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Abstract Isothermal magnetization and initial dc

susceptibility of spheroidal, nearly monodisperse

magnetite nanoparticles (typical diameter: 8 nm)

prepared by a standard thermo-chemical route have

been measured between 10 and 300 K. The samples

contained magnetite nanoparticles in the form of either

a dried powder (each nanoparticle being surrounded

by a stable oleic acid shell as a result of the preparation

procedure) or a solid dispersion in PEGDA-600

polymer; different nanoparticle (NP) concentrations

in the polymer were studied. In all samples the NPs

were not tightly agglomerated nor their ferromagnetic

cores were directly touching. The high-temperature

inverse magnetic susceptibility is always found to

follow a linear law as a function of T, crossing the

horizontal axis at negative temperatures ranging from

175 to about 1,000 K. The deviation from the standard

superparamagnetic behavior is related to dipolar

interaction among NPs; however, a careful analysis

makes it hard to conclude that such a behavior

originates from a dominant antiferromagnetic charac-

ter of the interaction. The results are well explained

considering that the studied samples are in the

interacting superparamagnetic (ISP) regime. The ISP

model is basically a mean field theory which allows

one to straightforwardly account for the role of

magnetic dipolar interaction in a NP system. The

model predicts the existence of specific scaling laws

for the reduced magnetization which have been

confirmed in all studied samples. The interaction of

each magnetic dipole moment with the local, random

dipolar field produced by the other dipoles results in

the presence of a large fluctuating energy term whose

magnitude is comparable to the static barrier for

magnetization reversal/rotation related to magnetic

anisotropy. On the basis of the existing theories on

thermal crossing of a barrier whose height randomly

fluctuates in time it is predicted that the rate of barrier

crossing is substantially driven by the rate of barrier

fluctuations, which is fast (108–109 Hz) and almost

independent of temperature. As a consequence, the

standard picture of superparamagnetic NPs which

undergo single-particle blocking by a static barrier

below the blocking temperature should be substan-

tially revised, at least in the present materials. The ISP

model is perfectly matching with the view of activated

magnetization rotation whose kinetics is significantly

modified by barrier height fluctuations.
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Introduction

Although the interest toward fine-particle magnetism

dates to more than 50 years ago, the subject of

magnetic nanoparticles (NPs) has revived in the last

decades in view of their increasingly pervasive

applications (Gubin 2009; Sandhu et al. 2010; Wied-

wald and Ziemann 2010). To date, a complete

description of magnetic properties of NP materials

does not exists. A striking variety of systems contain-

ing magnetic NPs can be prepared by many different

techniques (Gubin 2009; Wiedwald and Ziemann

2010; Frey et al. 2009), resulting in a remarkable

variety of magnetic properties which depend on NP

size, shape, concentration, aggregation state. Metal or

oxide NPs carrying a permanent magnetic moment can

be obtained as dried nanopowders, often surrounded

by some passivating shell; or, they can be dissolved in

fluid hosts or embedded in solids; passivating shells

and fluid/solid hosts are often diamagnetic.

A common feature of magnetic NPs is the existence

of low-temperature magnetic blocking effects. In the

simplest picture an assembly of free, magnetically

independent NPs is characterized by a high-tempera-

ture superparamagnetic (SP) state followed at lower

temperatures by a magnetically blocked state emerg-

ing as a result of single-particle blocking by magnetic

anisotropy.

Of course magnetic NPs can magnetically interact

in a variety of ways depending on their concentration

and state of agglomeration. When magnetic NPs are

not in contact and are dispersed in a non-metallic,

diamagnetic medium, the dipolar interaction is the

most important inter-particle energy term, and can

reach a strength comparable to that of the single-

particle anisotropy energy.

Isolated magnetic dipoles can be associated either to

impurity atoms (Cooke et al. 1975; Roser and Corruccini

1990) or to NPs (Panissod and Drillon 2002). The

temperature where magnetic dipolar interaction plays a

role is now defined by Nl2/k, where l is the magnetic

moment per atom (or particle). For atomic dipolar

magnets, this is in the same range as for electric dipoles,

i.e., 1–10 K (Cooke et al. 1975; Roser and Corruccini

1990). However, in NP systems it can reach much higher

values (Panissod and Drillon 2002), indicating that dipolar

effects cannot be neglected even at high temperatures.

However, there is no commonly accepted view

about the effect of dipolar energy on the directional

order of magnetic moment vectors. At sufficiently low

temperatures, a self sustained ordered state could

emerge. As a matter of fact, different approaches

provide largely different predictions in dependence of

the dimensionality of the system, the arrangement of

dipoles in space (whether crystalline or random) and

the approximations done (Luttinger and Tisza 1946;

Zhang and Widom 1995; Panissod and Drillon 2002);

for 3D random systems of point dipoles the dipolar

interaction generally results in an increase of the

blocking temperature, while long-range magnetic

ordering, either ferro- or antiferromagnetic-like, is

predicted to exist above some critical volume fraction

of freely rotating dipoles; on the contrary, an assembly

of randomly oriented particles submitted to uniaxial

anisotropy is unlikely to order (Zhang and Widom

1995).

When the temperature is high enough, dipolar

systems are not expected to display self-sustained

ordering; however, dipolar interactions still play a role

and can be accounted for in various ways (Dormann

et al. 1999; Azeggagh and Kachkachi 2007; Knobel

et al. 2008; Gubin 2009). One of the existing approaches

is the interacting superparamagnetic (ISP) model (Allia

et al. 2001a; Knobel et al. 2008), which is particularly

suitable to account for the effect of dipolar interactions

on otherwise superparamagnetic NPs.

It should be noted that dipolar interactions have an

inherently dynamical character: the dipolar field

acting on a given magnetic moment is a random

variable of time, so that the local dipolar energy is a

fluctuating quantity. This remarkable feature has been

often neglected; the ISP model was developed keeping

in mind this specific aspect, but no efforts were made

toward an in-depth study of the problem.

Aim of this article is to show that the dynamical

aspects of dipolar interaction actually play a major

role on the magnetic properties of an assembly of

magnetic NPs over a broad interval of temperatures.

