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We examine the quantum correlations of spin pairs in
the exact ground state of cyclic finite XX spin chains
in a transverse field, by evaluating the Quantum Dis-
cord [1,2], the Geometric Discord [3] as well as the
Information Deficit [4]. We show that parity effects
are of crucial importance for describing the behavior
of these measures below the critical field, and imply
full range in the immediate vicinity of the factorizing
field, where they become independent of separation
and coupling range.
It is also shown that while these measures exhibit
the same qualitative asymptotic behaviour for large
separations or temperatures, at the same time im-
portant differences arise in the minimizing local mea-
sure that defines them. Whereas the Quantum Dis-
cord prefers a spin measurement perpendicular to the
transverse field, the Geometric Discord and the In-
formation Deficit exhibit a perpendicular to parallel
transition as the field increases below the critical field,
which subsists at all temperatures and for all separa-
tions. We show exact results of these measures for
XX and XY spin chains, both for finite chains and for
the thermodynamic limit obtained by means of the
Jordan Wigner femionization.

General formalism

Let us consider a bipartite quantum system A + B in a state ρAB.
A local complete projective measurement on system B, MB is
defined by a set of orthogonal projectors {ΠB

j }, ΠB
j = IA ⊗ Πj,

with ΠB
j Π

B
j′ = δjj′Π

B
j and

∑

j Π
B
j = I .

The state of the total system after an unread measurement is

ρ′AB =
∑

j

ΠB
j ρAB ΠB

j =
∑

j

qj ρA/j ⊗ Πj (1)

The minimum generalized information loss due to such measurement
is [5]

IBf = Min
MB

Sf(ρ
′

AB)− Sf(ρAB) (2)

where Sf (ρ) is a general entropic form [5]:

Sf (ρ) = Tr f (ρ) (3)

with f smooth concave function in [0, 1] and f (0) = f (1) = 0. It is
verified that IBf ≥ 0, for any f with IBf = 0 if ρ′AB = ρAB,

Positivity of IBf ∀ Sf follows from majorization relation

ρ′AB ≺ ρAB satisfied by (1).

Particular entropic functions

For f (ρ) = −ρ log2 ρ, Sf (ρ) is the von Neumann entropy S(ρ)

and (2) becomes the one way information deficit (IB1 ) [4].
It can be rewritten in terms of the relative entropy
S(ρ||ρ′) = −Tr ρ(log2 ρ

′ − log2 ρ) as

IB1 = Min
MB

S(ρ′AB)− S(ρAB) = Min
MB

S(ρAB||ρ′AB) . (4)

For pure states ρ2AB = ρAB, I
B
1 = E(A,B) (entanglement entropy).

For f (ρ) = ρ(1 − ρ), Sf (ρ) is the linear entropy and (2) is propor-
tional to the Geometric Discord [3]

IB2 = Min
ρ′AB

||ρAB − ρ′AB||2

For pure states IB2 = C2
AB , with CAB the concurrence

Relation with the Quantum Discord [1,2]:

D = Min
MB

IMB
1 (ρAB)− IMB

1 (ρB)

Implies DB ≤ IB1 , with DB = IB1 if ρ′B = ρB for minimizing MB.

Determination of the minimizing
measurement

Determination of MB difficult in general. Complete projective
measurements at B determined by d2B−dB real parameters if B has

dimension dB. Minimizing measurement for IBf fulfills stationary

condition [5]
TrA[f

′(ρ′AB), ρAB] = 0 , (5)

leading to dB(dB − 1) real equations.
Geometric discord I2: For a general mixed state of two qubits

ρAB = 1
4(I + rA · σA + rB · σB + σt

AJσB) , (6)

where σ = 2s are the Pauli matrices, σA = σ ⊗ I , σB = I ⊗ σ,
〈σA,B〉 = rA,B and J = 〈σAσ

t
B〉, it can be shown that [5],

IB2 = 1
2(trM2 − λ1) , (7)

where λ1 is the largest eigenvalue of the positive semi-definite 3× 3
matrix M2 = rBr

t
B + J tJ . The minimizing MB is a spin measure-

ment along the direction of the associated eigenvector k1 of M2. A
closed expression for IB3 can also be obtained for this case [5].

XY spin chain in a transverse field I

Finite spin 1/2 array with XY couplings in a transverse field:

H =
∑

i

Bisi,z − 1
2

∑

i,j

J
ij
x sixsjx + J

ij
y siysjy, (8)

[H,Pz] = 0, Pz = exp[iπSz]. Pair reduced state in GS then satisfies
[6] [ρij, P ij

z ] = 0 , P ij
z = exp[iπ(siz + sjz + 2s)], and implies definite parity

reduced eigenstates. Hence, in standard basis {|00〉, |01〉, |10〉, |11〉},

ρij =









p+L 0 0 βL
0 pL αL 0
0 ᾱL p′L 0
β̄L 0 0 p−L









, L = |i− j| (9)

Important case: Mixture of two aligned spin states [6,8,9]

ρij(θ) =
1
2(|θθ〉〈θθ| + | − θ,−θ〉〈−θ,−θ|) (10)

where |θθ〉 ≡ |θ〉 ⊗ |θ〉 with |θ〉 = exp[iθsiy]|0〉. State (10) is separable ∀
θ: E(A,B) = 0. But IBf > 0 for ∀ θ ∈ (0, π/2) [5,8,9].

