Crecimiento por RF-Magnetron Sputtering de capas delgadas de $BaTiO_3$ sobre Nitruro de titanio nanoestructurado.

Autor: Odin Vázquez Robaina

Instituto de Física La Plata, La Plata, Buenos Aires, Argentina 2016

SUMARIO

- Metodología utilizada para el crecimiento de capas delgadas de BaTiO₃ (BTO) sobre sustratos de Nitruro de titanio (TiN) nanoestructurado.
- Descripción de las técnicas empleadas para la caracterización morfológica y estructural de las capas de BaTiO₃ y TiN.
- Resultados obtenidos de la caracterización morfológica y estructural. Discusión de los resultados.

MÉTODO DE CRECIMIENTO. RF- MAGNETRÓN SPUTTERING, INSTALACIÓN EXPERIMENTAL

TÉCNICA DE SÍNTESIS POR ABLACIÓN LÁSER EN SOLUCIÓN

Phys. Chem. Chem. Phys., 2009, 11, 3805-3821

TÉCNICAS DE CARACTERIZACIÓN DE CAPAS DELGADAS.

MorfológicasEstr✤ Microscopía Electrónica de Barrido (SEM)♣ Difracción♣ Microscopía de Fuerza Atómica (AFM)

		Serie 1				Serie 2								
Muestra		BTO ²	16	BTO 17			BTO 18		BTO 19		BTO 20			BTO 21
Sustrato		TiN/SiO ₂ /Si ₍₁₀₀₎ TiN/SiO ₂ /S		N/SiO ₂ /Si ₍₁₎	00)	₀₎ TiN/SiO ₂ /Si ₍₁₀₀₎		TiN/Si	TiN/SiO ₂ /Si ₍₁₀₀₎		TiN/SiO ₂ /Si ₍₁₀₀₎		V/SiO ₂ /Si ₍₁₀₀₎	
Tiempo Dep.(h)		2		2			2			1		1		1
T. Sust	trato(°C)	350 350		350	350		350		350			350		
Ar(s	sccm)	20	20 25			30		2	20		25		30	
0 ₂ (s	sccm)	5		10			15			5		10		15
Muestra	Sustrato	Temp. (°C)	Tiem Dep (min	ipo p. n)	Ar (sccm)	N (sco	l ₂ cm)	I (mA)	V (V)	Pot (W)	Presión base (Torr)	Presić (Torr	ón)	Dist. B_Sust (cm)
TiN	Si (111)	21	5		30	5	5	500	392	196	4*10 ⁻⁵	3,8*10) -3	5
Presión Trabajo(Torr)		3.7*1() ⁻³		3.7*10 ⁻³		5.	2*10 ⁻³	3.7	*10 ⁻³	4.2*1	0 ⁻³		5.2*10 ⁻³
Distancia Blanco- Sustrato(cm)		10		10			10			5	5			5
Tratamiento Térmico(ºC)		540		540			540		6	00	600)		600
Tiempo Tratamiento Térmico (min)		30		30			30		10		10			10

Textured Thin Film

TiN a=b=c= 4.20 Å Si a=5.4305

Factor de acoplamiento (lattice mismatch) ~22 %

Stress Epitaxial

$$\varepsilon_e = \frac{3a_s - a_f}{3a_s} = 0.74$$

 $\varepsilon_e > 0$ Esfuerzo de dilatación

Patrón de Difracción de Rayos X obtenido para el TiN ε_e < 0 Esfuerzo de compresión

SEM - TiN

Vista superficial TiN y vista sección transversal

_		AFM				
	Estadística de Grano					
Ta mu pa es	maño de la uestra tomada ira la tadística	1091 granos	5,3 nm -4,4 nm	-4,0 -3,0 -2,0		
Ár pro	ea total oyectada	154*10 ⁻¹⁵ m ²	ү: 1,00 µm	-1,0 0,0		
Ta pro gra	maño omedio de ano	10.5 nm		1,0 2,0		
Ru su	ugosidad Iperficial	1.23 nm		4,0 4,4		

Patrón de Difracción de Rayos X Serie 1, T. Térmico 540°C

BTO 19 con a=4.07 Å y la capa de TiN con a=4.20 Å. La diferencia (mismatch) entre el parámetro a de la capa de BTO y el TiN fue de 3.09% (~3%). El valor del parámetro c calculado para el BTO fue c=4.11 Å.