Specifically, the magnetic response of a NP system

can be ascribed to thermally activated processes of

magnetization rotation/switching which involve cross-

ing a barrier whose height randomly fluctuates in time.

The study of statistical crossing of a fluctuating barrier

has received notable interest in recent years (Doering

and Gadoua 1992; Bier and Astumian 1993; Pechukas

and Hänggi 1994; Boguñá et al. 1998). Some theoret-

ical results can be adapted to treat our problem,

providing firmer grounds to the ISP model.
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In order to apply these concepts to a practical case,

a suitably simple real system of magnetic NPs is

needed. To this aim, four samples containing magne-

tite NPs produced by a wet chemical technique were

studied. The NPs were the same for all samples and

were characterized by chemical homogeneity, narrow

size distribution, almost spherical shape and lack of

aggregation. A first sample contained a dried powder

composed of individual magnetite NPs surrounded by

an oleic acid shell. The other three samples contained

magnetite NPs dissolved in a polymeric material at

three different degrees of concentration, including a

minimal one. In all cases, the magnetite NPs do not

directly touch, because of the presence of an organic

coating or an organic host. Exchange effects can be

discarded and the role of dipolar interactions can be

put in evidence.

Even for this model system, the standard interpre-

tation (according to which the particles are in the SP

regime at high temperature, and undergo single-

particle blocking because of crystal anisotropy) does

not hold, putting in evidence the inadequacy of the

conventional views. On the contrary, the ISP theory is

able to describe the magnetic properties of all samples

and is instrumental in obtaining reliable values of the

true magnetic moments and of the NP concentration.

Moreover, the ISP model is put on firmer grounds by

showing its good agreement with the proposed

description of the magnetic behavior of these NPs,

whose ordering kinetics is substantially determined by

thermal activation over a fluctuating barrier.

Preparation and experimental methods

Fe3O4 NPs having mean diameter of about 8 nm were

prepared by a thermo-chemical route (Sun et al. 2004).

Commercial Fe(III) acetylacetonate, 1,2-hexadecane-

diol, oleic acid, oleylamine, benzyl ether, and

n-hexane were used as received. Fe(acac)3 (2 mmol),

1,2-hexadecanediol (10 mmol), oleic acid (6 mmol),

oleylamine (6 mmol), and benzyl ether (20 mL) were

mixed and mechanically stirred under a flow of

nitrogen. The mixture was heated under a nitrogen

blanket to 200 �C for 2 h and then heated up to reflux

(300 �C) for 1 h. After cooling down to room

temperature, the solution was treated with ethanol

under air. The NPs precipitated from the solution. The

product was dissolved in n-hexane in the presence of

oleic acid and oleylamine and re-precipitated with

ethanol. Powders containing Fe3O4 NPs were obtained

by drying the obtained solution.

The magnetite NP dispersion in n-hexane was

added to the polyethylene glycol diacrylate (PEGDA-600)

oligomer containing 2 wt% of radicalic photoinitiator

acrylic resin in amount of 5, 10, and 90 per hundred

resin. The exploited measuring unit indicates the

weight percentage amount of any fluid added to a

certain amount of liquid resin. The obtained mixtures

were stirred reaching a uniform dispersion and the

radical photoinitiator was added at a concentration of

2 wt%. The formulations were coated on silica glass

substrates and the curing reaction was performed

by irradiation with UV lamp with a light intensity

of about 30 mW/cm2 for 1 min under nitrogen.

UV-cured transparent films about 100 lm thick con-

taining the magnetic NPs dispersed in the diamagnetic

matrix were obtained. Samples with different magne-

tite content are indicated in the text as PEG5, PEG10,

and PEG90, respectively. The actual amount of

magnetite NPs calculated by thermogravimetrical

analysis after UV curing was of 0.15, 0.3, 2.7 wt%

for PEG5, PEG10, PEG90 samples, respectively.

Isothermal magnetization of the dried powder was

measured by a Vibrating Sample Magnetometer

(VSM) under a maximum applied field of 20 kOe.

The magnetization was studied in the temperature

interval 10–300 K with using an liquid-He immersion

cryostat.

The magnetization of the PEGx (x = 5, 10, 90)

films was measured in the temperature interval

10–300 K by an ultra-sensitive Alternating-Gradient

Field Magnetometer (AGFM) operating in the field

range -18 kOe \ H \ ?18 kOe and equipped with a

liquid-He continuous flux cryostat. In polymeric

samples the magnetic signal from NPs was very low,

and the diamagnetic contribution of the sample holder

and polymer resin were carefully subtracted from the

measured curves. In all cases, the magnetization was

measured along the magnetic field direction.

Results and discussion

Details about NP structure, composition and morphol-

ogy were published elsewhere (Allia et al. 2011); here

a brief overview is given. SEM images were obtained

on the NP powder and—with some difficulty due to
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the detrimental effect of polymer’s matrix—on the

most concentrated polymeric sample (PEG90); no

such imaging was possible on the much less concen-

trated PEG5 and PEG10 dispersions. An example is

given in Fig. 1a, b. A SEM image of nanopowders

(Fig. 1a) shows that the particles obtained by this

technique are nearly spherical, being characterized by

a narrow size dispersion, have a typical diameter of

8–10 nm and are surrounded by a distinguishable

organic shell about 2 nm thick (light gray shades in

Fig. 1a) which is responsible for the observed planar

ordering and avoids direct contact of magnetic cores.

These observations are in agreement with TEM

images provided by other groups on similar magnetite

particle systems (Guardia et al. 2007; Dutta et al.

2009). In the following, the NPs will be considered as

magnetically monodisperse. Basically, they are made

of magnetite; a maghemite fraction could not be

excluded. The SEM image of PEG90 shows distinct

and well-separated regions of higher contrast recog-

nizable as clusters of agglomerated NPs, with average

size 40 nm. This SEM image is in agreement with the

outcome of magnetic data analysis, as stated in an

ensuing paragraph.

