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The magnetic hysteresis of granular magnetic systems is investigated in the high-temperature limit (T@

blocking temperature of magnetic nanoparticles!. Measurements of magnetization curves have been performed
at room temperature on various samples of granular bimetallic alloys of the family Cu1002xCox (x
55 –20 at. %) obtained in ribbon form by planar flow casting in a controlled atmosphere, and submitted to
different thermal treatments. The loop amplitude and shape, which are functions of sample composition and
thermal history, are studied taking advantage of a novel method of graphical representation, particularly apt to
emphasize the features of thin, elongated loops. The hysteresis is explained in terms of the effect of magnetic
interactions of the dipolar type among magnetic-metal particles, acting to hinder the response of the system of
moments to isothermal changes of the applied field. Such a property is accounted for in a mean-field scheme,
by introducing a memory term in the argument of the Langevin function which describes the anhysteretic
behavior of an assembly of noninteracting superparamagnetic particles. The rms field arising from the cumu-
lative effect of dipolar interactions is linked by the theory to a measurable quantity, the reduced remanence of
a major symmetric hysteresis loop. The theory’s self-consistence and adequacy have been properly tested at
room temperature on all examined systems. The agreement with experimental results is always striking,
indicating that at high temperatures the magnetic hysteresis of granular systems is dominated by interparticle,
rather than single-particle, effects. Dipolar interactions seem to fully determine the magnetic hysteresis in the
high-temperature limit for low Co content (x<10). For higher concentrations of magnetic metal, the experi-
mental results indicate that additional hysteretic mechanisms have to be introduced.@S0163-1829~99!01037-1#
ai
er

ra
t-

e

re
s
d

s
hy

d
fe

wo

have
nnel

re-
ict.
een
ent

y of

es
n

-
ents
g-
ctor

r-
n is
I. INTRODUCTION

Granular magnetic systems are formed by magnetic gr
or clusters whose size is of the order of a few nanomet
embedded in a nonmagnetic~insulating or metallic! matrix.
The ultrafine solid particles can be obtained by seve
preparation methods~vapor deposition, sputtering, mel
spinning, electrodeposition, mechanical alloying!,1,2 and the
final nanostructure can be usually tailored by specific th
mal treatments~either in furnace or by Joule heating!.3 The
reduced particle size, combined with specific nanostructu
provides the granular systems with a rich variety of intere
ing physical properties, which can be subsequently applie
a varied number of applications~playing a fundamental role
in the area of magnetic recording!.1,2 Besides their obvious
technological relevance, these systems provide a unique
ting to investigate several basic aspects of solid-state p
ics, such as superparamagnetism,4–6 kinetics of crystal nucle-
ation and growth,7,8 spin-glass behavior.9,10 In the last few
years, the interest in granular systems has been reinforce
the discovery of the so-called giant magnetoresistance ef
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occurring when the granular structure is composed of t
metallic elements~e.g., Fe-Ag, Cu-Co!.3,11 More recently,
other systems such as metal-insulator nanocomposites
also shown interesting magnetotransport properties, as tu
magnetoresistance12 and giant Hall effect.13 Owing to the
inherent complexity of the nanostructure, the physical
sponse of such systems is very difficult to model and pred
Therefore, although granular magnetic systems have b
intensively studied during the last decades, they still pres
many striking features which remain unexplained.

Let us consider the magnetic properties of an assembl
noninteracting magnetic particles~with a broad distribution
of sizes and shapes, and randomly distributed easy ax!,
which can be studied in the framework of the well-know
superparamagnetic model.14 The first assumption of the su
perparamagnetic theory is that the atomic magnetic mom
within a particle move coherently, and therefore the ma
netic moment can be represented by a single classical ve
of magnitudem5mat•N, wheremat is the atomic magnetic
moment andN is the number of magnetic atoms in the pa
ticle. In the simplest case, the magnetic-moment directio
12 207 ©1999 The American Physical Society
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determined by a uniaxial anisotropy~of crystalline, or shape
or elastic origin! and by an external magnetic field. Eac
particle has a characteristic relaxation time, which is ess
tially the average time to reverse its magnetic moment fr
one equilibrium state to the other. The relaxation timet is
determined by a characteristic attempt frequency~of the or-
der of 1010 Hz), and by a Boltzmann factor exp(2E/kT),
wherek is the Boltzmann constant,T is temperature, andE is
the effective energy barrier which separates the two equ
rium states. This energy barrier is given by the product of
particle volume times the anisotropy energy densityK of the
particle. If kT@E ~high T or small volumes!, t turns out to
be much shorter than the standard measuring time, and
particle is in the superparamagnetic state. On the other h
if kT!E, t becomes much larger than any observation tim
and the particle magnetization remains blocked in the sa
local energy minimum, so that the particle is known
blocked. For a specific measurement time it is possible
define a temperature which separates both regimes, know
the blocking temperatureTB . It is worth noting that the com-
plexity of the problem makes exact solutions possible only
few limiting cases, such asT50 K for fully blocked par-
ticles ~Stoner-Wohlfarth model15!, or T@TB ~fully super-
paramagnetic limit!.5,16 The systems become even mo
complicated when one takes into account the interacti
among the magnetic entities, which have been undoubt
found in different physical systems by using several exp
mental techniques.3,4,9,17,18Only recently, with the enormou
development of computers and important advances of
techniques of statistical physics, realistic multiparticle s
tems could be reliably simulated using Monte Ca
techniques.19–24In this case, there are many simulation mo
els which make use of different approaches and approxi
tions, and therefore the literature is full of inconclusi
and/or conflicting results. However, recent investigatio
agree that magnetostatic interaction produces an increa
TB , in agreement with experimental findings19,21 ~with an
important exception measured by Morup and Tronc4!. Also,
it was found that dipolar interactions cause a slower deca
the remanence and coercivity with temperature.21 Therefore,
there is much evidence that the interactions among magn
entities can play a fundamental role in the magnetic beha
of granular systems, and can even be responsible for
hysteresis loops measured at room temperature.