Patrón de Difracción de Rayos X Serie 2, T. Térmico 600°C

 $\varepsilon_e = 0.78$

SEM – BTO Serie 2

AFM

	BTO 19	BTO 20	BTO 21							
Flujo de Gases	O ₂ /Ar	O ₂ /Ar	O ₂ /Ar							
	5 sccm /20 sccm	10 sccm /25 sccm	15 sccm /30 sccm							
Presión de Trabajo	3.7*10 ⁻³ Torr	4.2*10 ⁻³ Torr	5.2*10 ⁻³ Torr							
	Parámetros o	de rugosidad								
Raíz Cuadrática de										
la Rugosidad	2 166 nm	2 705 nm	1 727 nm							
Promedio	2,100 1111	2,705 1111	4,/3/ 1111							
(RMS) (Rq)										
	Estadística de granos									
Tamaño promedio	22 nm	102 nm	20 nm							
de granos	55 IIII		JƏ IIII							
AFM BTO 19, BTO 20 y BTO 21										

AFM

AFM BTO 19, BTO 20 y BTO 21

AFM

Aumento flujo de oxígeno \rightarrow aumento presión de trabajo \rightarrow aumento de la rugosidad.

- Energía de difusión del átomo erosionado se reduce probablemente cuando la presión de oxígeno crece.
- El movimiento lateral en la superficie del sustrato también puede reducirse debido al aumento de las colisiones de los átomos erosionados con los átomos de oxígeno, disminuyendo de esta forma su recorrido libre medio. Por lo tanto, durante el proceso de crecimiento es de esperar un incremento en la rugosidad superficial de las capas con el aumento de la presión de oxígeno dentro de la cámara.

AFM BTO 19, BTO 20 y BTO 21

Aumento flujo de oxígeno \rightarrow aumento del tamaño de grano hasta obtener un valor máximo a la presión de 4.2*10⁻³ Torr y un flujo de 10 sccm.

 Un incremento en el flujo de oxígeno a 15 sccm y presión de trabajo de 5.2*10⁻³ Torr conduce a una disminución en el tamaño de grano sugiriendo la existencia de un límite para el crecimiento de los granos.

CARACTERIZACIÓN COMPOSICIONAL EDS - BTO 19

	Element	Weight%	Atomic%	Spectrum 1
	0 K	38.16	69.22	
	AI K	2.50	2.69	
	Ti K	35.17	21.31	
	Fe K	5.20	2.70	
Y _	Ag L	1.20	0.32	
a A	BaL	17.77	3.75	
/ Kana				₽₽₽
1	Totals	100.00		6
Full Scale 1492 cts (Cursor: 6.718	J (12 cts)		keV

CARACTERIZACIÓN COMPOSICIONAL

EDS - BTO 20

	Element	Weight%	Atomic%	Spectrum 1
.	O K	38.70	68.97	
9	AI K	4.24	4.49	
.	Ti K	34.61	20.60	
7	Fe K	4.26	2.18	
	Ba L	18.18	3.77	
				•
al Anna Al	Totals	100.00		9 ⁴⁴ 69 (F
1	2		4 5	6
Full Scale 1313 cts	Cursor: 6.750) (19 cts)		keV

CARACTERIZACIÓN COMPOSICIONAL

EDS - BTO 21

	Element	Weight%	Atomic%	Spectrum 1
	OK	33.77	68.19	
	AI K	1.80	2.16	
	Ti K	29.70	20.03	
	Fe K	3.32	1.92	
	Ag L	4.80	1.44	
🥮 🛞	Ba L	26.61	6.26	
Ja. X				è 🙃
	Totals	100.00		
1	2 0	- 14	0 C	7 8
Full Scale 355 cts	Cursor: 8.194	(3 cts)		keV

¡MUCHAS GRACIAS POR LA ATENCIÓN BRINDADA!