This article is focused on anhysteretic magnetic

properties. The measured NP size implies that all

samples should be superparamagnetic at room tem-

perature. This is never the case, although hysteresis is

almost negligible at room temperature; it becomes

more apparent on lowering T (Allia et al. 2011); on the

basis of the measured FC/ZFC curves, blocking occurs

at temperatures below 15 K for PEG5 and PEG10

(Allia et al. 2011), at about 75 K for PEG90.

An anhysteretic magnetization curve can be suit-

ably built up by averaging the two branches of a

narrow loop (Allia et al. 1999). The low-field suscep-

tibility v of the anhysteretic magnetization curve is

identical to the average of the slopes of the ascending

and descending loop branches around the respective

coercive fields, as expected. In our samples, the room-

temperature magnetization curves are fitted by a single

Langevin function, in agreement with the SEM

observation of nearly monodisperse NPs.

The temperature behavior of v(S)/v(300 K) is

reported in Fig. 2 for all samples. The experimental

curves are characterized by an increase of v with

decreasing temperature, followed by a drop of the

susceptibility at low T. However, sharpness and

position of the susceptibility peak strongly differ from

sample to sample. The absolute value of the suscep-

tibility (dimensionless in Gaussian units) is shown in

Fig. 3, where a logarithmic scale must be used because

the data differ by orders of magnitude; these values are

in agreement with the different degree of dilution of

the NP system in our samples.

As known, in paramagnetic materials, where the

magnitude of the magnetic moments associated to

magnetic ions does not change with temperature, the

physically significant information can be extracted

plotting 1/v as a function of temperature. In the present

case, however, the magnetic moment on each NP

weakly depends on temperature. In the simplest case

of an ideal superparamagnetic material containing

monodisperse NPs, described by a single Langevin

function:

M ¼ NlL
lH

kT

� �
ð1Þ

where l is the magnetic moment, N the number of NPs

per unit volume and the saturation magnetization is

Ms = Nl, the function 1/v can be cast in the form:

1

v
¼ 3Nk

T

M2
s

� �
ð2Þ

Therefore, the inverse susceptibility 1/v for a NP

system should be plotted against T/Ms
2. This is done in

Fig. 4 for our samples.

Fig. 1 a Contrast-enhanced Scanning Electron Micrograph of

iron oxide NPs capped with oleic acid; b SEM image of

PEGDA90 polymeric dispersion
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The curves show that the ideal Curie-law corre-

sponding for an ideal SP system is never observed,

even in the most dilute polymeric sample. At high

temperature, a linear behavior is indeed measured;

deviations from linearity at very low temperatures can

be safely ascribed to some type of particle blocking;

however, the straight lines constantly intercept the

temperature axis at negative values, and are described

by the law:

1

v
¼ 3Nk

T þ h
M2

s

� �
ð3Þ

where h is a positive constant. A similar behavior of

1/v has been observed in a large number of different

NP systems (Söffge and Schmidbauer 1981; O’Grady

et al. 1983; El-Hilo et al. 1992; Gonzalez et al. 1998;

Tartaj et al. 2004). Usually this circumstance is

explained saying that the observed ‘‘paramagnetic

Néel temperature’’ h implies a predominant antiferro-

magnetic interaction among magnetic moments. The

origin of the antiferromagnetic interaction is attributed

to dipolar coupling. Some numerical models and

theories support such assumption (Sauer 1940;

Fig. 2 Temperature behavior of the initial susceptibility of

samples containing magnetite NPs. Values are normalized to

v(300 K); lines are guides for the eye

Fig. 3 Absolute initial susceptibilities of all studied samples as

functions of temperature

Fig. 4 Inverse susceptibility plotted as a function of the

quantity T/Ms
2 for all studied samples. Straight lines are fits to

high-temperature data
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Luttinger and Tisza 1946; El-Hilo et al. 1992;

Kechrakos and Trohidou 1998). However, here this

explanation seems to be put in jeopardy when the

following facts are considered:

(a) the ‘‘paramagnetic Néel’ temperatures’’ one obtains

from our fits are very high, amounting to about

175 K in PEG5, 290 K in PEG10, and 990 K in

PEG90; these high values would necessarily

imply the existence of an antiferromagnetically

ordered phase which is instead not observed at

the temperatures of interest here;

(b) the antiferromagnetic arrangement is just one of

the many possible low-temperature ordered states

which are expected to emerge in NP systems. In

certain cases, a tendency toward ferromagnetic

arrangement has been predicted also (Luttinger

and Tisza 1946). In random dipole systems,

frozen spin-glass states are possible also

(Dormann et al. 1988; Chantrell et al. 1991);

there is no general agreement about a specific role

of dipolar coupling in truly favoring an antipar-

allel arrangement of magnetic moments.

Therefore, the presence of a negative intercept of the

high-T 1/v straight line has no univocal explanation.

Such an experimental evidence can be naturally

explained by the so-called ISP model (Allia et al.

2001a), which has been proposed in order to describe,

in a simplified way, the temperature behavior of the

magnetization curves measured in a system of isolated

NPs affected by a weak but non negligible dipolar

interaction. In this approach, the magnetization is

thought of as described by a modified Langevin curve

where the fictive temperature T* is related to a r.m.s.

dipolar energy term eD through the relation:

T� ¼ eD

k
¼ a

l2

d3
ð4Þ

where a is a positive constant of the order of unit

(Vugmeister and Glinchuk 1990; Panissod and Drillon

2002), l is the magnitude of the monodisperse

magnetic moments, d is the mean interparticle

distance. The ISP model prediction is:

1

v
¼ 3Nk

T

M2
s

� �
þ 3a ð5Þ

whose intercept with the horizontal axis is negative.

According to this view, the presence of a ‘‘Néel’s

temperature’’ is not, by itself, the hallmark of a

predominantly antiferromagnetic interaction; it emerges

instead as an outcome of the presence of dipolar

interactions among NPs, independent of their sign.

Fitting the experimental data to Eq. 5, the quantities

N and a are easily obtained; using l = Ms/N one then

obtains l and T* = aNl/k. The interacting SP is an

intermediate state between the ideal SP regime and the

blocked-particle regime (Allia et al. 2001a). When a

ISP system is fitted to a standard Langevin curve,

effective moments and an effective dipole density are

obtained, according to specific transformation rules.