In this paper we introduce an analytical theory to descr
magnetic hysteresis arising exclusively from interaction
fects in granular magnetic systems. The introduction o
memory function, which depends on the initial magne
state of the sample, brings about some simple conseque
and the problem is solved within the framework of a sort
mean-field approximation. The theory will be first develop
for an assembly of identical superparamagnetic mome
Extension to the case of distributed superparamagnetic
ments is, however, straightforward, because the moments
treated as statistically independent in a mean-field appro
Most impressive is that the theory allows one to fit expe
mental curves with a high degree of accuracy, with only o
adjustable parameter, namely the mean field resulting f
the total long-range interactions within the sample. For
sake of simplicity~and to avoid discrepancies due to intrins
characteristics of different systems!, in this paper we focus
n-
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only on experimental results obtained from melt-spun Cu-
ribbons at room temperature. However, we believe that
theoretical considerations can be extended to any gran
system which consists of small magnetic particles~‘‘small’’
meaning here that the system would behave as a stan
superparamagnet if the interactions were not present!. In
these categories one can find several artificially prepared
tems, such as metallic granular solids, metal-insulator co
posites~cermets!, hybrid compounds, frozen ferrofluids, an
even many biological and geological systems, such as
rocks, and blood.25 Furthermore, in principle, the theory ca
be also applied to nanocrystalline systems displaying
phases which are ferromagnetic at room temperature, but
result in a ferromagnetic granular system above the C
temperature of the interfacial phase. In this family one c
include extremely soft magnetic materials, such as Fe-
Nb-Si-B ~Ref. 26! or Fe-Zr-B-Cu,27 and hard magnetic ma
terials, such as the so-called spring-exchange magnets in
high-temperature limit.28

II. EXPERIMENTAL

Continuous ribbons of Cu1002xCox (x55,10,15,
20 at. %) were obtained by planar flow casting in He atm
sphere on a Cu-Zr wheel. The quenching parameters w
controlled during the rapid solidification process for all stu
ied compositions in order to get comparable quenching ra
Different ribbon strips of the four compositions~width 5
31023 m, thickness 4 –631025 m) were submitted to dc
joule heating in vacuum, in order to change the number
size of Co particles, as discussed in Ref. 3. dc joule hea
is a technique of fast annealing, where the temperature
metallic sample is rapidly increased by the heat released
constant electrical current. Heating rates of the or
102–103 K/s are routinely obtained.29 During each treat-
ment, the samples were clipped between two copper e
trodes~fixed sample length: 0.1 m!, and submitted to a direc
current ~in the range 1 A<I<10A) for a fixed time (t
560 s). All samples submitted to joule heating will be ide
tified by the symbolJH followed by the value of the annea
ing current.

Magnetization curves were obtained at room tempera
on both as-quenched and annealed ribbon strips. The m
netic moment was measured up to 10 kOe using a vibrat
sample magnetometer~LDJ, model 9500!. The sample
weight was determined by a high-precision electronic b
ance. Symmetric hysteresis loops were obtained star
from the demagnetized state~reached through ac sample d
magnetization! and increasing the applied field to a verte
field value 1HV ranging between 13102 Oe and 1
3104 Oe. The hysteretic magnetization was then measu
between6HV by changing the measurement field at inte
vals of the order of one-hundredth of the vertex-field valu
to get a high resolution and to keep the number of exp
mental points invariant withHV . The low-field region of
loops starting from vertex-field values higher than
3103 Oe was carefully investigated by further increasi
the number of measurements. The overall time for a clo
loop to be completed was of the order of 120 s.

Anhysteretic magnetization curves were obtained as
loci of the cusps of sequential symmetric loops performed



-
f

PRB 60 12 209MAGNETIC HYSTERESIS BASED ON DIPOLAR . . .
FIG. 1. Representative room
temperature hysteresis loops o
two selected Cu1002xCox samples,
shown in them6 vs H representa-
tion ~a! and in theDR vs m repre-
sentation ~b!; m is the reduced
magnetization.
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to HV values progressively increasing from 13102 Oe to
13104 Oe. Asymmetric loops leading to the demagnetiz
state were measured starting fromHV5113104 Oe and
progressively reducing, in a controlled way, the values
both negative and positive vertex-field values.

The analysis of hysteresis loops was performed usin
method of graphical representation, specifically introduce
make clear and more apparent the features of narrow, e
gated hysteresis loops, like the ones found in granular
tems@Fig. 1~a!#. The adequacy of this method has been d
cussed in detail elsewhere.30 Its main features are
summarized here. The two branches of a symmetric hys
esis loop~i.e., one measured between opposite values of
tex field HV) are linearly combined to get the half-sumS
and half-differenceD:

S5
1

2
@M 1~H !1M 2~H !#,

D5
1

2
@M 1~H !2M 2~H !#. ~1!