(10) is a particular case of (9). Represents the reduced two-qubit
state for any separation L in the GS of the spin chain (8) in the
immediate vicinity of the factorizing field Bs [6,8,9],where the GS is

|Θ±〉 =
|Θ〉 ± | − Θ〉

√

2(1± 〈−Θ|Θ〉)
, |Θ〉 = |θ1θ2 . . . θn〉

XY spin chain in a transverse field II
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Fig. 1: Quantum correlation measures in the

mixture of aligned states (10): The quantum

discord D, the geometric discord I2 and the

“cubic” discord I3, as a function of the angle

θ. Normalization is such that all measures take

the value 1 in a maximally entangled two-qubit

state. Due to the symmetry of the state, D =

DA = DB and If = IAf = IBf ∀ f [9].

0 0.5 1.0 1.5 2.0
B�Jx

Bs

0

0.1

0.2

D

L=1

25

0 0.5 1.0 1.5 2.0
B�Jx

Bs

0

0.1

0.2

I 2

L=1

25

Fig. 2: The quantum discord D (left) and the geometric discord I2 (right) between spin pairs with separation

L = 1, 2, . . . , n/2 in the exact ground state of a cyclic chain of n = 50 spins with first neighbor XY couplings

and anisotropy χ = 0.5. The results for all separations are simultaneously depicted. They all merge at the

factorizing field Bs, where they coincide with the result for the mixture (10) with cos θ = Bs/Jx =
√
χ.[9]

XX spin chain in a tranverse field I

The reduced state for this model (J
ij
x = J

ij
y = J in (8)) is

ρL = p+L |↑↑〉〈↑↑| + p−L |↓↓〉〈↓↓| + (pL + αL)|Ψ+〉〈Ψ+| + (pL − αL)|Ψ−〉〈Ψ−|

with |Ψ±〉 Bell states. Finite value of D and If ∀ αL 6= 0 [10].
Transition |Ψ+〉 → |↓↓〉 in dominant eigenvalue corresponds to
⊥→ z transition in minimizing measurement of I2 and I1 !
Geometric discord:

I2 =

{

Iz2 = 4α2
L , |αL| ≤ αt

L

I⊥2 = 2(α2
L + αt

L
2
) , |αL| ≥ αt

L

No transition in D: D = D⊥ ∀ α 6= 0.
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Fig. 3: Left: The T = 0 transition field BL
t where the measurement minimizing I2 changes from perpendicular

to parallel [10], as a function of L (solid line), together with the T = 0 field BL
c where the dominant eigenvector

of ρL changes from a Bell state to an aligned state (dashed line). Both fields coincide for L = 1 and L → ∞ [10].

Dotted line indicates the asymptotic result for large L. Right: The transition fields BL
t (T ) of the geometric

discord for T 6= 0, for L = 1, 2, 3 and 5, such that I2 = I⊥
2
(Iz

2
) for B < BL

t (T ) (> BL
t (T )). Dashed lines depict

again the fields BL
c (T ). For L = 1, both fields coincide exactly ∀ T , approaching J/2 for high T , whereas for

L ≥ 2 they merge for high T ,vanishing as (J/T )L−1 [10]

XX chain in a transverse field II
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Top: Left: The minimizing angle for the geometric discord I2 as a function of the magnetic field for spin pairs

with separations L = 1, . . . , N/2, in a finite chain with N = 40 spins. Dotted lines indicate the sharp ⊥→ z

transitions for different L. No transition occurs in the quantum discord D (dashed line), where γ = π/2 ∀

B and L. Right: Results for the geometric discord I⊥
2

and Iz
2
(solid lines) for N = 40 and L = 1, together

with the two dominant eigenvalues of ρ1 (dotted lines). Both cross at the same step. Bottom: Left: Exact

transition fields BL
t delimiting the ⊥ and z phases of I2 at T = 0 for N = 40, N = 100 and the thermodynamic

limit. Right: The geometric discord “phase” diagram in the finite chain of N = 40 spins, for all separations

L = 1, . . . , N/2 (solid lines). The z (⊥) phases lie to the right (left) of these curves. Dashed lines depict the

fields BL
c (T ) for L ≤ 4, below which the Bell state becomes dominant in ρL.[10]

Conclusions

• All measures indicate the presence of long range pairwise discord-type quantum
correlations for |B| < Bc in the exact GS of these chains.

• All pairwise quantum correlations reach full range at Bs, adquiring a finite non-
negligible constant value independent of the pair separation or coupling range
and is determined solely by the coupling anisotropy.

• Substantial differences in the minimizing local spin measurement that defines
these measures: for the Quantum Discord it always prefers here a direction
orthogonal to the transverse field, whereas for Information Deficit-type measures
it exhibits instead a transition, from perpendicular to parallel to the field, as
the latter increases, present for all pair separations and at all temperatures.

• Such behavior signatures the transition exhibited by the dominant eigenstate of
the reduced state of the pair, which changes from a maximally entangled state
to a separable state in the vicinity of the measurement transition.

• For contiguous pairs both transitions occur exactly at the same field, at all
temperatures, in geometric discord. For general separations there is also exact
agreement between both fields at high T , for all measures If .
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