The predictions have been verified in many systems

(Allia et al. 2001a, b; Knobel et al. 2004; Franco et al.

2005; Péter et al. 2006).

Applying the ISP model to our data, one obtains the

values reported in Table 1. Owing to the temperature

dependence of l, the values of this parameter and of

T* have been referred to T = 10 K (which corre-

sponds to the maximum of both quantities).

Looking at the results of Table 1, one can draw the

following conclusions:

(a) in the dried powder, PEG5 and PEG10 the true

moments turn out to be quite similar. These

systems contain the same NPs, whose mean

diameter is D = 8 nm (Allia et al. 2011). The

estimated moments are all very close to the

predicted value (1.5–2 9 10-16 emu) obtained

using Ms & 500 emu/cm3 for the saturation

magnetization of magnetite at 10 K (Allia et al.

2011). The magnetic ordering units in these

samples are basically the individual NPs, as

expected in PEG5 and PEG10 in reason of the

great dilution in the polymeric matrix; appar-

ently, the oleic acid shell still surrounding the

NPs in the dried powder is effective in disentan-

gling their magnetic behavior.

(b) in PEG90, the estimated moment is definitely

higher than in the other samples, indicating that

here the NPs are in close contact and their

magnetic individuality is lost. The mean number

of NP per single cluster turns out to be of the

order of 20; such a conclusion is supported by the

much higher NP concentration in PEG90 with

respect to the two other polymeric samples. This

conclusion is in agreement with direct observa-

tion (Fig. 1b).

(c) in all polymeric samples, the resulting values of

NP density N and moment magnitude l are not
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sufficient to explain the measured value of T*.

This difficulty is removed thinking that N is a

mean NP density in the material. However, many

experimental data and observations with a few

exceptions (Compton 2007) point to the exis-

tence of significant fluctuations in the NP density

in nanocomposite polymeric materials contain-

ing magnetic NPs, either metallic or insulating,

either grown within the matrix precursor or

incorporated in it by mixing (Mayer 1998;

Corbierre et al. 2001; Balazs et al. 2006; Sung

et al. 2003; Chatterjee et al. 2009; Hall et al.

2009). These fluctuations can be related either to

a specific morphology of polymeric hosts, or

more generally to attractive forces among parti-

cles which act during NP growth or mixing.

Concentration fluctuations can extend up to

several hundreds of nanometers (Corbierre

et al. 2001; Chatterjee et al. 2009) and can

involve NP association or aggregation.

Our analysis indicates that in these samples also the

NPs form large aggregates, where their density is

much higher than the average (although the oleic acid

shell coating, still present, prevents direct contact of

adjacent magnetite cores), surrounded by regions of

much lower NP density. In an idealized case, we

assume that these aggregates are separated by regions

where no particles at all are present. The NP density

within each aggregate needed to account for the values

of T* is indicated as N0 in Table 1, where the

interparticle center-to-center distance within aggre-

gates (d0) is given too.

The following picture emerges: the dried powder is

homogeneous, the NPs (bare diameter 8 nm) are at

mean distance of 20 nm; recalling that the oleic acid

shell is about 2 nm thick, the NP effective diameter is

12 nm; the larger distance obtained here is compatible

with imperfect powder compaction; in the aggregates

of PEG5 the NPs (same bare diameter) are at a mean

center-to-center distance of 16 nm; this confirms that

they are not in contact and can order individually; in

the aggregates of PEG10 the NPs are at a mean

distance of 14 nm, and a similar conclusion can be

drawn; in PEG90, the magnetic units are agglomera-

tions of about 20 NP in close contact; in turn, these

agglomerates—whose size is estimated to be

20–25 nm—are still fairly well separated and can still

order individually, being at a mean distance of 29 nm.

This explains why T* is so high in this material;

moreover, the overall temperature behavior of the

susceptibility v approaches the standard behavior in a

ferromagnet, where it is basically constant with T.

Finally, the r.m.s. dipolar energy eD calculated

according to Eq. 4 with a % 1 is reported in the last

column of Table 1. For comparison, the anisotropy

energy E0 = KanV associated to nearly spherical, 8 nm

magnetite NPs amounts to about 2.7 9 10-14 erg,

Kan : K1 being in this case the cubic crystal anisot-

ropy constant. The value K1 % 1 9 105 erg/cm3 is

appropriate in this case (Allia et al. 2011). Therefore,

all estimated dipolar energies are of the same order of

magnitude of, if not greater than E0.

ISP-model scaling laws

The ISP model predicts two definite scaling regimes: a

high temperature one, corresponding to T � T*,

where m = M/Ms is a homogeneous function of H/T

(standard SP scaling); a lower-temperature one, cor-

responding to T � T*, where m becomes a homoge-

neous function of the ratio H/Ms (ISP scaling) (Allia

et al. 2001a). This can be viewed by writing the ISP

reduced magnetization for monodisperse NPs as

Table 1 Magnetite nanoparticle concentration N, mean inter-

particle distance d (both referred to the entire sample), true

magnetic moment l and dipolar temperature T* of all studied

materials; magnetite nanoparticle concentration N0, and mean

interparticle distance d0 in NP aggregates; r.m.s. dipolar energy

and characteristic barrier fluctuation rate

Sample N (cm-3) d (nm) l (emu)

(T = 10 K)

T*

(T = 10 K)

N0 (cm-3) d0

(nm)

eD (erg)

(T = 10 K)

s2
-1 (Hz)