The half-sumS has been proven to be exactly coincide
with the anhysteretic magnetization curve,30 which may be
fitted to a superposition of Langevin functions.3 Such a fit-
ting procedure will be justified in Sec. IV C. In this way, th
saturation magnetizationMs is obtained with a high degre
of confidence, and the reduced half-summ and half-
differenceDR are derived:

m5
1

2
@m1~H !1m2~H !#,

DR5
1

2
@m1~H !2m2~H !#, ~2!

wherem65M 6 /Ms . DR may be plotted as a function ofm,
as in Fig. 1~b!#. The maximum value of theDR(m) curve is
d
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just the reduced remanencemR . The new representation
strongly amplifies the details of hysteresis loops: the spr
in the experimental data, apparent in Fig. 1~b!#, is almost
undetectable when one observes the usual hysteresis l
@compare with Fig. 1~a!#. The following analysis will make
use of them, DR(m) representation of hysteresis loops. T
reduced remanence is a function of the amplitude ofHV ,
monotonically decreasing forHV→0. This behavior is
shown in Fig. 2, wheremR is plotted vsmV ~the reduced
vertex magnetization, univocally related toHV) for a set of
selected systems. At high values ofHV (mV→1), the
mR(mV) curves always reach a plateau, (mR

max); in other
words, the maximum separation between loop branches s
increasing. These loops will be referred to asmajor loops. In
all studied systems, loops performed usingHV>5
3103 Oe are major loops. Loops performed up to a ver
field smaller than 53103 Oe will be referred to asminor
loops.

III. THEORY OF MAGNETIC HYSTERESIS
IN GRANULAR SYSTEMS

The theory is first developed for an assembly of magne
particles having the same magnetic momentm. In magnetic
granular systems, the magnetic moments are distributed31

extension to a moment distribution being straightforward,
results will be reported towards the end of this section.

The reduced magnetization of such a model system, in
absence of interactions among moments, is simply

m5LS mH

kT D , ~3!

whereL is the Langevin function, defined asL(x)5coth(x)
21/x , wherex5mH/kT. In granular systems, magnetic in
teractions are of dipolar and, possibly, Ruderman-Kitt
Kasuya-Yosida~RKKY !-like type. Let us consider, for the
moment, the effect of a pure dipolar interaction between a
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12 210 PRB 60ALLIA, COISSON, KNOBEL, TIBERTO, AND VINAI
two momentsm i andm j at a distancer i j apart. Such a choice
will be shown later not to be particularly restrictive.

The interaction field of dipolar origin acting on sitei is a
random function of time, changing in magnitude, directio
and sign on a time scale whose characteristic time is
moment-moment relaxation timet2, which in these system
has been estimated to be of the order of a few tenths
nanosecond (t2'2310210 s).32 The external field direction
defining thez axis, thez component of the internal field o
dipolar origin on thei th site is then

Hiz~ t !5(
j

Ai j mz j~ t !5m(
j

Ai j uj~ t !, ~4!

whereAi j 5(3cos2u i j 21)/r i j
3 , u i j being the angle betwee

the line connecting thei th and j th particles and thez axis,
and whereuj5mz j /m is the cosine of the instantaneou
angle between the direction of momentm j and thez axis.
The time average ofHiz ~performed over a time much large
thant2) is zero; similarly, the spatial average at fixed time
the random functionHiz over all magnetic sites is zero. I
spite of this property, the presence of dipolar interactio
significantly affects the equilibrium magnetization of the sy
tem, and its history under a varying external field. In fact,
characteristic time describing the approach to thermal e
librium of the system of moments is the moment-lattice
laxation timet1, which in these systems and around roo
temperature has been estimated to be not much higher
t2 (t1'5310210 s).32 As a consequence, the dipolar inte
action field is still effective in interfering with the therma
fluctuation of thei th moment, because it is not averaged o

FIG. 2. Reduced remanence vs reduced vertex magnetizatio
minor loops for a set of selected Cu1002xCox samples.
,
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during a typical fluctuation event. The local equilibrium sta
of the vectorm, although substantially determined by th
values of absolute temperature and external field, is there
affected to some extent by the dipolar field.

Our point is that this rather complex, statistical effe
which is presumed to be at the basis of magnetic hyster
of these systems, may be accounted for in a comparati
simple way, i.e., by introducing in the argument of th
Langevin function a properly defined ‘‘memory function
d(m,mV), depending on the actual magnetic state (m) and
on the initial magnetic state (mV) of the system. It is this
term which ultimately gives rise to the hysteretic behav
for any given initial magnetization state~vertex magnetiza-
tion! mV . Specifically, the reduced magnetization on upp
~1! and lower~2! branches of a hysteresis loop~that is, for
decreasing and increasing magnetic fieldH, respectively! is

m65LS mH

kT
6d~m6 ,mV! D'LS mH

kT
6d~m,mV! D , ~5!

where the first expression indicates that, in principle,m6

should be obtained by solving an implicit equation, while t
second expression means that, to a good deal of approx
tion, the argument in the memory function may be sub
tuted by the anhysteretic reduced magnetization,m.

