be retrieved as a function of temperature
by using 〈μ〉(T ) = MS(T )〈V 〉.

In order to retrieve the rest of extrinsic properties, the set
of Eq. (11a) must be used. To this end, apparent magnetic
susceptibility κu must be known in the three specimen principal
directions û at just one temperature in order to obtain the re-
maining effective demagnetizing factors from NE

u = 1
κu

− 1
χu

.
Application of Eq. (11a) also requires knowledge of xV , ϕ, and
ϕc. Usually xV can be accurately estimated from synthesis data
and experimental determination of material density. Packing
factors ϕ and ϕc can be reasonably estimated by observing
that theory, experiment, and simulations indicate that they
should be within 0.52 and 0.85 for mono and polydisperse
arrangements of hard spheres in both ordered and disordered
states. With this information γ , γc, and cluster demagnetizing
factors Ncu can be determined.
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