Dried powder 1.30 9 1017 20 2.52 9 10-16 55 1.30 9 1017 20 1.7 9 10-14 4.9 9 108

PEG5 9.94 9 1014 100 1.67 9 10-16 160 2.64 9 1017 16 2.0 9 10-14 6.6 9 108

PEG10 1.79 9 1015 82 1.53 9 10-16 200 3.97 9 1017 14 2.7 9 10-14 9.1 9 108

PEG90 1.83 9 1015 81 4.95 9 10-15 6,100 4.22 9 1016 29 5.0 9 10-13 3.1 9 109

J Nanopart Res (2011) 13:7277–7293 7283

123



m ¼ M

Nl
¼ L

lH

k T þ T�ð Þ

� �
¼ L

MsH

NkT þ aM2
s

� �
ð6Þ

Either of the two scaling laws applies in depen-

dence of which one of the addends at the denominator

is predominant. Both addends are reported in Fig. 5 as

functions of temperature for PEG5 and PEG90, i.e.,

the most dilute and the most concentrated polymeric

sample. In PEG5, the NkT line crosses the aMs
2 curve at

about 130 K, so that this temperature broadly divides

the temperature range in two regions, one

(T � 130 K) characterized by the SP scaling law,

the other (T � 130 K) characterized by the ISP

scaling. This prediction is experimentally verified in

Fig. 6. In PEG90, the aMs
2 curve is constantly well

above the NkT line (see Fig. 5), so that the ISP scaling

is predicted to occur everywhere; Fig. 7 shows that

this is indeed the case. This analysis confirms the inner

coherence of the ISP model.

However, in spite of its ability to describe the

magnetic behavior of a NP system over an extended

temperature range, the ISP approach involves a rather

unconventional treatment of the Langevin function,

consisting in the introduction of a fictive temperature

in the denominator of its argument. Usually, mag-

netic interactions of different types (ferromagnetic,

antiferromagnetic, dipolar,…) among localized mag-

netic moments are depicted in the mean field

approximation by adding an effective field to the

numerator of the argument of the Brillouin or

Langevin function.

Therefore, the ISP model could appear to be more a

suitable representation than a real explanation of the

magnetic behavior of NP systems. An attempt to

establish the ISP theory on more accurate physical

grounds is done in the following section.

Physical grounds of the ISP model

In monodisperse magnetic NP systems each NP carries

a mesoscopic magnetic moment l (of the order of

1 9 10-16 emu) and the mean interparticle distance

d is typically of the order of 10 nm, so that the r.m.s.

intensity of the dipolar field [given by al/d3 (Zhang

and Widom 1995; Panissod and Drillon 2002)] and of

the associated dipolar energy (al2/d3) can reach

substantial values. Usually the dipolar interaction is

described with reference to static properties.

A close analogy exists between effects related to

dipolar interaction in arrays of isolated electric

(Vugmeister and Glinchuk 1990) and magnetic (Pa-

nissod and Drillon 2002) dipoles. However, electric

dipoles are typically associated to specific impurity

atoms, so that a fully quantum approach is needed and

the interaction has measurable effects at very low

temperatures. The temperature where electric dipolar

interaction plays a role is given by the ratio Np2/

k (in Gaussian units), N being the dipole concentration,

p the electric dipole moment per atom, and k the

Boltzmann’s constant (Fiory 1971; Vugmeister and

Glinchuk 1990; Zhang and Widom 1995). Using the

values of N and p appropriate to polarizable dielectrics,

this temperature is in the range 1–10 K (Fiory 1971;

Vugmeister and Glinchuk 1990). For electric dipoles,

the simplest theories are Lorentz-field models: the real

electric field acting on a given dipole is the applied

field corrected by a ‘‘dipolar field’’ Hloc which acts to

reduce it. For magnetic dipole systems, mean-field

theories depicting a predominantly antiferromagnetic

Fig. 5 Comparison between competing terms at the denomi-

nator of the modified Langevin function. See text for details
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coupling among moments lead to similar conclusions.

However, mean-field theories do not consider the

effects associated to the real distribution of point

dipoles in a material. In order to gain a deeper insight

on the problem, a number of numerical simulations

exploiting a variety of specific techniques have been

done (Panissod and Drillon 2002). Their results are

however sometimes contradictory, evidencing a strong

influence of the adopted starting/boundary conditions

on the actual outcome of the simulation. In particular,

no compelling evidence emerges that dipolar interac-

tion in real 3D systems has a predominantly antifer-

romagnetic character, i.e., one which definitely favors

antiparallel alignment of nearby magnetic moments.

Indeed, in 3D systems of magnetic NPs a whole

spectrum of site-dependent dipolar energies ranging

from positive and negative is expected to exist in the

material, leading to a collective state which has

similarities to spin glasses and has been termed dipole

super-spin glass (Morup et al. 2010). However, it

should be noted that in super-spin glasses the function

1/v typically follows a Curie–Weiss law with a

paramagnetic Curie temperature (positive intercept

with the temperature axis) (Djurberg et al. 1997;

Fiorani et al. 1999).

We point out that the dipolar field acting on a given

magnetic moment, and the associated energy, are not

only characterized by their magnitude; these quantities

are rapidly fluctuating in time. However, such a

dynamical effect is usually disregarded in virtually all

approaches which are focused on equilibrium or

stationary properties.

The ISP model is explicitly based on the recogni-

tion that the dynamical aspects of the dipolar interac-

tion in a NP system should not be neglected even when

equilibrium/stationary properties are addressed.

The local dipolar field Hloc = al/d3 can be

expressed as aMs, Ms(T) being the saturation magne-

tization at temperature T (Panissod and Drillon 2002).

The field fluctuates at the characteristic rate s2
-1 =

cHloc, where c is the gyromagnetic ratio. A value

c % 1.5 9 107 Hz/Oe is appropriate to magnetic NPs

(Xi et al. 2006) so that s2
-1 is in the range 108–109 Hz

(see Table 1). The local dipolar field entering s2
-1 has

been obtained using the local magnetization N0l,

where N0 is the NP density in a typical aggregate, as

discussed before. The local magnetization differs from

the average magnetization (which is the measurable

quantity, and is actually measured from isothermal

magnetization loops) by a constant factor only, i.e., the

ratio N0/N, so that it exhibits the same temperature

behavior; therefore, the fluctuation rate s2
-1 is weakly

dependent on temperature between 10 and 300 K.