In this view, the memory function indicates that an
change in magnetic order is hindered by the weak magn
interactions existing among magnetic-metal particles. In fa
the stability of the system against variations of any exter
parameter, such as the applied field, is slightly increased
the cumulative effect of magnetic interactions.

Thea priori requirements for the memory function are th
following:

~a! Eq. ~5! must generateclosedsymmetric loops, i.e., the
magnetization value after a complete symmetric loo
(1HV→2HV→1HV) must be coincident with the initia
value;

~b! d(m,mV) must be larger where larger changes ofm
with H take place~this property makes the system of inte
acting moments similar, in a sense, to a continuous mech
cal system characterized by an intrinsic viscosity!;

~c! d(m,mV) must be an even function ofm, reducing to
zero forH→6` andm→61 ~i.e., the memory term mus
disappear when all moments are aligned!.

Requirement~a! is fulfilled assuming thatd(m,mV) is in
the form of a difference:

d~m,mV!5d~m!2d~mV!, umu,umVu, ~6!

whered(m) is factorized as follows:

d~m!53
dm

dH
F~m! ~7!

in order to satisfy requirement~b!. Heredm/dH is the first
derivative of the reduced magnetization with respect toH, an
even function ofH ~and ofm), while F(m) is another even
function of m having the physical dimensions of a magne
field, and describing the effect of the dipolar interaction. T
factor of 3 appearing in thed function @Eq. ~7!# has been
explicitly added in view of the subsequent introduction o
new quantity, which will play a central role in the theory@see

of
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below, Eq. ~11!, and related text#. Note that 3dm/dH
53u8m/kT, whereu8 is the first derivative of the Langevin
function L(x) with respect to its argument, so that whenH
50, 3dm/dH53u8(0)m/kT5m/kT. Basically, F(m) is
defined as the root-mean-square value of the random
Hzi :

F~m![^Hzi
2 &1/25S (

jk
Ai j Aik^ujuk& D 1/2

, ~8!

which may be written as~see the Appendix!:

F~m!5A3H̃o~^u2&2^u&2!1/2

[A3H̃o~^u2&2m2!1/2, ~9!

^u2& being the second moment ofuj , which corresponds to

^u2&512

2LS mH

kT D
mH

kT

~10!

and H̃o5m( 1
3 ( jAi j

2 )1/2[(1/A3) Hi , whereHi is an effec-
tive interaction field, already estimated to be of the ord
200–1000 Oe in the Cu1002xCox system.32 The function
F(m) takes its maximum value (H̃o) for m50, and reduces
to zero as (12umu)2 for m→61. Requirement~c! is natu-
rally satisfied byF(m) anda fortiori by d(m). The decrease
of F(m)[^Hzi

2 &1/2 with m has a simple physical explanatio
in fact, when all moments become parallel, the dipolar fi
on any site is identically zero, provided it originates from
assembly of equal moments randomly distributed in space
we are assuming here33. The memory function is finally
written as

d~m,mV!53A3
mH̃o

kT
$u8~^u2&2m2!1/2

2uV8 ~^u2&V2mV
2 !1/2%

5
mH̃o

kT
@F~m!2F~mV!#, ~11!

where F(m)53A3u8(^u2&2m2)1/2 is a monotonically de-
creasing, even function ofm. The factor 3A3 causesF(m) to
range between the limitsF(0)51, F(1)50. F(m) will be
referred to in the following as the ‘‘cutoff’’ function, becaus
it represents how the memory function is attenuated by
creasing the alignment of magnetic moments, owing to
decrease of the rms dipolar field. The factormH̃o /kT is a
small quantity at room temperature, being of the order
0.12 for parameter values appropriate to this case (m55
310217emu andH̃o513102 Oe). Note that in this way the
effect of dipolar interaction has been cast in the form o
mean field,Hmean:

m65LS m

kT
~H6Hmean! D , ~12!
ld

r

d
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-
e

f

a

whereHmean[H̃o@F(m)2F(mV)# is however adecreasing
function of m, and has a sign depending on the one
dumu/dH. The emergence of a mean-field theory is ful
compatible with the long-range character of the dipo
interaction.34 The whole theory may be checked on actu
Cu1002xCox systems. It is worth noting that the only adjus
able parameter of the model is the value ofH̃o , all other
terms being known or obtained from the experiment.

IV. APPLICATION OF THE THEORY

The main predictions of the model are summarized he

A. Dependence of remanence on vertex field

The value of the positive reduced remanence is

mR~mV!5LS mH̃o

kT
@12F~mV!# D >

1

3

mH̃o

kT
@12F~mV!#.

~13!

One can observe thatmR is a function of the loop’s vertex
field through the vertex magnetization value. For a ma
loop, mV approaches unity andF(mV) approaches zero, so
that mR reaches its maximum value

mR
max5LS mH̃o

kT
D >

1

3

mH̃o

kT
. ~14!

For minor symmetric loops,mR is predicted to decrease with
decreasingHV or mV : see Fig. 2. The reduced remanence
a major loop is therefore a measure of the intensity of
field H̃o , at least in the high-temperature limit. Equation~14!

provides a way to easily determineH̃o from experimental
data.

B. Dependence on reduced magnetization
of reduced half-difference of loop branches

The half-difference between upper and lower branches
a reduced loop, developed to the first order in the small
rametermHmean/kT, takes the form:

DR~m!>
mH̃o

kT
@F~m!2F~mV!#u8~m!. ~15!

For a major loop,F(mV)>0, therefore

DR~m!>
mH̃o

kT
F~m!u8~m!. ~16!

C. Anhysteretic curve

Whereas the reduced half-difference is proportional to
small parametermHmean/kT, the reduced half-sum~i.e., the
anhysteretic magnetization curve! is nearly coincident with
the Langevin function for noninteracting moments@Eq. ~3!#,
because in this case the dipolar interaction merely introdu
a second-order correction:

m>LS mH

kT D1
1

2 S mHmean

kT D 2

u9S mH

kT D>LS mH

kT D . ~17!



a
ra
nc
in
nc
.

y
de

f

al

gl

w
re
in

of
ea
s
-

n
g
t

lu

are

all
toff

ure
:
tical

rper

y a
olar
for
han
ent
at
Y

.
on
ef-
ure;
re
lly
ially

ntly

s in

tic

eo-
he
ood

eri-
al
or-
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The anhysteretic curve therefore closely represents the m
netization behavior of the granular system where the inte
tion among particles has been turned off. This circumsta
implies that the magnetic-moment values obtained by fitt
the anhysteretic curve to a superposition of Langevin fu
tions are essentially correct, even in interacting systems

D. Self-consistency of the theory

A proof of the validity of this theory may be obtained b
considering the two independent ways of experimentally
termining the cutoff function by means of Eqs.~13!, ~14!,
and~16!. In fact, exploiting Eq.~13! F(mV) may be canoni-
cally determined in terms of the vertex magnetization o
complete set of minor symmetrical loops, as

F~mV!512
mR~mV!

mR
max

, ~18!

where all quantities in the right-hand side are experiment
determined~Fig. 2!. On the other hand, using Eq.~16! the
cutoff function may be independently obtained from a sin
major loop:

F~m!5
D~m!

3mR
max

•u8~m!
, ~19!

where again all quantities in the right-hand side are kno
from experiment. In principle, the first method is far mo
accurate than the second one, because the denominator
fraction of Eq.~19! approaches zero~as the numerator does!
for m→61, inducing large fluctuations in the values
F(m). However, the second method involves a single m
surement of a major loop, and is much faster. In any ca
Eqs.~18! and~19! provide two independent ways of obtain
ing the same function; the results forF(m) andF(mV) may
be plotted together on the same horizontal scale, as show
Fig. 3. The agreement between the two data sets is strikin
all examined cases, and provides a strong clue about
validity of the whole theory.

E. Form of the theory for distributed moments.
Validity of the model

A further step consists in extending Eq.~12! to a real
system, where the moments are distributed in size. Letpn be
the fraction of magnetic moments of magnitudemn ; the ex-
pressions for the reduced anhysteretic magnetization and
the branches of a hysteresis loop are simply

m5(
n

pnLS mnH

kT D ~20!

and

m65(
n

pnLS mn

kT
~H6Hmean! D , ~21!

whereHmeanis defined as before, but using the average va
mo of the magnetic moments in the expression forF(m):
g-
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e

g
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he

for

e

mo5(
n

pnmn ,

mo5LS moH

kT D ,

^u2&o5

122LS moH

kT D
moH

kT

,

uo8[L8S moH

kT D ,

Fo~m![F~mo!53A3uo8@^u
2&o2mo

2#1/2, ~22!

where the quantities in the right-hand term of the last line
evaluated for the same field value at which the valuem of the
abscissa is calculated according to Eq.~20!. The agreement
between theory and experiment is shown in Fig. 4 for
examined systems. The symbols always refer to the cu
function experimentally obtained by applying Eq.~19!; the
lines are the corresponding theoretical predictions for p
dipolar interaction. Two main features may be evidenced

~a! the agreement between experimental and theore
F(m) curves is very good for low Co content (x55,
10 at. %), becoming increasingly worse forx.10 at. %,
when the experimental cutoff function appears to be sha
than predicted aroundm50. In any case, forx55,10,
15 at. % the overall behavior of allF(m) curves—and con-
sequently of hysteresis loops—is accurately described b
theory considering superparamagnetic particles and dip
interactions only. This result may indicate that, at least
low Co content, other possible interactions are weaker t
dipolar coupling. This evidence is in complete agreem
with recent Monte Carlo simulation results, indicating th
the dipolar term is much stronger than the indirect RKK
term, owing to the intrinsic oscillatory nature of the latter35

At higher Co concentration, either additional interacti
mechanism begins to play a role, or the blocked-particle
fects become no longer negligible, even at room temperat

~b! all cutoff functions belonging to the same family a
practically coincident, both experimentally and theoretica
@the actual differences among theoretical curves essent
depend on values ofmo only slightly varied from sample to
sample, and are always very small; they are conseque
shown in just one case, see Fig. 4~b!#. Once again, no free
parameters were used in producing the theoretical curve
Figs. 4.