The fluctuation rate is basically the inverse of the

moment–moment (transverse) relaxation time (Slichter

1996), so it is related to the decoherence of a moment’s

precessional motion around the field axis, and is fairly

independent of temperature. In fact, the transverse

relaxation time is determined by microscopic interaction

Fig. 6 Scaling laws of reduced magnetization in PEG5 sample.

Top panel: standard SP scaling at high temperatures

(T � 130 K); bottom panel: ISP scaling at low temperatures

(T � 130 K)
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processes which conserve the energy in a static field

and therefore do not involve an exchange of energy

between the precessing moment and the environment

(Slichter 1996). In the present case s2
-1 & Hloc &MS,

so it is a weak function of T indeed. As an example, the

fluctuation rate for PEG10 is reported in Fig. 8 in the

interval 10–300 K (full black symbols united by a

dashed line).

In magnetic NPs, thermally activated energy barrier

crossing is the basic mechanism for magnetization

reversal/rotation. The barrier is thought of as provided

by the anisotropy energy, E0 = KanV, Kan being the

dominant anisotropy constant and V being the NP

volume. The effective magnetic anisotropy can be the

sum of many terms (Yanes et al. 2010). In some

approaches, Kan was suitably modified to account for

interparticle interactions, reducing a many-body prob-

lem to a single particle one (Dormann et al. 1999).

This barrier is generally assumed to be static.

Here we explicitly consider that the barrier is given

by E ¼ E0 þ ~EðtÞ; the dipolar energy ~EðtÞ = eD f(t)

being a random function of time whose magnitude is

comparable to E0; f(t) is a Gaussian white noise

process.

The problem of the activated crossing of a fluctu-

ating classical energy barrier has received much

attention in recent years, and has been addressed

using different approaches (Doering and Gadoua

1992; Bier and Astumian 1993; Pechukas and Hänggi

1994; Boguñá et al. 1998). The effect of a fluctuating

barrier on the escape rate of a generalized ‘‘particle’’

from either well of a double-well potential landscape

is different in dependence of the ratio between particle

escape rate and fluctuation rate. The most interesting

theoretical result of the work by Doering and Gadoua

Fig. 7 Scaling laws of reduced magnetization in PEG90

sample. Standard SP scaling is not respected below 150 K

(top panel); there, ISP scaling holds instead (bottom panel)

Fig. 8 Rates involved in the thermally activated process of

barrier crossing for PEG10. Filled squares barrier fluctuation

rate; dashed line magnetization switching rate across a static

barrier according to standard Arrhenius kinetics; filled circles
expected magnetization switching rate across a fluctuating

barrier according to the DG model (see text for details); open
triangles magnetization switching rate across a static barrier

according to modified Arrhenius kinetics
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(DG) is the prediction of an interesting resonance

effect (Doering and Gadoua 1992). The original DG

paper provides an analytic expression for a specific

case, where the barrier symmetrically fluctuates

between a high positive value and a high negative

value, so that the average value of the barrier is zero;

numerical approaches must be used to treat more

realistic cases (Doering and Gadoua 1992; Bier and

Astumian 1993); an useful approximating formula has

been proposed by Boguñá et al. (1998) (BPML) in the

case of small amplitude of the fluctuating term with

respect to E0.

In the present case, the static anisotropy barrier E0

is modified in amplitude by the fluctuating dipolar

energy. According to Table 1, the amplitude eD of the

fluctuating term is comparable to, and even higher

than the anisotropy barrier E0 = 2.7 9 10-14 erg.

Therefore, the standard description of the magnetic

behavior of a NP has to be substantially modified.

The escape rate of the magnetization vector across a

static energy barrier is given by the usual Arrhenius

law:

tesch i�1
Arrh¼ s�1

0 e�
E0
kT ð7Þ

whose temperature behavior is shown in Fig. 8 (dotted

line). The accepted value s0
-1 = 1 9 1010 Hz has

been used (Panissod and Drillon 2002).

At high T, the barrier fluctuates at a rate lower than

the escape rate, so that the mean first-passage time

(MFPT) is weakly influenced by the fluctuation of the

barrier. When the temperature is decreased, however,

the barrier fluctuates at a rate which rapidly becomes

much higher than the Arrhenius escape rate. Accord-

ing to the accepted views about fluctuating-barrier

crossing times, the real escape rate of the magnetiza-

tion must increase, being substantially driven by the

barrier fluctuation rate.

Two cases will be considered here.

(a) The fluctuating term ~EðtÞ is comparable to or

larger than the static barrier. This condition applies to

the three polymeric samples. In this case, using the

original DG formula is quite appropriate, also because

more realistic cases exhibit a similar behavior, though

being inherently not described by an analytical

expression (Doering and Gadoua 1992; Boguñá et al.

1998).

In order to apply the DG approach one must

transform the escape time into their dimensionless

MFPT parameter hsiDG (called hsiT/L2 in their

original paper) through:

sh iDG¼
kT

nL2
tesch ifluct ð8Þ

where n is the viscous damping coefficient of the

medium. This expression applies to the real over-

damped motion of a mass point in space at the

temperature T, L being the distance between the two

potential wells separated by the barrier. In our case, the

expression must be properly modified in order to be

applied to the rotation of the magnetization vector.

When the barrier crossing leads to the rotation of 180�
of a magnetic moment, the following substitutions

apply: L ? p and n ? kl/c where k is the dimen-

sionless damping constant of the Landau–Ginzburg–

Gilbert (LLG) equation (Bertotti 1998). In fact, the

precessing magnetic moment vector l is submitted to a

damping torque related to the damping field Hdamp:

cHdamp ¼ �k
om

ot

sdamp ¼ �l
k
c
om

ot
� �n0

om

ot

ð9Þ

where m is the reduced magnetization l/l. The

substitution n ? kl/c proceeds by analogy with the

space displacement case, where the damping force is

(-n 9 velocity). As a consequence, the dimensioned

escape rate is written as:

tesch i�1
fluct¼

ckT

klp2
sh i�1

DG ð10Þ

The DG and BPML models provide analytical

expressions linking the dimensionless escape time

(MFPT), i.e., hsiDG, to the dimensionless fluctuation

rate of the barrier (called hciL2/T by DG and k by

BPM; called here sbarr
-1 to avoid confusion of symbols).

The dimensionless quantity sbarr
-1 is clearly related to

the dimensioned fluctuation rate s2
-1 by:

s�1
2 ¼

ckT

klp2
s�1

barr ð11Þ

For a barrier fluctuation rate s2
-1 % 109 Hz, the

common logarithm of the dimensionless barrier rate is

in the range [-1, 1.5]; in this region the common

logarithm of the dimensionless escape rate takes

comparable values: the magnetization reversal is

triggered by the barrier fluctuation. Taking k % 0.1,

which corresponds to a generally accepted value for
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NP systems (Tsiantos et al. 2003; Xi et al. 2008;

Hasegawa et al. 2009), it is possible to apply the DG

model using our experimental data to obtain the

expected value of htescifluct
-1 at different temperatures.

The outcome of the procedure is shown in Fig. 9 for all

polymeric samples. Here, the lines correspond to the

DG analytical expression calculated for selected

values of the E0/kT ratio, which is the only adjustable

parameter in the DG’s theory (Doering and Gadoua

1992); the symbols are the values of the dimensionless

escape time/rate hsiDG/hsiDG
-1 obtained from the DG

formula using the experimental values of E0/kT, l(S)

and s2
-1 = c l/d03 appropriate for each measurement

temperature; they are plotted in Fig. 9 as functions of

the dimensionless abscissa sbarr obtained from Eq. 11.

Experimental data taken at different temperatures

cross the family of DG lines, which are the loci of

points of constant E0/kT ratio. Note that experimental

data taken at higher temperatures lie in the left-hand

side of Fig. 9. Representative points for PEG90 are

markedly shifted to the right because in this case the

barrier height is much higher than in PEG5 and PEG10

which exhibit nearly equivalent curves (see Table 1).

The same result is better shown using dimensioned

quantities for the rates, and temperature as an

independent parameter, as in Fig. 8 (full circles): the

escape rate remains high down to low temperatures.

Figure 8 indicates that at high temperature the

escape rate predicted by the DG theory (full circles)

can be larger than both the barrier fluctuation rate and

the standard Arrhenius rate for a non-fluctuating

barrier, considered one at a time. In fact, it is easy to

show that the escape rate predicted by the original DG

theory exceeds the barrier fluctuation rate, for all

values of E0/kT, when the temperature is high enough

that thermally activated barrier crossing becomes

the predominant effect, independent of the fact that

the barrier fluctuates or not. On the other hand, the

dimensioned DG escape rate can be higher than the

Arrhenius rate calculated for a constant barrier height:

the enhancement factor is exactly provided by barrier

fluctuation. This result critically depends on the value

of the Gilbert damping parameter k. We recall that the

DG model and a number of similar theories involving

barrier crossing effects are valid in the overdamped

regime of particle motion between adjacent energy

minima; in the case of magnetic moment reversal, the

overdamped regime condition corresponds to neglect

the precession term with respect to the damping term

in the LLG equation. In this article, a value of k
applicable to magnetic NPs and available in the

literature has been used. The damping term in the LLG

equation is basically k(dm/dt); the rate (dm/dt) corre-

sponds to the dimensioned magnetization switching

Fig. 9 Dimensionless

escape rate as a function of

dimensionless barrier rate.

Lines DG theory (see text for

details). Symbols values for

all polymeric dispersions,

obtained from experimental

data taken at different

temperatures
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rate, much higher than the Larmor precession fre-

quency at room temperature and below, over an

extended temperature interval. A value of k of the

order of 0.1 is compatible with an overdamped regime.

If k is increased above 0.1, the predicted escape rate

becomes much lower, as shown in Fig. 10, where the

DG rates for k = 0.1, 1, 10 are compared with the

barrier fluctuation rate and the Arrhenius rate, respec-

tively. For k = 0.1, the DG rate is everywhere larger

than the Arrhenius rate; this is no longer true for

k C 1, where at high temperature the kinetics of

barrier crossing would be dominated by the standard

Arrhenius term, the fluctuating barrier effect becom-

ing negligible in this limit. However, this is perfectly

equivalent to say that the NP system is in the true

superparamagnetic regime over an extended temper-

ature interval (e.g., above about 70 K for k = 1). This

is however never observed (see Figs. 6, 7); we can

therefore assume that the choice adopted for the value

of the Gilbert damping constant is basically correct.

The result depicted in Fig. 9 is in agreement with

the introduction of an additional fictive temperature T*

to the denominator of the Langevin function (if a static

barrier is considered, the magnetization reversal

occurs at a rate corresponding to a higher tempera-

ture). In particular, the transformation operated on the

Langevin function:

L
lH

kT

� �
! L

lH

k T þ T�ð Þ

� �
ð12Þ

implies that the escape rate from the static potential

well is to be modified to:

tesch i�1
ARRH! tesch i�1

T� ¼ s�1
0 e
� E0

k TþT�ð Þ ð13Þ

where the actual temperature is increased by the term

T*. This quantity is reported in Fig. 8 (open triangles)

and should be compared with htescifluct
-1 . In view of the

many assumptions done, of the uncertainty about

the parameter values and of the partial inadequacy of

the DG formula to treat this specific case, the

agreement could not be better. The order of magnitude

of htescifluct
-1 is perfectly reproduced by tesch i�1

T� .

The expression for the T*-corrected Arrhenius

escape rate (Eq. 13) may resemble to a Vogel–Fulcher

(VF) law (see, e.g., Raoult 2000); however, the

denominator of the VF expression contains a term

(T -TV), where the Vogel temperature TV indicates

that some critical quantity (such as viscosity or

relaxation time, depending on the considered system)

is diverging there. In magnetic systems, a VF law was

invoked to explain the behavior of spin glasses

(Souletie and Tholence 1985), where it was associated

to evidence for a glass transition corresponding to

cooperative freezing of magnetic moments. In those

systems, the standard Arrhenius law emerges when the

interaction between magnetic moments (or their

concentration) is strongly decreased (Tholence

1980). The VF law was derived for interacting

magnetic NP systems also (Dormann et al. 1988,

1999), at least when the interaction is weak with

regard to other anisotropy energies. In all these cases,

interaction among moments is viewed as instrumental

in establishing a frozen magnetic configuration; in the

present approach, we point out that dipolar interaction

can provide an extra effect of dynamical disorder via

the barrier fluctuation mechanism; in a sense, Eq. 13

could be referred to as representative of an ‘‘anti-VF’’

behavior.