F. Major symmetric loops

The adequacy of the theory to fit the whole hystere
magnetization curves of Cu1002xCox granular systems is
pointed out in Fig. 5, where selected experimental and th
retical loops, both major and minor, are plotted together. T
agreement between theory and experiment is always as g
as the one shown in Fig. 5, where not all collected exp
mental data~symbols! are actually displayed, in order to de
with more readable plots. Note that the theoretical loops c
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FIG. 3. Cutoff function obtained from a single major loop~open symbols! and from different minor loops~full symbols! for samples of
Cu95Co5 ~a!, Cu90Co10 ~b!, Cu85Co15 ~c!, and Cu80Co20 ~d!.
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rectly close at both vertexes, owing to the form of t
d(m,mV) function. These loops were obtained as follow
first, the anhysteretic curve was measured; then, it was fi
to a superposition of a few Langevin functions. In this wa
both the average momentmo and the saturation magnetiza
tion were obtained, and theFo(m) function was generated
The field H̃o was determined by fitting the experimental r
duced remanence of major loops@Eq. ~14!#. Finally, the loop
branches were generated using Eq.~21!. In the present case
only two Langevin functions, corresponding to two differe
magnetic-moment values, were used. This is of cours
somewhat crude representation of the actual distribution
magnetic moments in such granular systems; however, s
:
d

,

t
a

of
ch

a choice has been made~here as well as in Refs. 3 and 34!
because increasing the number of discrete moment value
even introducing a continuous distribution of moments, e
pressed by a functionp(m), brings about a relatively insig
nificant increase in the precision of the fit, at the cost
heavily reducing the reliability of the obtained fitting param
eters.

G. Minor symmetric loops: Remanence-coercivity relationship

A closely linear relation between reduced remanence
coercivity, similar to the one discussed in Ref. 34, also ho
for minor loops. In fact, indicating the coercivity of a loo
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FIG. 4. Experimental cutoff
functions and theoretical predic
tions for different Cu95Co5 ~a!,
Cu90Co10 ~b!, Cu85Co15 ~c!, and
Cu80Co20 ~d! samples. The differ-
ences among theoretical curve
always very small, are reporte
only for case b.
g
te

a
o
a

tio
rin

field

on

s-
es

e

with vertex fieldHV asHcV , andmR(mV) given by Eq.~13!
asmRV , the following formula is obtained by manipulatin
Eqs.~13! and~22! to the second order in the small parame
(moHcV/3kT):

mRV5
moHcV

3kT
1

27

5
mR

maxS moHcV

3kT D 2

, ~23!

wheremR
max is the reduced remanence of a major loop~see

Fig. 2! and mo is the average magnetic moment@Eq. ~22!#.
The agreement between theory~lines! and experiment~sym-
bols! is shown in Fig. 6 and turns out to be rather good for
examined systems. Note that all theoretical lines are alm
coincident, and that the quadratic term only provides a sm
correction to the linear law.

H. Minor asymmetric loops: Demagnetizing a granular system

The theory may also be used to predict the magnetiza
behavior in asymmetric loops, like the ones observed du
r

ll
st
ll

n
g

a demagnetization procedure. In such a case, the vertex
values form a sequence of the type:1HV0 , 2HV1 , 1HV2 ,
2HV3, . . . , whereuHV,n11u,uHV,nu. We have chosen a
demagnetizing procedure characterized by the law

uHV,n11u5
1

2
uHV,nu, ~24!

starting with HV,05113104 Oe and ending withHV,65
1156 Oe. The complete field history of the magnetizati
of a selected sample (Cu90Co10, JH, I 5 7A! is shown in
Fig. 7~a!; the central region is expanded in Fig. 7~b! to evi-
dence the three descending~odd! branches and the three a
cending ~even! ones. The corresponding remanence valu
~both positive and negative! are well determined from thes
curves; they are reported~as reduced values! in Fig. 7~c! as
functions of the branch number~full symbols!.
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FIG. 5. Major~a! and minor~b! loops of selected samples of Cu95Co5 , Cu90Co10, Cu85Co15. Symbols: experimental data; lines: theor
pr
w

on
The
act,

s.
e,
In this case, the theory predicts that thed function for
subsequent loop branches must keep the memory of all
vious vertex magnetization values, according to the follo
ing scheme:

First branch~descending!:

d5d~m,mV0!5
mH̃o

kT
@F~m!2F~mV0!#.

Second branch~ascending!:

d~m,mV0 ,mV1!5
mH̃o

kT
@F~m!22F~mV1!1F~mV0!#.

Third branch~descending!:

FIG. 6. Reduced remanence vsmoHcV/3kT (mo is the average
magnetic moment;HcV is the vertex field;T is the room tempera-
ture! for different samples of Cu1002xCox . Lines indicate the
theory. Note that all lines are almost coincidental.
e-
-

d5d~m,mV0 ,mV1 ,mV2!5
mH̃o

kT
@F~m!22F~mV1!

12F~mV2!2F~mV0!#,

and so on. In this way, the continuity of magnetizati
branches at all vertexes is automatically guaranteed.
magnetization values on the first three branches are, in f

m1
(1)5LS mH

kT
1

mH̃o

kT
@F~m!2F~mV0!# D ,

m2
(2)5LS mH

kT
2

mH̃o

kT
@F~m!22F~mV1!1F~mV0!# D ,

m1
(3)5LS mH

kT
1

mH̃o

kT
@F~m!22F~mV1!12F~mV2!

2F~mV0!# D ,

and so on. One can easily check thatm1
(1)(H52HV1)

[m2
(2)(H52HV1), as well as for all considered vertexe

The sequence of reduced remanence values is, therefor

mR
(1)>

1

3

mH̃o

kT
@12F~mV0!#>mR

max,

mR
(2)>2mR

max@122F~mV1!#,

mR
(3)>1mR

max@122F~mV1!12F~mV2!#,

the general term being

mR
(n)>~21!n21mR

max@122F~mV1!1•••

1~21!n212F~mV,n21!#.
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FIG. 7. Complete demagnetization history of a joule-heated Cu90Co10 sample;~a! overall magnetization behavior;~b! detail aroundH
50 ~branch numbers are indicated!; ~c! experimental values of the reduced remanence~from b; full symbols! and model’s prediction~open
symbols! as functions of branch number.
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These values are reported in Fig. 7~c! ~open circles!. Once
again, the agreement between theory and experiment is
good.

It is interesting to remark that both theory and experim
clearly indicate that in the examined case a truly demag
tized state (mR50) is not reached, although the final valu
of mR is close to zero. This result is related to the spec
choice of the demagnetization procedure, which occurs
few steps, each vertex field being halved with respect to
previous one. The conditionmR50 is actually reached whe
the demagnetization procedure involves a much larger n
ber of steps, of the order of several tens~in such a case, eac
vertex field in the sequence is only slightly lower than t
previous one!. For just a few steps with big vertex-fiel
jumps, the final value ofmR may be either small and positiv
~as in the present case! or small and negative.

I. Reference states: First magnetization curve

At both low and intermediate fields (H<53103 Oe), the
field history of magnetization may become very complex
effect of the peculiar behavior of the functiond which keeps
the memory of all previous vertex-magnetization values,
already evidenced in the description of asymmetric mi
loops. As a consequence, the magnetization is not a sin
valued function of the external field. In principle, a one-t
one correspondence betweenH and m only occurs in the
limit uHu→`,umu→1, i.e., when all moments are aligne
and the magnetic entropy of the system is zero. In pract
however, such a one-to-one correspondence occurs whe
d(m) function given by Eq.~11! becomes negliglible with
respect tomH/kT, which is the leading term in Eq.~5!. The
loop’s branches then merge, within the experimental unc
tainty, into a single Langevin curve@Eq. ~3!#, and the mag-
netization behavior becomes fully anhysteretic. The mem
function may be considered negligible whenF(m)→0 @Eq.
~11! and Fig. 3#, quite independently of the previous fie
ry

t
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history. Fig. 3 clearly indicates that in all examined cas
F(m)'0 when m'0.75 ~such a value is reached forH
5H* '53103 Oe for x55, 10 at. % and forH5H* '1
3103 Oe for x515,20 at. %). Any magnetic state corre
sponding to an applied field larger thanH* is described by a
single-valued magnetization, and may be considered a
good reference state, i.e., a magnetic state independent o
previous field history. On the contrary, the states atH50
andm'0 do not fulfill such a condition.

To further illustrate this point, let us briefly comment o
the so-called first magnetization curve of any of our samp
Such a curve starts from the state (H50, m50), which is
only reached by performing a complete demagnetization p
cedure of the type discussed in the previous subsect
When H is again increased, starting from zero, the reduc
magnetization on the resulting curve (mfirst) is described by
the equation:

mfirst5LS mH

kT
2

mH̃o

kT
@F~m!2S# D , ~25!

whereS represents the total contribution of all terms in t
memory function arising from the demagnetizing proced
followed. It is easily recognized thatS51 if the requirement
mfirst(H50)50 has to be satisfied. As a consequence,mfirst
can be written as

mfirst5LS mH

kT
1

mH̃o

kT
@12F~m!# D . ~26!

The term 12F(m) is very close to zero whenH<H̃o , while
it approaches unity whenH'H* @H̃o . The relative differ-
ence Dm/m5(mfirst2m)/m, where m is the anhysteretic
magnetization given by the Langevin function@Eq. ~3!#, is



io
vi

th
th
e
y
in

e
th

a
o

d
sy

he

ar

e

th
r-
a

en
c

e
ul
iti
ur
o
a

an
on
ct

io
tro
b

hi
ed
ib

ter-

ion
for

to
etic

has

s
g-
de-
sti-
m
ies
ent
s
g-

ring
; in
off-

than

s of
-
n,
ons

d to
c-

or-
y a
of
ag-

er
The

ys-
ere
ive

ible
rly

be
ar-

ive

y

d

PRB 60 12 217MAGNETIC HYSTERESIS BASED ON DIPOLAR . . .
Dm

m
5

mH̃o

kT

@12F~m!#u8

m
, ~27!

taking its maximum value form'0.4. It is easily checked
thatDm/m never exceeds 3%, so that the first magnetizat
curve is almost coincident with the anhysteretic Lange
function.

V. CONCLUDING REMARKS

The proposed theory successfully explains in detail all
examined features of hysteresis loops observed in
Cu1002xCox system. This is, to our knowledge, one of th
very rare cases where an analytical theory of magnetic h
teresis has been set out, the most fruitful approach be
usually a statistical one.37 The intrinsic coherence of th
theory has been discussed in Sec. IV D. However, ano
type of coherence is remarkable: in fact, thesameset of
magnetic-moment values and weights needed to fit the
hysteretic magnetization curve is used to fit all properties
the hysteresis loop. Moreover, thesameset may also be use
to describe the giant magnetoresistance behavior of the
tem in the framework of Ref. 3.