The two views are in principle not contradictory, as

they apply to different temperature regions of the same

thermodynamic system. Magnetic interactions among

moments are generally recognized as the cause of low-

temperature collective blocking/freezing of either

isolated spins (as in spin-glasses) or magnetic

moments (in NP systems), in competition or in

concurrence with single-particle blocking. Collective

Fig. 10 Effect of Gilbert damping constant value on the

magnetization switching rate across a fluctuating barrier for

PEG10. Filled squares barrier fluctuation rate; filled line
magnetization switching rate across a static barrier according

to standard Arrhenius kinetics
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blocking is heralded by critical slowing down of

moment fluctuations and a simultaneous increase in

the magnetic coherence length. In the case of magnetic

NPs, the increase in the moment–moment correlation

length gives rise to coherence domains, i.e., regions

where neighboring moments fluctuate almost coher-

ently, resulting in a strong reduction of the magnitude

of the fluctuating component of each energy barrier

E = E0 ? ~EðtÞ; and inhibiting the ISP effect. So, the

same interaction which results in the ISP kinetics at

higher temperature can be instrumental to produce a

blocked state described by a Vogel–Fulcher kinetics at

lower temperature. A comprehensive model of the role

of dipolar interactions on the magnetic moment

dynamics encompassing an extended temperature

interval is however still lacking.

(b) The fluctuating term ~EðtÞ is smaller than the

static barrier. This condition applies to the dried

powder sample. In this case, using the approximate

BPML formula is more appropriate. Following the

same steps as in point (a) above, one finds the results

reported in Fig. 11. Again, the escape rate remains

high down to low temperatures (even if with a more

accentuated downward bending) in fairly good agree-

ment with the modified Arrhenius law. In this case, the

low-temperature magnetic response of the sample is

dominated by the static barrier, so that magnetization

switching is more substantially slowed down, and the

ISP model begins to lose its validity below approxi-

mately 30 K. This is in agreement with the steep

increase of coercivity measured in this material below

30 K (Allia et al. 2011), which indicates genuine NP

blocking.

In the light of the previous comments, the 1/v
versus T plots of Fig. 4 can be coherently interpreted

as follows: in all samples, the straight lines correspond

to the regions of validity of the ISP approach; low-

temperature deviations from the straight line imply NP

blocking. However, in the dried powder, the predom-

inant role is played by single-particle blocking

because the small barrier fluctuations are unable to

drastically modify the energy landscape for the

reversing magnetization. In PEG5 and PEG10, single

particle blocking is more effectively hindered by

barrier fluctuations, which are now significantly

stronger; on the other hand, collective blocking of

magnetic moments [as predicted by the ISP model

(Allia et al. 2001a)] does not occur in the examined

temperature region, because the r.m.s. dipolar energy

kT* is not strong enough; as a consequence, low

temperature deviations from the linear law are less

apparent in both samples. In PEG90, single particle

blocking is completely prevented by the huge barrier

fluctuations; however, the dipolar interaction is now so

strong that collective blocking of magnetic moments

occurs in the examined temperature region; conse-

quently, low-temperature data are observed to again

deviate from the linear behavior.

Conclusions

The ISP model has been successfully applied to study

the magnetic behavior of nearly monodisperse mag-

netite NPs, either prepared in the form of a dried

powder, or dissolved in a polymeric matrix at different

degrees of concentration. The magnetic moments

which individually respond to an applied field are

associated to individual NPs in the dried powder and in

dilute polymeric samples; in the most concentrated

sample, the analysis indicates that the individual

Fig. 11 Rates involved in the thermally activated process of

barrier crossing for the dried powder. Filled squares barrier

fluctuation rate; dashed line magnetization switching rate across

a static barrier according to standard Arrhenius kinetics; filled
circles expected magnetization switching rate across a fluctu-

ating barrier according to the BPML model (see text for details);

open triangles magnetization switching rate across a static

barrier according to modified Arrhenius kinetics
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magnetic unit is comprised of 20 agglomerated NP on

average. The temperature extension of the ISP regime

vary from sample to sample according to the model’s

predictions.

An additional proof of the soundness of the ISP

model is provided by its inherent ability to predict

different scaling laws for the reduced magnetization in

different temperature ranges. Scaling laws and scal-

ing-law transformations are respected by all examined

materials.

Although the ISP model is an approximate theory,

its general validity has been strengthened by putting in

evidence its links to the existing views about the

kinetics of thermally activated crossing of a randomly

fluctuating barrier. By means of a semi-quantitative

treatment we have shown that introducing a fictive

temperature at the denominator of the argument of the

Langevin function has a deep physical meaning: in this

way, the central role played by the dynamical prop-

erties of dipolar interaction is properly taken into

account. The fluctuation of the dipolar field, which

occurs at high rates at any finite temperature, adds to

thermal effects and effectively contributes to increase

the disorder of magnetic moments, in contrast to the

ordering effect of an applied magnetic field. This

justifies introducing an additional temperature at the

denominator of the Langevin function’s argument

instead of an additional field at the numerator.

In our opinion, the present conclusions about the

validity of the ISP model do not apply to the studied

materials only; it is believed that they can be

applied to many systems of magnetic NPs as well, at

least well above blocking temperature. Of course the

model, being aimed more to describe a general

behavior than an incidental property, cannot be

straightforwardly applied to any NP material in all

circumstances; features such as: wide distribution of

NP size; shape or aspect ratio distribution; different

aggregation states, can give rise to a variety of

magnetic effects not easily encompassed by a single

theory. Nevertheless we believe that the ISP model

may be a useful reference and a starting point for

more accurate treatments.
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