A central role in this mean-field theory is played by t
memory functiond(m), which contains both the function
F(m) ~taking into account the cumulative effect of dipol
interaction! and the derivative termdm/dH. Actually, any
function of the typef (dm/dH) could, in principle, appear in
Eq. ~7!; however, the agreement between theory and exp
ment indicates that the simple representation ofd(m) given
by Eq. ~7! is substantially correct.

The effective interaction fieldHi is not obtained from first
principles@the field H̃o appearing in Eq.~9! is just Hi /A3#.
As a matter of fact, all the values ofH̃o arising from the
experimental reduced remanences through Eq.~14! lie be-
tween 80 and 300 Oe, in agreement with the estimatedHi
values (200–1000 Oe!.32 However, the values ofHi for a
given sample are not exactly predictable on the basis of
known structural data~average particle size, average inte
particle distance! for that sample. This may be considered
an intrinsic limit of the proposed approach.

In real systems, a broad distribution of magnetic-mom
values can be present, as evidenced in a few cases by a
particle observation,8,36 so that magnetic contributions from
both superparamagnetic and blocked particles can be
pected. As a matter of fact, magnetization curves of gran
systems are often explained in terms of a mere superpos
of independent effects of this type. Although such a pict
cannot be excluded, we point out here the relevant r
played in granular systems by interparticle, rather th
single-particle, effects. It should be stressed that in
granular system the present theory becomes applicable
in the high-temperature limit, where blocked-particle effe
are negligible.

In other approaches, the presence of weak interact
among fine magnetic particles is taken into account by in
ducing an additional term to the energy barrier overcome
the particle magnetization in a spin-flip process.4,25 In this
way, a genuine interparticle effect is again described wit
the framework of a single-particle picture. We have follow
another way of representing magnetic interactions, poss
n
n
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less simple, but more suitable to describe magnetic hys
esis.

Our analysis suggests that the dominant interact
among magnetic moments is of a dipolar nature, at least
low Co content. In fact, dipolar interaction is sufficient
accurately describe and predict all the details of hyster
magnetization.

The effect of these weak, long-ranged interactions
been described by a sort of mean-field theory~where how-
ever the mean fielddecreaseswith m, instead of being a
linear function ofm). Using a mean-field approach implie
completely neglecting the correlation among individual ma
netic moments, which are considered to be statistically in
pendent. Such a simplifying assumption is, however, ju
fied in an analysis dealing with thermal-equilibriu
properties of the system of moments, i.e., with propert
investigated through experiments involving measurem
times much larger thant1. As known, magnetic correlation
play instead a significant role in determining the giant ma
netoresistance behavior of Cu1002xCox systems.3 In fact, the
latter effect essentially results from spin-dependent scatte
of conduction electrons by adjacent magnetic moments
that case, the electrons explore a nearly instantaneous,
equilibrium local magnetic state~the electronic time-of-flight
between adjacent magnetic particles being much shorter
t1 at room temperature32!. The following hierarchy may
therefore be established when different physical propertie
granular systems are studied:~a! the anhysteretic magnetiza
tion is well described in terms of a pure Langevin functio
i.e., neglecting the existence of both magnetic interacti
and correlations among magnetic moments;~b! the hysteresis
loop can be described in terms of a mean-field term adde
the argument of the Langevin function, i.e., taking into a
count dipolar interactions, but still neglecting magnetic c
relations; ~c! the magnetoresistance can be described b
more complex approach, explicitly considering the effect
instantaneous magnetic correlations among interacting m
netic moments.

Finally, it should be noted that the theory, although rath
complete, has been checked only at room temperature.
next step will consist in applying the model to describe h
teretic features at both lower and higher temperatures, wh
spurious effects, respectively, related to the progress
blocking of superparamagnetic particles, and to poss
changes in particle number and size, will have to be prope
taken into account. Moreover, the theory will have to
tested on different magnetic systems containing ultrafine p
ticles, in order to establish the domain of its prospect
application.
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APPENDIX

The time-dependent dipolar field acting on thei th site is
given by Eq.~4!. When all magnetic moments are aligne
(uj51) and are randomly distributed in space,Hiz is iden-
tically zero33
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(
j

Ai j 50. ~A1!

The square of the instantaneous dipolar field on sitei is

Hiz
2 5m2(

j
(

k
Ai j Aikujuk . ~A2!

The average value ofHiz
2 is

^Hiz
2 &5m2(

j
(

k
Ai j Aik^ujuk&. ~A3!

Time average~over times larger thant2) and space averag
~over all sitesi ) of Hiz

2 are considered to be coincident. F
uncorrelated magnetic moments, the pair-correlation fu
tion ^ujuk& takes the form:

^ujuk&5^u2&~ j 5k!,
al
ics

g

, J

F
J

.
,
.

er

o

do
c-

^ujuk&5^u&25m2~ j Þk!, ~A4!

so that

^Hiz
2 &5m2(

j
Ai j

2 ^u2&1m2(
j

(
kÞ j

Ai j Aikm2. ~A5!

Using Eq.~A1!, one gets

(
j

(
kÞ j

Ai j Aik52(
j

Ai j
2 , ~A6!

and finally

^Hiz
2 &5m2S (

j
Ai j

2 D @^u2&2m2#53H̃o
2@^u2&2m2#.

~A7!

See Eq.~9!.
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